COMPMID-3637: Move wrapper to src

Signed-off-by: Georgios Pinitas <georgios.pinitas@arm.com>
Change-Id: I524b0c4b49c7a7035b7d078b9585d77b0d438e10
Reviewed-on: https://review.mlplatform.org/c/ml/ComputeLibrary/+/4083
Reviewed-by: Michele Di Giorgio <michele.digiorgio@arm.com>
Reviewed-by: Michalis Spyrou <michalis.spyrou@arm.com>
Comments-Addressed: Arm Jenkins <bsgcomp@arm.com>
diff --git a/src/core/NEON/NEAsymm.h b/src/core/NEON/NEAsymm.h
new file mode 100644
index 0000000..70d48d5
--- /dev/null
+++ b/src/core/NEON/NEAsymm.h
@@ -0,0 +1,753 @@
+/*
+ * Copyright (c) 2017-2020 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#ifndef ARM_COMPUTE_NEASYMM_H
+#define ARM_COMPUTE_NEASYMM_H
+
+#include "src/core/NEON/NEMath.h"
+#include <arm_neon.h>
+
+namespace arm_compute
+{
+using qasymm8x8_t   = uint8x8_t;   /**< 8 bit quantized asymmetric vector with 8 elements */
+using qasymm8x8x2_t = uint8x8x2_t; /**< 8 bit quantized asymmetric vector with 16 elements */
+using qasymm8x8x3_t = uint8x8x3_t; /**< 8 bit quantized asymmetric vector with 24 elements */
+using qasymm8x8x4_t = uint8x8x4_t; /**< 8 bit quantized asymmetric vector with 32 elements */
+using qasymm8x16_t  = uint8x16_t;  /**< 8 bit quantized asymmetric vector with 16 elements */
+
+using qasymm8x8_signed_t   = int8x8_t;   /**< 8 bit quantized signed asymmetric vector with 8 elements */
+using qasymm8x8x2_signed_t = int8x8x2_t; /**< 8 bit quantized signed asymmetric vector with 16 elements */
+using qasymm8x8x3_signed_t = int8x8x3_t; /**< 8 bit quantized signed asymmetric vector with 24 elements */
+using qasymm8x8x4_signed_t = int8x8x4_t; /**< 8 bit quantized signed asymmetric vector with 32 elements */
+using qasymm8x16_signed_t  = int8x16_t;  /**< 8 bit quantized signed asymmetric vector with 16 elements */
+
+/** Perform a multiply-accumulate on all 16 components of a QASYMM8 vector
+ *
+ * vd*vs + vo
+ *
+ * @param[in] vd Input vector value in QASYMM8 format
+ * @param[in] vs Vector multiplier in F32 format. The multiplier value must be duplicated across all four lanes.
+ * @param[in] vo Vector addend in F32 format. The addend value must be duplicated across all four lanes.
+ *
+ * @return A 16-component vector in QASYMM8 format, saturated to fit
+ */
+uint8x16_t vmlaq_qasymm8(qasymm8x16_t vd, float32x4_t vs, float32x4_t vo);
+
+/** Perform a multiply-accumulate on all 16 components of a QASYMM8_SIGNED vector
+ *
+ * vd*vs + vo
+ *
+ * @param[in] vd Input vector value in QASYMM8_SIGNED format
+ * @param[in] vs Vector multiplier in F32 format. The multiplier value must be duplicated across all four lanes.
+ * @param[in] vo Vector addend in F32 format. The addend value must be duplicated across all four lanes.
+ *
+ * @return A 16-component vector in QASYMM8_SIGNED format, saturated to fit
+ */
+int8x16_t vmlaq_qasymm8_signed(qasymm8x16_signed_t vd, float32x4_t vs, float32x4_t vo);
+
+/** Performs final quantization step on 16 elements
+ *
+ * @param[in] in_s32                        Input to be quantized.
