COMPMID-1698: Implementing CLGEMMLowpMatrixMultiplyReshapedKernel

Change-Id: Ia4db21b394a0b9235393202ce3c00b11cceb94ea
Reviewed-on: https://review.mlplatform.org/568
Tested-by: Arm Jenkins <bsgcomp@arm.com>
Reviewed-by: Michele Di Giorgio <michele.digiorgio@arm.com>
diff --git a/src/core/CL/cl_kernels/gemmlowp.cl b/src/core/CL/cl_kernels/gemmlowp.cl
index 8c1fa54..277338b 100644
--- a/src/core/CL/cl_kernels/gemmlowp.cl
+++ b/src/core/CL/cl_kernels/gemmlowp.cl
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2017-2018 ARM Limited.
+ * Copyright (c) 2017-2019 ARM Limited.
  *
  * SPDX-License-Identifier: MIT
  *
@@ -23,6 +23,7 @@
  */
 #include "helpers.h"
 #include "helpers_asymm.h"
+#include "repeat.h"
 
 #if defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
 #if defined(ARM_COMPUTE_OPENCL_DOT8_ACC_ENABLED) && defined(cl_arm_integer_dot_product_accumulate_int8)
@@ -1943,6 +1944,574 @@
 #endif // defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
 #endif // defined(NUM_ELEMS_PROCESSED_PER_THREAD_X) && defined(NUM_ELEMS_PROCESSED_PER_THREAD_Y) && defined(COLS_A)
 
+#if defined(M0) && defined(N0) && defined(K0) && defined(V0) && defined(H0)
+
+#if defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
+
+#if K0 == 2
+#define ARM_DOT_K0(a, b, c)                                         \
+    ({                                                              \
+        ARM_DOT((uchar4)(a, (uchar2)0), (uchar4)(b, (uchar2)0), c); \
+    })
+#elif K0 == 3 // K0 == 3
+#define ARM_DOT_K0(a, b, c)                                       \
+    ({                                                            \
+        ARM_DOT((uchar4)(a, (uchar)0), (uchar4)(b, (uchar)0), c); \
+    })
+#elif K0 == 4 // K0 == 4
+#define ARM_DOT_K0(a, b, c) \
+    ({                      \
+        ARM_DOT(a, b, c);   \
+    })
+#elif K0 == 8 // K0 == 8
+#define ARM_DOT_K0(a, b, c)           \
+    ({                                \
+        ARM_DOT(a.s0123, b.s0123, c); \
+        ARM_DOT(a.s4567, b.s4567, c); \
+    })
+#elif K0 == 16 // K0 == 16
+#define ARM_DOT_K0(a, b, c)           \
+    ({                                \
+        ARM_DOT(a.s0123, b.s0123, c); \
+        ARM_DOT(a.s4567, b.s4567, c); \
+        ARM_DOT(a.s89AB, b.s89AB, c); \
+        ARM_DOT(a.sCDEF, b.sCDEF, c); \
+    })
+#else // K0 not supported
+#error "K0 value not supported"
+#endif // K0
+
+#else // defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
+
+#if K0 == 2
+#define ARM_DOT_K0(a, b, c)     \
+    ({                          \
+        c += (uint)a.s0 * b.s0; \
+        c += (uint)a.s1 * b.s1; \
+    })
+#elif K0 == 3 // K0 == 3
+#define ARM_DOT_K0(a, b, c)     \
+    ({                          \
+        c += (uint)a.s0 * b.s0; \
+        c += (uint)a.s1 * b.s1; \
+        c += (uint)a.s2 * b.s2; \
+    })
+#elif K0 == 4 // K0 == 4
+#define ARM_DOT_K0(a, b, c)     \
+    ({                          \
+        c += (uint)a.s0 * b.s0; \
+        c += (uint)a.s1 * b.s1; \
+        c += (uint)a.s2 * b.s2; \
+        c += (uint)a.s3 * b.s3; \
+    })
+#elif K0 == 8 // K0 == 8
+#define ARM_DOT_K0(a, b, c)     \
+    ({                          \
+        c += (uint)a.s0 * b.s0; \
+        c += (uint)a.s1 * b.s1; \