+ * @param[in] result_fixedpoint_multiplier  Result multiplier parameter
+ * @param[in] result_shift                  Result shift parameter
+ * @param[in] result_offset_after_shift_s32 Result offset parameter
+ * @param[in] min_u8                        Relu lower bound
+ * @param[in] max_u8                        Relu upper bound
+ * @param[in] is_bounded_relu               Specified if a fused bounded relu should be applied
+ *
+ * @return Quantized values
+ */
+inline uint8x16_t finalize_quantization(int32x4x4_t &in_s32,
+                                        int          result_fixedpoint_multiplier,
+                                        int32_t      result_shift,
+                                        int32x4_t    result_offset_after_shift_s32,
+                                        uint8x16_t   min_u8,
+                                        uint8x16_t   max_u8,
+                                        bool         is_bounded_relu)
+{
+    const static int32x4_t zero_s32 = vdupq_n_s32(0);
+
+    if(result_shift < 0)
+    {
+        in_s32.val[0] = vmulq_n_s32(in_s32.val[0], (1 << (-result_shift)));
+        in_s32.val[1] = vmulq_n_s32(in_s32.val[1], (1 << (-result_shift)));
+        in_s32.val[2] = vmulq_n_s32(in_s32.val[2], (1 << (-result_shift)));
+        in_s32.val[3] = vmulq_n_s32(in_s32.val[3], (1 << (-result_shift)));
+
+        in_s32.val[0] = vqrdmulhq_n_s32(in_s32.val[0], result_fixedpoint_multiplier);
+        in_s32.val[1] = vqrdmulhq_n_s32(in_s32.val[1], result_fixedpoint_multiplier);
+        in_s32.val[2] = vqrdmulhq_n_s32(in_s32.val[2], result_fixedpoint_multiplier);
+        in_s32.val[3] = vqrdmulhq_n_s32(in_s32.val[3], result_fixedpoint_multiplier);
+    }
+    else
+    {
+        // Fixed point multiplication with vector saturating rounding doubling multiply high with scalar
+        in_s32.val[0] = vqrdmulhq_n_s32(in_s32.val[0], result_fixedpoint_multiplier);
+        in_s32.val[1] = vqrdmulhq_n_s32(in_s32.val[1], result_fixedpoint_multiplier);
+        in_s32.val[2] = vqrdmulhq_n_s32(in_s32.val[2], result_fixedpoint_multiplier);
+        in_s32.val[3] = vqrdmulhq_n_s32(in_s32.val[3], result_fixedpoint_multiplier);
+
+        // Round to the nearest division by a power-of-two using result_shift_s32
+        in_s32.val[0] = rounding_divide_by_pow2(in_s32.val[0], result_shift);
+        in_s32.val[1] = rounding_divide_by_pow2(in_s32.val[1], result_shift);
+        in_s32.val[2] = rounding_divide_by_pow2(in_s32.val[2], result_shift);
+        in_s32.val[3] = rounding_divide_by_pow2(in_s32.val[3], result_shift);
+    }
+
+    // Add the offset terms
+    in_s32.val[0] = vaddq_s32(in_s32.val[0], result_offset_after_shift_s32);
+    in_s32.val[1] = vaddq_s32(in_s32.val[1], result_offset_after_shift_s32);
+    in_s32.val[2] = vaddq_s32(in_s32.val[2], result_offset_after_shift_s32);
+    in_s32.val[3] = vaddq_s32(in_s32.val[3], result_offset_after_shift_s32);
+
+    // Saturate negative values
+    in_s32.val[0] = vmaxq_s32(in_s32.val[0], zero_s32);
+    in_s32.val[1] = vmaxq_s32(in_s32.val[1], zero_s32);
+    in_s32.val[2] = vmaxq_s32(in_s32.val[2], zero_s32);
+    in_s32.val[3] = vmaxq_s32(in_s32.val[3], zero_s32);
+
+    // Convert S32 to S16
+    const int16x8x2_t in_s16 =
+    {
+        {
+            vcombine_s16(vqmovn_s32(in_s32.val[0]), vqmovn_s32(in_s32.val[1])),
+            vcombine_s16(vqmovn_s32(in_s32.val[2]), vqmovn_s32(in_s32.val[3]))
+        }
+    };
+
+    // Convert S16 to U8
+    uint8x16_t out_u8 = vcombine_u8(vqmovun_s16(in_s16.val[0]), vqmovun_s16(in_s16.val[1]));
+
+    if(is_bounded_relu)
+    {
+        out_u8 = vmaxq_u8(out_u8, min_u8);
+        out_u8 = vminq_u8(out_u8, max_u8);
+    }
+
+    return out_u8;
+}
+
+/** Performs final quantization step on 16 elements
+ *
+ * @param[in] in_s32                        Input to be quantized.
+ * @param[in] result_fixedpoint_multiplier  Result multiplier parameter
+ * @param[in] result_shift                  Result shift parameter
+ * @param[in] result_offset_after_shift_s32 Result offset parameter
+ * @param[in] min_s8                        Relu lower bound
+ * @param[in] max_s8                        Relu upper bound
+ * @param[in] is_bounded_relu               Specified if a fused bounded relu should be applied
+ *
+ * @return Quantized values
+ */
+inline int8x16_t finalize_quantization(int32x4x4_t &in_s32,
+                                       int          result_fixedpoint_multiplier,
+                                       int32_t      result_shift,
+                                       int32x4_t    result_offset_after_shift_s32,
+                                       int8x16_t    min_s8,
+                                       int8x16_t    max_s8,
+                                       bool         is_bounded_relu)
+{
+    if(result_shift < 0)
+    {
+        in_s32.val[0] = vmulq_n_s32(in_s32.val[0], (1 << (-result_shift)));
+        in_s32.val[1] = vmulq_n_s32(in_s32.val[1], (1 << (-result_shift)));
+        in_s32.val[2] = vmulq_n_s32(in_s32.val[2], (1 << (-result_shift)));
+        in_s32.val[3] = vmulq_n_s32(in_s32.val[3], (1 << (-result_shift)));
+
+        in_s32.val[0] = vqrdmulhq_n_s32(in_s32.val[0], result_fixedpoint_multiplier);
+        in_s32.val[1] = vqrdmulhq_n_s32(in_s32.val[1], result_fixedpoint_multiplier);
+        in_s32.val[2] = vqrdmulhq_n_s32(in_s32.val[2], result_fixedpoint_multiplier);
+        in_s32.val[3] = vqrdmulhq_n_s32(in_s32.val[3], result_fixedpoint_multiplier);
+    }
+    else
+    {
+        // Fixed point multiplication with vector saturating rounding doubling multiply high with scalar
+        in_s32.val[0] = vqrdmulhq_n_s32(in_s32.val[0], result_fixedpoint_multiplier);
+        in_s32.val[1] = vqrdmulhq_n_s32(in_s32.val[1], result_fixedpoint_multiplier);
+        in_s32.val[2] = vqrdmulhq_n_s32(in_s32.val[2], result_fixedpoint_multiplier);
+        in_s32.val[3] = vqrdmulhq_n_s32(in_s32.val[3], result_fixedpoint_multiplier);
+
+        // Round to the nearest division by a power-of-two using result_shift_s32
+        in_s32.val[0] = rounding_divide_by_pow2(in_s32.val[0], result_shift);
+        in_s32.val[1] = rounding_divide_by_pow2(in_s32.val[1], result_shift);
+        in_s32.val[2] = rounding_divide_by_pow2(in_s32.val[2], result_shift);
+        in_s32.val[3] = rounding_divide_by_pow2(in_s32.val[3], result_shift);
+    }
+
+    // Add the offset terms
+    in_s32.val[0] = vaddq_s32(in_s32.val[0], result_offset_after_shift_s32);
+    in_s32.val[1] = vaddq_s32(in_s32.val[1], result_offset_after_shift_s32);
+    in_s32.val[2] = vaddq_s32(in_s32.val[2], result_offset_after_shift_s32);
+    in_s32.val[3] = vaddq_s32(in_s32.val[3], result_offset_after_shift_s32);
+
+    // Convert S32 to S16
+    const int16x8x2_t in_s16 =
+    {
+        {
+            vcombine_s16(vqmovn_s32(in_s32.val[0]), vqmovn_s32(in_s32.val[1])),
+            vcombine_s16(vqmovn_s32(in_s32.val[2]), vqmovn_s32(in_s32.val[3]))
+        }
+    };
+
+    // Convert S16 to S8
+    int8x16_t out_s8 = vcombine_s8(vqmovn_s16(in_s16.val[0]), vqmovn_s16(in_s16.val[1]));
+
+    if(is_bounded_relu)
+    {
+        out_s8 = vmaxq_s8(out_s8, min_s8);
+        out_s8 = vminq_s8(out_s8, max_s8);
+    }
+
+    return out_s8;
+}
+
+/** Performs final quantization step on 16 elements for symmetric quantization
+ *
+ * @param[in] in_s32                        Input to be quantized.