+        c += (uint)a.s2 * b.s2; \
+        c += (uint)a.s3 * b.s3; \
+        c += (uint)a.s4 * b.s4; \
+        c += (uint)a.s5 * b.s5; \
+        c += (uint)a.s6 * b.s6; \
+        c += (uint)a.s7 * b.s7; \
+    })
+#elif K0 == 16 // K0 == 16
+#define ARM_DOT_K0(a, b, c)     \
+    ({                          \
+        c += (uint)a.s0 * b.s0; \
+        c += (uint)a.s1 * b.s1; \
+        c += (uint)a.s2 * b.s2; \
+        c += (uint)a.s3 * b.s3; \
+        c += (uint)a.s4 * b.s4; \
+        c += (uint)a.s5 * b.s5; \
+        c += (uint)a.s6 * b.s6; \
+        c += (uint)a.s7 * b.s7; \
+        c += (uint)a.s8 * b.s8; \
+        c += (uint)a.s9 * b.s9; \
+        c += (uint)a.sA * b.sA; \
+        c += (uint)a.sB * b.sB; \
+        c += (uint)a.sC * b.sC; \
+        c += (uint)a.sD * b.sD; \
+        c += (uint)a.sE * b.sE; \
+        c += (uint)a.sF * b.sF; \
+    })
+#else // K0 not supported
+#error "K0 value not supported"
+#endif // K0
+
+#endif //defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
+
+#if N0 == 2
+#define ARM_DOT_K0XN0(a, b, c)           \
+    ({                                   \
+        ARM_DOT_K0((a), (b##0), (c.s0)); \
+        ARM_DOT_K0((a), (b##1), (c.s1)); \
+    })
+#elif N0 == 3 // N0 == 3
+#define ARM_DOT_K0XN0(a, b, c)           \
+    ({                                   \
+        ARM_DOT_K0((a), (b##0), (c.s0)); \
+        ARM_DOT_K0((a), (b##1), (c.s1)); \
+        ARM_DOT_K0((a), (b##2), (c.s2)); \
+    })
+#elif N0 == 4 // N0 == 4
+#define ARM_DOT_K0XN0(a, b, c)           \
+    ({                                   \
+        ARM_DOT_K0((a), (b##0), (c.s0)); \
+        ARM_DOT_K0((a), (b##1), (c.s1)); \
+        ARM_DOT_K0((a), (b##2), (c.s2)); \
+        ARM_DOT_K0((a), (b##3), (c.s3)); \
+    })
+#elif N0 == 8 // N0 == 8
+#define ARM_DOT_K0XN0(a, b, c)           \
+    ({                                   \
+        ARM_DOT_K0((a), (b##0), (c.s0)); \
+        ARM_DOT_K0((a), (b##1), (c.s1)); \
+        ARM_DOT_K0((a), (b##2), (c.s2)); \
+        ARM_DOT_K0((a), (b##3), (c.s3)); \
+        ARM_DOT_K0((a), (b##4), (c.s4)); \
+        ARM_DOT_K0((a), (b##5), (c.s5)); \
+        ARM_DOT_K0((a), (b##6), (c.s6)); \
+        ARM_DOT_K0((a), (b##7), (c.s7)); \
+    })
+#elif N0 == 16 // N0 == 16
+#define ARM_DOT_K0XN0(a, b, c)           \
+    ({                                   \
+        ARM_DOT_K0((a), (b##0), (c.s0)); \
+        ARM_DOT_K0((a), (b##1), (c.s1)); \
+        ARM_DOT_K0((a), (b##2), (c.s2)); \
+        ARM_DOT_K0((a), (b##3), (c.s3)); \
+        ARM_DOT_K0((a), (b##4), (c.s4)); \
+        ARM_DOT_K0((a), (b##5), (c.s5)); \
+        ARM_DOT_K0((a), (b##6), (c.s6)); \
+        ARM_DOT_K0((a), (b##7), (c.s7)); \
+        ARM_DOT_K0((a), (b##8), (c.s8)); \
+        ARM_DOT_K0((a), (b##9), (c.s9)); \
+        ARM_DOT_K0((a), (b##A), (c.sA)); \
+        ARM_DOT_K0((a), (b##B), (c.sB)); \
+        ARM_DOT_K0((a), (b##C), (c.sC)); \
+        ARM_DOT_K0((a), (b##D), (c.sD)); \
+        ARM_DOT_K0((a), (b##E), (c.sE)); \
+        ARM_DOT_K0((a), (b##F), (c.sF)); \
+    })
+#else // N0 not supported
+#error "N0 value not supported"
+#endif // N0 conditions
+
+/** This OpenCL kernel computes the matrix multiplication between 2 matrices.