+ * @param[in] result_fixedpoint_multiplier  Result multiplier parameter
+ * @param[in] result_shift                  Result shift parameter
+ * @param[in] result_offset_after_shift_s32 Result offset parameter
+ * @param[in] min_s8                        Relu lower bound
+ * @param[in] max_s8                        Relu upper bound
+ * @param[in] is_bounded_relu               Specified if a fused bounded relu should be applied
+ *
+ * @return Quantized values
+ */
+inline int8x16_t finalize_quantization_symm(int32x4x4_t       &in_s32,
+                                            const int32x4x4_t &result_fixedpoint_multiplier,
+                                            const int32x4x4_t &result_shift,
+                                            const int32x4_t   &result_offset_after_shift_s32,
+                                            const int8x16_t   &min_s8,
+                                            const int8x16_t   &max_s8,
+                                            const bool         is_bounded_relu)
+{
+    const static int32x4_t one_s32 = vdupq_n_s32(1);
+
+    // Fixed point multiplication with vector saturating rounding doubling multiply high with scalar
+    int32x4x4_t res_shift_gt0 =
+    {
+        vqrdmulhq_s32(in_s32.val[0], result_fixedpoint_multiplier.val[0]),
+        vqrdmulhq_s32(in_s32.val[1], result_fixedpoint_multiplier.val[1]),
+        vqrdmulhq_s32(in_s32.val[2], result_fixedpoint_multiplier.val[2]),
+        vqrdmulhq_s32(in_s32.val[3], result_fixedpoint_multiplier.val[3]),
+    };
+    // Round to the nearest division by a power-of-two using result_shift_s32
+    res_shift_gt0.val[0] = rounding_divide_by_pow2(res_shift_gt0.val[0], result_shift.val[0]);
+    res_shift_gt0.val[1] = rounding_divide_by_pow2(res_shift_gt0.val[1], result_shift.val[1]);
+    res_shift_gt0.val[2] = rounding_divide_by_pow2(res_shift_gt0.val[2], result_shift.val[2]);
+    res_shift_gt0.val[3] = rounding_divide_by_pow2(res_shift_gt0.val[3], result_shift.val[3]);
+
+    int32x4x4_t res_shift_lt0 =
+    {
+        vmulq_s32(in_s32.val[0], vshlq_s32(one_s32, vnegq_s32(result_shift.val[0]))),
+        vmulq_s32(in_s32.val[1], vshlq_s32(one_s32, vnegq_s32(result_shift.val[1]))),
+        vmulq_s32(in_s32.val[2], vshlq_s32(one_s32, vnegq_s32(result_shift.val[2]))),
+        vmulq_s32(in_s32.val[3], vshlq_s32(one_s32, vnegq_s32(result_shift.val[3]))),
+    };
+    res_shift_lt0.val[0] = vqrdmulhq_s32(res_shift_lt0.val[0], result_fixedpoint_multiplier.val[0]);
+    res_shift_lt0.val[1] = vqrdmulhq_s32(res_shift_lt0.val[1], result_fixedpoint_multiplier.val[1]);
+    res_shift_lt0.val[2] = vqrdmulhq_s32(res_shift_lt0.val[2], result_fixedpoint_multiplier.val[2]);
+    res_shift_lt0.val[3] = vqrdmulhq_s32(res_shift_lt0.val[3], result_fixedpoint_multiplier.val[3]);
+
+    // Select result depending on shift value
+    const uint32x4x4_t mask_lt0 =
+    {
+#ifdef __aarch64__
+        vcltzq_s32(result_shift.val[0]),
+        vcltzq_s32(result_shift.val[1]),
+        vcltzq_s32(result_shift.val[2]),
+        vcltzq_s32(result_shift.val[3]),
+#else  //__aarch64__
+        vcltq_s32(result_shift.val[0], vdupq_n_s32(0)),
+        vcltq_s32(result_shift.val[1], vdupq_n_s32(0)),
+        vcltq_s32(result_shift.val[2], vdupq_n_s32(0)),
+        vcltq_s32(result_shift.val[3], vdupq_n_s32(0)),
+#endif //__aarch64__
+    };
+
+    in_s32.val[0] = vbslq_s32(mask_lt0.val[0], res_shift_lt0.val[0], res_shift_gt0.val[0]);
+    in_s32.val[1] = vbslq_s32(mask_lt0.val[1], res_shift_lt0.val[1], res_shift_gt0.val[1]);
+    in_s32.val[2] = vbslq_s32(mask_lt0.val[2], res_shift_lt0.val[2], res_shift_gt0.val[2]);
+    in_s32.val[3] = vbslq_s32(mask_lt0.val[3], res_shift_lt0.val[3], res_shift_gt0.val[3]);
+
+    // Add the offset terms
+    in_s32.val[0] = vaddq_s32(in_s32.val[0], result_offset_after_shift_s32);
+    in_s32.val[1] = vaddq_s32(in_s32.val[1], result_offset_after_shift_s32);
+    in_s32.val[2] = vaddq_s32(in_s32.val[2], result_offset_after_shift_s32);
+    in_s32.val[3] = vaddq_s32(in_s32.val[3], result_offset_after_shift_s32);
+
+    // Convert S32 to S16
+    const int16x8x2_t in_s16 =
+    {
+        {
+            vcombine_s16(vqmovn_s32(in_s32.val[0]), vqmovn_s32(in_s32.val[1])),
+            vcombine_s16(vqmovn_s32(in_s32.val[2]), vqmovn_s32(in_s32.val[3]))
+        }
+    };
+
+    // Convert S16 to S8
+    int8x16_t out_s8 = vcombine_s8(vqmovn_s16(in_s16.val[0]), vqmovn_s16(in_s16.val[1]));
+
+    if(is_bounded_relu)
+    {
+        out_s8 = vmaxq_s8(out_s8, min_s8);
+        out_s8 = vminq_s8(out_s8, max_s8);
+    }
+
+    return out_s8;
+}
+
+/** Performs final quantization step on single element
+ *
+ * @param[in] in_value                      Input to be quantized.