+ *  The LHS matrix must be reshaped with @ref CLGEMMReshapeLHSMatrixKernel and the M0xK0 must be NOT transposed
+ *  The RHS matrix must be reshaped with @ref CLGEMMReshapeRHSMatrixKernel and the K0xN0 must be transposed
+ *
+ * @note The block's dimensions used for reshaping the LHS matrix and the RHS matrix (M0, N0 and K0) must be passed at compile time using -DM0, -DN0 and -DK0 (i.e. -DM0=4, -DN0=8, -DK0=4).
+ * @note The number of M0xK0 vertical blocks stored on the same output row of the reshaped LHS matrix must be passed at compile time using -DV0 (i.e. -DV0=2)
+ * @note The number of K0xN0 horizontal blocks stored on the same output row of the reshaped RHS matrix must be passed at compile time using -DH0 (i.e. -DH0=2)
+ * @note If the M0xK0 blocks in the reshaped LHS matrix have been interleaved, the option -DLHS_INTERLEAVE must passed at compile time.
+ * @note If the K0xN0 blocks in the reshaped RHS matrix have been interleaved, the option -DRHS_INTERLEAVE must passed at compile time.
+ * @note Only the following configurations of M0, N0 and K0 are currently supported:
+ *  - M0 = 2, 3, 4, 5, 6, 7, 8
+ *  - N0 = 2, 3, 4, 8, 16
+ *  - K0 = 2, 3, 4, 8, 16
+ *
+ * @note In case the output has to be reinterpreted as a 3D tensor (i.e. output of convolution layer), the following information must be passed at compile time:
+ *       -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
+ *       -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
+ *       -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
+ *          (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns LHS matrix NOT reshaped
+ *
+ * @param[in]  lhs_ptr                           Pointer to the LHS reshaped matrix. Supported data type: QASYMM8
+ * @param[in]  lhs_stride_x                      Stride of the LHS reshaped matrix in X dimension (in bytes)
+ * @param[in]  lhs_step_x                        src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in]  lhs_stride_y                      Stride of the LHS reshaped matrix in Y dimension (in bytes)
+ * @param[in]  lhs_step_y                        src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in]  lhs_offset_first_element_in_bytes The offset of the first element in the LHS reshaped matrix
+ * @param[in]  rhs_ptr                           Pointer to the RHS reshaped matrix. Supported data type: same as @p lhs_ptr
+ * @param[in]  rhs_stride_x                      Stride of the RHS reshaped matrix in X dimension (in bytes)
+ * @param[in]  rhs_step_x                        src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in]  rhs_stride_y                      Stride of the RHS reshaped matrix in Y dimension (in bytes)
+ * @param[in]  rhs_step_y                        src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in]  rhs_offset_first_element_in_bytes The offset of the first element in the RHS reshaped matrix
+ * @param[out] dst_ptr                           Pointer to the destination matrix Supported data type: same as @p lhs_ptr
+ * @param[in]  dst_stride_x                      Stride of the destination matrix in X dimension (in bytes)
+ * @param[in]  dst_step_x                        dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in]  dst_stride_y                      Stride of the destination matrix in Y dimension (in bytes)
+ * @param[in]  dst_step_y                        dst_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in]  dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ * @param[in]  k                                 Number of columns in LHS matrix and rows in RHS matrix not reshaped.
+ * @param[in]  lhs_stride_z                      Stride of the LHS reshaped matrix in Z dimension (in bytes)
+ * @param[in]  rhs_stride_z                      Stride of the RHS reshaped matrix in Z dimension (in bytes)
+ * @param[in]  dst_stride_z                      Stride of the destination tensor in Z dimension (in bytes)
+ * @param[in]  dst_cross_plane_pad               (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
+ */
+__kernel void gemmlowp_mm_reshaped_lhs_nt_rhs_t(IMAGE_DECLARATION(lhs),
+                                                IMAGE_DECLARATION(rhs),
+                                                IMAGE_DECLARATION(dst),
+                                                uint k,
+                                                uint lhs_stride_z,
+                                                uint rhs_stride_z,
+                                                uint dst_stride_z
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+                                                ,
+                                                uint dst_cross_plane_pad
+#endif // REINTERPRET_OUTPUT_AS_3D
+                                               )
+{
+    // Block size
+#define LHS_BLOCK_SIZE ((K0) * (M0))
+
+#if defined(LHS_INTERLEAVE)
+#define LHS_OFFSET_X (K0)
+#define LHS_STEP_X ((K0) * (V0))
+#define LHS_STEP_LOOP (1)
+#else // defined(INTERLEAVE)
+#define LHS_OFFSET_X (LHS_BLOCK_SIZE)
+#define LHS_STEP_X (K0)
+#define LHS_STEP_LOOP (V0)
+#endif // defined(INTERLEAVE)
+
+    // Block size
+#define RHS_BLOCK_SIZE ((K0) * (N0))
+
+    // RHS offset and step X
+#if defined(RHS_INTERLEAVE)
+#define RHS_OFFSET_X (K0)
+#define RHS_STEP_X ((K0) * (H0))
+#define RHS_STEP_LOOP (1)
+#else // defined(RHS_INTERLEAVE)
+#define RHS_OFFSET_X (RHS_BLOCK_SIZE)
+#define RHS_STEP_X (K0)
+#define RHS_STEP_LOOP (H0)
+#endif // defined(RHS_INTERLEAVE)
+
+    // Compute LHS matrix address
+    __global uchar *lhs_addr = lhs_ptr + lhs_offset_first_element_in_bytes + (get_global_id(1) % V0) * (uint)LHS_OFFSET_X + (get_global_id(1) / V0) * (uint)lhs_stride_y + (get_global_id(
+                                   2)
+                               * lhs_stride_z);
+
+    // Compute RHS matrix address
+    __global uchar *rhs_addr = rhs_ptr + rhs_offset_first_element_in_bytes + (get_global_id(0) % H0) * (uint)RHS_OFFSET_X + (get_global_id(0) / (uint)H0) * rhs_stride_y;
+
+#if defined(MATRIX_B_DEPTH)
+    // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
+    rhs_addr += (get_global_id(2) % MATRIX_B_DEPTH) * rhs_stride_z;
+#else  // defined(MATRIX_B_DEPTH)
+    rhs_addr += get_global_id(2) * rhs_stride_z;
+#endif // defined(MATRIX_B_DEPTH)
+
+    // Initialize the accumulators
+    REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(uint, N0), c, 0); //VEC_DATA_TYPE(uint, N0)    c0=0,c1=0,c2=0,... c(M0-1)=0;
+
+    for(int i = 0; i < k; i += K0)
+    {
+        // Supported cases (M0, K0):