+ * @param[in] result_fixedpoint_multiplier  Result multiplier parameter
+ * @param[in] result_shift                  Result shift parameter
+ * @param[in] result_offset_after_shift_s32 Result offset parameter
+ * @param[in] min_u8                        Relu lower bound
+ * @param[in] max_u8                        Relu upper bound
+ * @param[in] is_bounded_relu               Specified if a fused bounded relu should be applied
+ *
+ * @return Quantized value
+ */
+inline uint8_t finalize_quantization(int32_t in_value, int result_fixedpoint_multiplier,
+                                     int32_t result_shift, int32_t result_offset_after_shift_s32,
+                                     uint8_t min_u8, uint8_t max_u8, bool is_bounded_relu)
+{
+    int32x4_t in_s32 = vdupq_n_s32(in_value);
+
+    if(result_shift < 0)
+    {
+        in_value = vgetq_lane_s32(vqrdmulhq_n_s32(vmulq_n_s32(in_s32, (1 << (-result_shift))), result_fixedpoint_multiplier), 0);
+    }
+    else
+    {
+        // Fixed point multiplication with vector saturating rounding doubling multiply high with scalar
+        in_value = vgetq_lane_s32(vqrdmulhq_n_s32(in_s32, result_fixedpoint_multiplier), 0);
+        // Shift value by result_shift_s32
+        in_value = rounding_divide_by_pow2(in_value, result_shift);
+    }
+
+    // Add the offset term
+    in_value += result_offset_after_shift_s32;
+
+    // Bound the result
+    uint8_t out_u8 = static_cast<uint8_t>(std::max<int32_t>(0, std::min<int32_t>(255, in_value)));
+    if(is_bounded_relu)
+    {
+        out_u8 = static_cast<uint8_t>(std::max(min_u8, std::min(max_u8, out_u8)));
+    }
+
+    return out_u8;
+}
+
+/** Performs final quantization step on single element
+ *
+ * @param[in] in_value                      Input to be quantized.
+ * @param[in] result_fixedpoint_multiplier  Result multiplier parameter
+ * @param[in] result_shift                  Result shift parameter
+ * @param[in] result_offset_after_shift_s32 Result offset parameter
+ * @param[in] min_s8                        Relu lower bound
+ * @param[in] max_s8                        Relu upper bound
+ * @param[in] is_bounded_relu               Specified if a fused bounded relu should be applied
+ *
+ * @return Quantized value
+ */
+inline int8_t finalize_quantization(int32_t in_value, int result_fixedpoint_multiplier,
+                                    int32_t result_shift, int32_t result_offset_after_shift_s32,
+                                    int8_t min_s8, int8_t max_s8, bool is_bounded_relu)
+{
+    int32x4_t in_s32 = vdupq_n_s32(in_value);
+
+    if(result_shift < 0)
+    {
+        in_value = vgetq_lane_s32(vqrdmulhq_n_s32(vmulq_n_s32(in_s32, (1 << (-result_shift))), result_fixedpoint_multiplier), 0);
+    }
+    else
+    {
+        // Fixed point multiplication with vector saturating rounding doubling multiply high with scalar
+        in_value = vgetq_lane_s32(vqrdmulhq_n_s32(in_s32, result_fixedpoint_multiplier), 0);
+
+        // Shift value by result_shift_s32
+        in_value = rounding_divide_by_pow2(in_value, result_shift);
+    }
+
+    // Add the offset term
+    in_value += result_offset_after_shift_s32;
+
+    // Bound the result
+    int8_t out_s8 = static_cast<int8_t>(std::max<int32_t>(-128, std::min<int32_t>(127, in_value)));
+    if(is_bounded_relu)
+    {
+        out_s8 = static_cast<int8_t>(std::max(min_s8, std::min(max_s8, out_s8)));
+    }
+
+    return out_s8;
+}
+
+/** Dequantize a neon vector holding 8 quantized values.
+ *
+ * @param[in] qv Input values to be dequantized.
+ * @param[in] qi Quantization information to be used in the computation.
+ *
+ * @return Dequantized values in a neon vector
+ */
+inline float32x4x2_t vdequantize(const uint8x8_t &qv, const UniformQuantizationInfo &qi)
+{
+    const float         scale   = qi.scale;
+    const int           offset  = qi.offset;
+    const int32x4_t     voffset = vdupq_n_s32(offset);
+    const float32x4_t   vscale  = vdupq_n_f32(scale);
+    const float32x4x2_t vdequantized_input =
+    {
+        {
+            vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(qv)))), voffset)), vscale),
+            vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(qv)))), voffset)), vscale),
+        }
+    };
+    return vdequantized_input;
+}
+
+/** Dequantize a neon vector holding 8 singed quantized values.
+ *
+ * @param[in] qv Input values to be dequantized.
+ * @param[in] qi Quantization information to be used in the computation.
+ *
+ * @return Dequantized values in a neon vector
+ */
+inline float32x4x2_t vdequantize(const int8x8_t &qv, const UniformQuantizationInfo &qi)
+{
+    const float         scale   = qi.scale;
+    const int           offset  = qi.offset;
+    const int32x4_t     voffset = vdupq_n_s32(offset);
+    const float32x4_t   vscale  = vdupq_n_f32(scale);
+    const float32x4x2_t vdequantized_input =
+    {
+        {
+            vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_low_s16(vmovl_s8(qv))), voffset)), vscale),
+            vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_high_s16(vmovl_s8(qv))), voffset)), vscale),
+        }
+    };
+    return vdequantized_input;
+}
+
+/** Dequantize a neon vector holding 16 quantized values.
+ *
+ * @param[in] qv Input values to be dequantized.
+ * @param[in] qi Quantization information to be used in the computation.
+ *
+ * @return Dequantized values in a neon vector
+ */
+inline float32x4x4_t vdequantize(const uint8x16_t &qv, const UniformQuantizationInfo &qi)
+{
+    const float         scale   = qi.scale;
+    const int           offset  = qi.offset;
+    const int32x4_t     voffset = vdupq_n_s32(offset);
+    const float32x4_t   vscale  = vdupq_n_f32(scale);
+    const float32x4x4_t vdequantized_input =
+    {
+        {
+            vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_low_u8(qv))))), voffset)), vscale),
+            vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_low_u8(qv))))), voffset)), vscale),
+            vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_high_u8(qv))))), voffset)), vscale),
+            vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_high_u8(qv))))), voffset)), vscale),
+        }
+    };
+    return vdequantized_input;
+}
+
+/** Dequantize a neon vector holding 16 signed quantized values.
+ *
+ * @param[in] qv Input values to be dequantized.
+ * @param[in] qi Quantization information to be used in the computation.
+ *
+ * @return Dequantized values in a neon vector
+ */
+inline float32x4x4_t vdequantize(const int8x16_t &qv, const UniformQuantizationInfo &qi)
+{
+    const float         scale   = qi.scale;
+    const int           offset  = qi.offset;
+    const int32x4_t     voffset = vdupq_n_s32(offset);
+    const float32x4_t   vscale  = vdupq_n_f32(scale);
+    const float32x4x4_t vdequantized_input =
+    {
+        {
+            vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_low_s16(vmovl_s8(vget_low_s8(qv)))), voffset)), vscale),
+            vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_high_s16(vmovl_s8(vget_low_s8(qv)))), voffset)), vscale),
+            vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_low_s16(vmovl_s8(vget_high_s8(qv)))), voffset)), vscale),
+            vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_high_s16(vmovl_s8(vget_high_s8(qv)))), voffset)), vscale),
+        }
+    };
+    return vdequantized_input;
+}
+
+/** Dequantize following an asymmetric quantization scheme a neon vector holding 16 quantized values.
+ *
+ * @param[in] qv     Input values to be dequantized.
+ * @param[in] scale  Quantization scaling factor.
+ * @param[in] offset Zero quantization offset.
+ *
+ * @return Dequantized values in a neon vector
+ */
+inline float32x4x4_t vdequantize(const uint8x16_t &qv, float scale, int32_t offset)
+{
+    const int32x4_t     voffset = vdupq_n_s32(offset);
+    const float32x4_t   vscale  = vdupq_n_f32(scale);
+    const float32x4x4_t vdequantized_input =
+    {
+        {
+            vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_low_u8(qv))))), voffset)), vscale),
+            vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_low_u8(qv))))), voffset)), vscale),
+            vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_high_u8(qv))))), voffset)), vscale),
+            vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_high_u8(qv))))), voffset)), vscale),
+        }
+    };
+    return vdequantized_input;
+}
+
+/** Dequantize a vector of 16 values stored as signed asymmetric.
+ *
+ * @param[in] qv     Input values to be dequantized.
+ * @param[in] scale  Quantization scaling factor.
+ * @param[in] offset Zero quantization offset.