+        // 2,4 - 2,8 - 2,16
+        // 3,4 - 3,8 - 3,16
+        // 4,4 - 4,8 - 4,16
+        // 5,4 - 5,8 - 5,16
+        // 6,4 - 6,8 - 6,16
+        // Load values from LHS matrix
+        VEC_DATA_TYPE(uchar, K0)
+        a0 = VLOAD(K0)(0, lhs_addr + 0 * LHS_STEP_X);
+#if M0 > 1
+        VEC_DATA_TYPE(uchar, K0)
+        a1 = VLOAD(K0)(0, lhs_addr + 1 * LHS_STEP_X);
+#endif // M0 > 1
+#if M0 > 2
+        VEC_DATA_TYPE(uchar, K0)
+        a2 = VLOAD(K0)(0, lhs_addr + 2 * LHS_STEP_X);
+#endif // M0 > 2
+#if M0 > 3
+        VEC_DATA_TYPE(uchar, K0)
+        a3 = VLOAD(K0)(0, lhs_addr + 3 * LHS_STEP_X);
+#endif // M0 > 3
+#if M0 > 4
+        VEC_DATA_TYPE(uchar, K0)
+        a4 = VLOAD(K0)(0, lhs_addr + 4 * LHS_STEP_X);
+#endif // M0 > 4
+#if M0 > 5
+        VEC_DATA_TYPE(uchar, K0)
+        a5 = VLOAD(K0)(0, lhs_addr + 5 * LHS_STEP_X);
+#endif // M0 > 5
+#if M0 > 6
+        VEC_DATA_TYPE(uchar, K0)
+        a6 = VLOAD(K0)(0, lhs_addr + 6 * LHS_STEP_X);
+#endif // M0 > 6
+#if M0 > 7
+        VEC_DATA_TYPE(uchar, K0)
+        a7 = VLOAD(K0)(0, lhs_addr + 7 * LHS_STEP_X);
+#endif // M0 > 7
+
+        // Load values from RHS matrix
+        VEC_DATA_TYPE(uchar, K0)
+        b0 = VLOAD(K0)(0, rhs_addr + 0 * RHS_STEP_X);
+        VEC_DATA_TYPE(uchar, K0)
+        b1 = VLOAD(K0)(0, rhs_addr + 1 * RHS_STEP_X);
+#if N0 > 2
+        VEC_DATA_TYPE(uchar, K0)
+        b2 = VLOAD(K0)(0, rhs_addr + 2 * RHS_STEP_X);
+#endif // N0 > 2
+#if N0 > 3
+        VEC_DATA_TYPE(uchar, K0)
+        b3 = VLOAD(K0)(0, rhs_addr + 3 * RHS_STEP_X);
+#endif // N0 > 3
+#if N0 > 4
+        VEC_DATA_TYPE(uchar, K0)
+        b4 = VLOAD(K0)(0, rhs_addr + 4 * RHS_STEP_X);
+        VEC_DATA_TYPE(uchar, K0)
+        b5 = VLOAD(K0)(0, rhs_addr + 5 * RHS_STEP_X);
+        VEC_DATA_TYPE(uchar, K0)
+        b6 = VLOAD(K0)(0, rhs_addr + 6 * RHS_STEP_X);
+        VEC_DATA_TYPE(uchar, K0)
+        b7 = VLOAD(K0)(0, rhs_addr + 7 * RHS_STEP_X);
+#endif // N0 > 4
+#if N0 > 8
+        VEC_DATA_TYPE(uchar, K0)
+        b8 = VLOAD(K0)(0, rhs_addr + 8 * RHS_STEP_X);
+        VEC_DATA_TYPE(uchar, K0)
+        b9 = VLOAD(K0)(0, rhs_addr + 9 * RHS_STEP_X);
+        VEC_DATA_TYPE(uchar, K0)
+        bA = VLOAD(K0)(0, rhs_addr + 10 * RHS_STEP_X);
+        VEC_DATA_TYPE(uchar, K0)
+        bB = VLOAD(K0)(0, rhs_addr + 11 * RHS_STEP_X);
+        VEC_DATA_TYPE(uchar, K0)
+        bC = VLOAD(K0)(0, rhs_addr + 12 * RHS_STEP_X);
+        VEC_DATA_TYPE(uchar, K0)
+        bD = VLOAD(K0)(0, rhs_addr + 13 * RHS_STEP_X);
+        VEC_DATA_TYPE(uchar, K0)
+        bE = VLOAD(K0)(0, rhs_addr + 14 * RHS_STEP_X);
+        VEC_DATA_TYPE(uchar, K0)
+        bF = VLOAD(K0)(0, rhs_addr + 15 * RHS_STEP_X);
+#endif // N0 > 8
+
+        // Accumulate
+        ARM_DOT_K0XN0(a0, b, c0);
+#if M0 > 1
+        ARM_DOT_K0XN0(a1, b, c1);
+#endif // M0 > 1
+#if M0 > 2
+        ARM_DOT_K0XN0(a2, b, c2);
+#endif // M0 > 2
+#if M0 > 3