+ *
+ * @return Dequantized values in a neon vector
+ */
+inline float32x4x4_t vdequantize(const int8x16_t &qv, float scale, int32_t offset)
+{
+    const int32x4_t     voffset = vdupq_n_s32(offset);
+    const float32x4_t   vscale  = vdupq_n_f32(scale);
+    const float32x4x4_t vdequantized_input =
+    {
+        {
+            vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_low_s16(vmovl_s8(vget_low_s8(qv)))), voffset)), vscale),
+            vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_high_s16(vmovl_s8(vget_low_s8(qv)))), voffset)), vscale),
+            vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_low_s16(vmovl_s8(vget_high_s8(qv)))), voffset)), vscale),
+            vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_high_s16(vmovl_s8(vget_high_s8(qv)))), voffset)), vscale),
+        }
+    };
+    return vdequantized_input;
+}
+
+/** Dequantize following symmetric quantization scheme a neon vector holding 16 quantized values.
+ *
+ * @param[in] qv     Input values to be dequantized.
+ * @param[in] vscale Vector containing quantization scaling factors.
+ *
+ * @return Dequantized values in a neon vector
+ */
+inline float32x4x4_t vdequantize(const int8x16_t &qv, const float32x4x4_t vscale)
+{
+    const float32x4x4_t vdequantized_input =
+    {
+        {
+            vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(vmovl_s8(vget_low_s8(qv))))), vscale.val[0]),
+            vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(vmovl_s8(vget_low_s8(qv))))), vscale.val[1]),
+            vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(vmovl_s8(vget_high_s8(qv))))), vscale.val[2]),
+            vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(vmovl_s8(vget_high_s8(qv))))), vscale.val[3]),
+        }
+    };
+    return vdequantized_input;
+}
+
+/** Dequantize following a symmetric quantization scheme a neon vector holding 16 quantized values.
+ *
+ * @param[in] qv    Input values to be dequantized.
+ * @param[in] scale Quantization scaling factor.
+ *
+ * @return Dequantized values in a neon vector
+ */
+inline float32x4x4_t vdequantize(const int8x16_t &qv, float scale)
+{
+    const float32x4_t   vscale = vdupq_n_f32(scale);
+    const float32x4x4_t vdequantized_input =
+    {
+        {
+            vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(vmovl_s8(vget_low_s8(qv))))), vscale),
+            vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(vmovl_s8(vget_low_s8(qv))))), vscale),
+            vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(vmovl_s8(vget_high_s8(qv))))), vscale),
+            vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(vmovl_s8(vget_high_s8(qv))))), vscale),
+        }
+    };
+    return vdequantized_input;
+}
+
+/** Quantize a neon vector holding 8 floating point values.
+ *
+ * @param[in] qv Input values to be quantized.
+ * @param[in] qi Quantization information to be used in the computation.
+ *
+ * @return A neon vector holding the quantized values
+ */
+inline uint8x8_t vquantize(const float32x4x2_t &qv, const UniformQuantizationInfo &qi)
+{
+    const float       scale     = qi.scale;
+    const int         offset    = qi.offset;
+    const float32x4_t voffset   = vdupq_n_f32(offset);
+    const float32x4_t vinvscale = vdupq_n_f32(1.f / scale);
+    const int32x4x4_t rf =
+    {
+        {
+#ifdef __aarch64__
+            vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[0], vinvscale)),
+            vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[1], vinvscale)),
+#else  //__aarch64__
+            vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[0], vinvscale)),
+            vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[1], vinvscale)),
+#endif //__aarch64__
+        }
+    };
+    return vqmovun_s16(vcombine_s16(vqmovn_s32(rf.val[0]), vqmovn_s32(rf.val[1])));
+}
+
+/** Quantize a neon vector holding 8 floating point values.
+ *
+ * @param[in] qv Input values to be quantized.
+ * @param[in] qi Quantization information to be used in the computation.
+ *
+ * @return A neon vector holding the singed quantized values
+ */
+inline int8x8_t vquantize_signed(const float32x4x2_t &qv, const UniformQuantizationInfo &qi)
+{
+    const float       scale     = qi.scale;
+    const int         offset    = qi.offset;
+    const float32x4_t voffset   = vdupq_n_f32(offset);
+    const float32x4_t vinvscale = vdupq_n_f32(1.f / scale);
+    const int32x4x4_t rf =
+    {
+        {
+#ifdef __aarch64__
+            vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[0], vinvscale)),
+            vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[1], vinvscale)),
+#else  //__aarch64__
+            vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[0], vinvscale)),
+            vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[1], vinvscale)),
+#endif //__aarch64__
+        }
+    };
+    return vqmovn_s16(vcombine_s16(vqmovn_s32(rf.val[0]), vqmovn_s32(rf.val[1])));
+}
+
+/** Quantize a neon vector holding 16 floating point values.
+ *
+ * @param[in] qv Input values to be quantized.
+ * @param[in] qi Quantization information to be used in the computation.
+ *
+ * @return A neon vector holding the quantized values
+ */
+inline uint8x16_t vquantize(const float32x4x4_t &qv, const UniformQuantizationInfo &qi)
+{
+    const float       scale     = qi.scale;
+    const int         offset    = qi.offset;
+    const float32x4_t voffset   = vdupq_n_f32(offset);
+    const float32x4_t vinvscale = vdupq_n_f32(1.f / scale);
+    const int32x4x4_t rf =
+    {
+        {
+#ifdef __aarch64__
+            vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[0], vinvscale)),
+            vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[1], vinvscale)),
+            vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[2], vinvscale)),
+            vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[3], vinvscale)),
+#else  //__aarch64__
+            vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[0], vinvscale)),
+            vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[1], vinvscale)),
+            vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[2], vinvscale)),
+            vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[3], vinvscale)),
+#endif //__aarch64__
+        }
+    };
+    const uint8x8_t pa = vqmovun_s16(vcombine_s16(vqmovn_s32(rf.val[0]), vqmovn_s32(rf.val[1])));
+    const uint8x8_t pb = vqmovun_s16(vcombine_s16(vqmovn_s32(rf.val[2]), vqmovn_s32(rf.val[3])));
+    return vcombine_u8(pa, pb);
+}
+
+/** Signed quantize a neon vector holding 16 floating point values.
+ *
+ * @param[in] qv Input values to be quantized.
+ * @param[in] qi Quantization information to be used in the computation.
+ *
+ * @return A neon vector holding the quantized values
+ */
+inline int8x16_t vquantize_signed(const float32x4x4_t &qv, const UniformQuantizationInfo &qi)
+{
+    const float       scale     = qi.scale;
+    const int         offset    = qi.offset;
+    const float32x4_t voffset   = vdupq_n_f32(offset);
+    const float32x4_t vinvscale = vdupq_n_f32(1.f / scale);
+    const int32x4x4_t rf =
+    {
+        {
+#ifdef __aarch64__
+            vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[0], vinvscale)),
+            vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[1], vinvscale)),
+            vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[2], vinvscale)),
+            vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[3], vinvscale)),
+#else  //__aarch64__
+            vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[0], vinvscale)),
+            vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[1], vinvscale)),
+            vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[2], vinvscale)),
+            vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[3], vinvscale)),
+#endif //__aarch64__
+        }
+    };
+    const int8x8_t pa = vqmovn_s16(vcombine_s16(vqmovn_s32(rf.val[0]), vqmovn_s32(rf.val[1])));
+    const int8x8_t pb = vqmovn_s16(vcombine_s16(vqmovn_s32(rf.val[2]), vqmovn_s32(rf.val[3])));
+    return vcombine_s8(pa, pb);
+}
+
+/** Quantize to QASYMM16 a neon vector holding 16 floating point values.
+ *
+ * @param[in] qv Input values to be quantized.
+ * @param[in] qi Quantization information to be used in the computation.
+ *
+ * @return A neon vector holding the quantized values
+ */
+inline uint16x8x2_t vquantize_qasymm16(const float32x4x4_t &qv, const UniformQuantizationInfo &qi)
+{
+    const float       scale     = qi.scale;
+    const int         offset    = qi.offset;
+    const float32x4_t voffset   = vdupq_n_f32(offset);
+    const float32x4_t vinvscale = vdupq_n_f32(1.f / scale);
+    const int32x4x4_t rf =
+    {
+        {
+#ifdef __aarch64__
+            vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[0], vinvscale)),
+            vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[1], vinvscale)),
+            vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[2], vinvscale)),
+            vcvtnq_s32_f32(vmlaq_f32(voffset, qv.val[3], vinvscale)),
+#else  //__aarch64__
+            vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[0], vinvscale)),
+            vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[1], vinvscale)),
+            vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[2], vinvscale)),
+            vcvtq_s32_f32(vmlaq_f32(voffset, qv.val[3], vinvscale)),
+#endif //__aarch64__
+        }
+    };
+    const uint16x8_t pa = vcombine_u16(vqmovun_s32(rf.val[0]), vqmovun_s32(rf.val[1]));
+    const uint16x8_t pb = vcombine_u16(vqmovun_s32(rf.val[2]), vqmovun_s32(rf.val[3]));
+    return { pa, pb };
+}
+} // namespace arm_compute
+#include "src/core/NEON/NEAsymm.inl"
+#endif // ARM_COMPUTE_NEASYMM_H