+        ARM_DOT_K0XN0(a3, b, c3);
+#endif // M0 > 3
+#if M0 > 4
+        ARM_DOT_K0XN0(a4, b, c4);
+#endif // M0 > 4
+#if M0 > 5
+        ARM_DOT_K0XN0(a5, b, c5);
+#endif // M0 > 5
+#if M0 > 6
+        ARM_DOT_K0XN0(a6, b, c6);
+#endif // M0 > 6
+#if M0 > 7
+        ARM_DOT_K0XN0(a7, b, c7);
+#endif // M0 > 7
+
+        lhs_addr += (M0 * LHS_STEP_X * LHS_STEP_LOOP);
+        rhs_addr += (N0 * RHS_STEP_X * RHS_STEP_LOOP);
+    }
+
+    __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(int)) + (get_global_id(1) * (uint)M0 * dst_stride_y);
+
+    REPEAT_VAR_INIT_TO_CONST(8, uint, zout, 0); //uint zout0=0,zout1=0,zout2=0,... zout7=0;
+
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+    // Since we store a 2D output tile in a 3D tensor, we need to check when the plane changes across the z dimension
+    // in order to take into account the presence of possible cross plane paddings
+    //
+    //  |                  |
+    //  |      plane0      |
+    //  |                  |
+    //  |__________________|
+    //  |******************|
+    //  |  cross_plane_pad |
+    //  |******************|
+    //  |                  |
+    //  |      plane1      |
+    //  |                  |
+    //  |__________________|
+
+    // The plane (zin) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
+    zout0 = (0 + (uint)(get_global_id(1) * (uint)M0)) / (uint)HEIGHT_GEMM3D;
+    zout0 = min((uint)(DEPTH_GEMM3D - 1), zout0);
+    zout0 *= (dst_cross_plane_pad * dst_stride_y);
+#if M0 > 1
+    zout1 = (1 + (uint)(get_global_id(1) * (uint)M0)) / (uint)HEIGHT_GEMM3D;
+    zout1 = min((uint)(DEPTH_GEMM3D - 1), zout1);
+    zout1 *= (dst_cross_plane_pad * dst_stride_y);
+#endif // M0 > 1
+#if M0 > 2
+    zout2 = (2 + (uint)(get_global_id(1) * (uint)M0)) / (uint)HEIGHT_GEMM3D;
+    zout2 = min((uint)(DEPTH_GEMM3D - 1), zout2);
+    zout2 *= (dst_cross_plane_pad * dst_stride_y);
+#endif // M0 > 2
+#if M0 > 3
+    zout3 = (3 + (uint)(get_global_id(1) * (uint)M0)) / (uint)HEIGHT_GEMM3D;
+    zout3 = min((uint)(DEPTH_GEMM3D - 1), zout3);
+    zout3 *= (dst_cross_plane_pad * dst_stride_y);
+#endif // M0 > 3
+#if M0 > 4
+    zout4 = (4 + (uint)(get_global_id(1) * (uint)M0)) / (uint)HEIGHT_GEMM3D;
+    zout4 = min((uint)(DEPTH_GEMM3D - 1), zout4);
+    zout4 *= (dst_cross_plane_pad * dst_stride_y);
+#endif // M0 > 4
+#if M0 > 5
+    zout5 = (5 + (uint)(get_global_id(1) * (uint)M0)) / (uint)HEIGHT_GEMM3D;
+    zout5 = min((uint)(DEPTH_GEMM3D - 1), zout5);
+    zout5 *= (dst_cross_plane_pad * dst_stride_y);
+#endif // M0 > 5
+#if M0 > 6
+    zout6 = (6 + (uint)(get_global_id(1) * (uint)M0)) / (uint)HEIGHT_GEMM3D;
+    zout6 = min((uint)(DEPTH_GEMM3D - 1), zout6);
+    zout6 *= (dst_cross_plane_pad * dst_stride_y);
+#endif // M0 > 6
+#if M0 > 7
+    zout7 = (7 + (uint)(get_global_id(1) * (uint)M0)) / (uint)HEIGHT_GEMM3D;
+    zout7 = min((uint)(DEPTH_GEMM3D - 1), zout7);
+    zout7 *= (dst_cross_plane_pad * dst_stride_y);
+#endif // M0 > 7
+
+    // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
+    // multiply dst_stride_z by DEPTH_GEMM3D
+    dst_addr += get_global_id(2) * dst_stride_z * DEPTH_GEMM3D;
+
+#else // defined(REINTERPRET_OUTPUT_AS_3D)
+
+    // Add offset for batched GEMM
+    dst_addr += get_global_id(2) * dst_stride_z;
+
+#endif // defined(REINTERPRET_OUTPUT_AS_3D)
+
+    // Store output block
+    VSTORE(N0)
+    (CONVERT_SAT(c0, VEC_DATA_TYPE(int, N0)), 0, (__global int *)(dst_addr + 0 * dst_stride_y + zout0));
+#if M0 > 1
+    VSTORE(N0)
+    (CONVERT_SAT(c1, VEC_DATA_TYPE(int, N0)), 0, (__global int *)(dst_addr + 1 * dst_stride_y + zout1));
+#endif // M0 > 1
+#if M0 > 2
+    VSTORE(N0)
+    (CONVERT_SAT(c2, VEC_DATA_TYPE(int, N0)), 0, (__global int *)(dst_addr + 2 * dst_stride_y + zout2));
+#endif // M0 > 2
+#if M0 > 3
+    VSTORE(N0)
+    (CONVERT_SAT(c3, VEC_DATA_TYPE(int, N0)), 0, (__global int *)(dst_addr + 3 * dst_stride_y + zout3));
+#endif // M0 > 3
+#if M0 > 4
+    VSTORE(N0)
+    (CONVERT_SAT(c4, VEC_DATA_TYPE(int, N0)), 0, (__global int *)(dst_addr + 4 * dst_stride_y + zout4));
+#endif // M0 > 4
+#if M0 > 5
+    VSTORE(N0)
+    (CONVERT_SAT(c5, VEC_DATA_TYPE(int, N0)), 0, (__global int *)(dst_addr + 5 * dst_stride_y + zout5));
+#endif // M0 > 5
+#if M0 > 6
+    VSTORE(N0)
+    (CONVERT_SAT(c6, VEC_DATA_TYPE(int, N0)), 0, (__global int *)(dst_addr + 6 * dst_stride_y + zout6));
+#endif // M0 > 6
+#if M0 > 7
+    VSTORE(N0)
+    (CONVERT_SAT(c7, VEC_DATA_TYPE(int, N0)), 0, (__global int *)(dst_addr + 7 * dst_stride_y + zout7));
+#endif // M0 > 7
+
+#undef LHS_BLOCK_SIZE
+#undef LHS_OFFSET_X
+#undef LHS_STEP_X
+#undef RHS_BLOCK_SIZE
+#undef RHS_OFFSET_X
+#undef RHS_STEP_X
+}
+
+#if defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
+/** This OpenCL kernel computes the matrix multiplication between 2 matrices unsing the dot8 instruction.
+ *  The LHS matrix must be reshaped with @ref CLGEMMReshapeLHSMatrixKernel and the M0xK0 must be NOT transposed
+ *  The RHS matrix must be reshaped with @ref CLGEMMReshapeRHSMatrixKernel and the K0xN0 must be transposed
+ *
+ * @note The block's dimensions used for reshaping the LHS matrix and the RHS matrix (M0, N0 and K0) must be passed at compile time using -DM0, -DN0 and -DK0 (i.e. -DM0=4, -DN0=8, -DK0=4).
+ * @note The number of M0xK0 vertical blocks stored on the same output row of the reshaped LHS matrix must be passed at compile time using -DV0 (i.e. -DV0=2)
+ * @note The number of K0xN0 horizontal blocks stored on the same output row of the reshaped RHS matrix must be passed at compile time using -DH0 (i.e. -DH0=2)
+ * @note If the M0xK0 blocks in the reshaped LHS matrix have been interleaved, the option -DLHS_INTERLEAVE must passed at compile time.
+ * @note If the K0xN0 blocks in the reshaped RHS matrix have been interleaved, the option -DRHS_INTERLEAVE must passed at compile time.
+ * @note Only the following configurations of M0, N0 and K0 are currently supported:
+ *  - M0 = 2, 3, 4, 5, 6, 7, 8
+ *  - N0 = 2, 3, 4, 8, 16
+ *  - K0 = 2, 3, 4, 8, 16
+ *
+ * @note In case the output has to be reinterpreted as a 3D tensor (i.e. output of convolution layer), the following information must be passed at compile time:
+ *       -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
+ *       -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
+ *       -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
+ *          (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns LHS matrix NOT reshaped
+ *
+ * @param[in]  lhs_ptr                           Pointer to the LHS reshaped matrix. Supported data type: QASYMM8
+ * @param[in]  lhs_stride_x                      Stride of the LHS reshaped matrix in X dimension (in bytes)
+ * @param[in]  lhs_step_x                        src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in]  lhs_stride_y                      Stride of the LHS reshaped matrix in Y dimension (in bytes)
+ * @param[in]  lhs_step_y                        src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in]  lhs_offset_first_element_in_bytes The offset of the first element in the LHS reshaped matrix
+ * @param[in]  rhs_ptr                           Pointer to the RHS reshaped matrix. Supported data type: same as @p lhs_ptr
+ * @param[in]  rhs_stride_x                      Stride of the RHS reshaped matrix in X dimension (in bytes)
+ * @param[in]  rhs_step_x                        src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in]  rhs_stride_y                      Stride of the RHS reshaped matrix in Y dimension (in bytes)
+ * @param[in]  rhs_step_y                        src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in]  rhs_offset_first_element_in_bytes The offset of the first element in the RHS reshaped matrix
+ * @param[out] dst_ptr                           Pointer to the destination matrix Supported data type: same as @p lhs_ptr
+ * @param[in]  dst_stride_x                      Stride of the destination matrix in X dimension (in bytes)
+ * @param[in]  dst_step_x                        dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in]  dst_stride_y                      Stride of the destination matrix in Y dimension (in bytes)
+ * @param[in]  dst_step_y                        dst_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in]  dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ * @param[in]  k                                 Number of columns in LHS matrix and rows in RHS matrix not reshaped.
+ * @param[in]  lhs_stride_z                      Stride of the LHS reshaped matrix in Z dimension (in bytes)
+ * @param[in]  rhs_stride_z                      Stride of the RHS reshaped matrix in Z dimension (in bytes)
+ * @param[in]  dst_stride_z                      Stride of the destination tensor in Z dimension (in bytes)
+ * @param[in]  dst_cross_plane_pad               (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
+ */
+__kernel void gemmlowp_mm_reshaped_lhs_nt_rhs_t_dot8(IMAGE_DECLARATION(lhs),
+                                                     IMAGE_DECLARATION(rhs),
+                                                     IMAGE_DECLARATION(dst),
+                                                     uint k,
+                                                     uint lhs_stride_z,
+                                                     uint rhs_stride_z,
+                                                     uint dst_stride_z
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+                                                     ,
+                                                     uint dst_cross_plane_pad
+#endif // REINTERPRET_OUTPUT_AS_3D
+                                                    )
+{
+    // Note: ARM_DOT_K0XN0 is generated with the dot8 instruction
+    gemmlowp_mm_reshaped_lhs_nt_rhs_t(lhs_ptr,
+                                      lhs_stride_x,
+                                      lhs_step_x,
+                                      lhs_stride_y,
+                                      lhs_step_y,
+                                      lhs_offset_first_element_in_bytes,
+                                      rhs_ptr,
+                                      rhs_stride_x,
+                                      rhs_step_x,
+                                      rhs_stride_y,
+                                      rhs_step_y,
+                                      rhs_offset_first_element_in_bytes,
+                                      dst_ptr,
+                                      dst_stride_x,
+                                      dst_step_x,
+                                      dst_stride_y,
+                                      dst_step_y,
+                                      dst_offset_first_element_in_bytes,
+                                      k,
+                                      lhs_stride_z,
+                                      rhs_stride_z,
+                                      dst_stride_z
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+                                      ,
+                                      dst_cross_plane_pad
+#endif // REINTERPRET_OUTPUT_AS_3D
+                                     );
+}
+#endif // defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
+#endif // defined(M0) && defined(N0) && defined(K0) && defined(V0) && defined(H0) && defined(K)
+
 #if defined(COLS_A)
 /** OpenCL kernel used to compute the row-vectors of sums of all the entries in each row of Matrix A.
  *