COMPMID-2306: CLDepthwiseConvolution: support for QUANT8_PER_CHANNEL_SYMM

Change-Id: I18c886400daa2dcba0b91011bc4e503d807a4732
Signed-off-by: Michele Di Giorgio <michele.digiorgio@arm.com>
Reviewed-on: https://review.mlplatform.org/c/2143
Comments-Addressed: Arm Jenkins <bsgcomp@arm.com>
Reviewed-by: Giorgio Arena <giorgio.arena@arm.com>
Tested-by: Arm Jenkins <bsgcomp@arm.com>
diff --git a/src/core/CL/cl_kernels/depthwise_convolution_quantized.cl b/src/core/CL/cl_kernels/depthwise_convolution_quantized.cl
index 94373b7..dbcfae6 100644
--- a/src/core/CL/cl_kernels/depthwise_convolution_quantized.cl
+++ b/src/core/CL/cl_kernels/depthwise_convolution_quantized.cl
@@ -33,7 +33,6 @@
 #endif /* VEC_SIZE */
 
 #if defined(ACTIVATION_TYPE) && defined(CONST_0)
-#define DATA_TYPE uchar
 #include "activation_layer_quant.cl"
 #define ACTIVATION_FUNC(x) PERFORM_ACTIVATION_QUANT(ACTIVATION_TYPE, x)
 #else /* defined(ACTIVATION_TYPE) && defined(CONST_0) */
@@ -42,11 +41,16 @@
 
 #define VEC_INT VEC_DATA_TYPE(int, VEC_SIZE)
 #define VEC_FLOAT VEC_DATA_TYPE(float, VEC_SIZE)
-#define VEC_UCHAR VEC_DATA_TYPE(uchar, VEC_SIZE)
-#define VEC_USHORT VEC_DATA_TYPE(ushort, VEC_SIZE)
 #define VEC_SHORT VEC_DATA_TYPE(short, VEC_SIZE)
 
-#if defined(WEIGHTS_OFFSET) && defined(INPUT_OFFSET) && defined(K_OFFSET) && ((defined(OUTPUT_OFFSET) && defined(OUTPUT_MULTIPLIER) && defined(OUTPUT_SHIFT)) || defined(REAL_MULTIPLIER))
+#if defined(DATA_TYPE) && defined(WEIGHTS_TYPE)
+
+#define VEC_TYPE(size) VEC_DATA_TYPE(DATA_TYPE, size)
+
+#if defined(WEIGHTS_OFFSET) && defined(INPUT_OFFSET) && defined(K_OFFSET) && (defined(OUTPUT_OFFSET) || defined(REAL_MULTIPLIER))
+
+#if defined(WEIGHTS_PROMOTED_TYPE)
+#define VEC_WEIGHTS_PROMOTED_TYPE(size) VEC_DATA_TYPE(WEIGHTS_PROMOTED_TYPE, size)
 
 #if defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
 #if defined(ARM_COMPUTE_OPENCL_DOT8_ACC_ENABLED) && defined(cl_arm_integer_dot_product_accumulate_int8)
@@ -62,77 +66,77 @@
 #error "Stride X not supported"
 #endif /* CONV_STRIDE_X > 3 */
 
-#if !(defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8))
+#if !defined(IS_DOT8)
 
 #if DILATION_X == 1
 
 #if CONV_STRIDE_X == 1
-#define GET_VALUES(first_value, left, middle, right)                              \
-    ({                                                                            \
-        int8 temp0 = CONVERT(vload8(0, first_value), int8);                       \
-        int2 temp1 = CONVERT(vload2(0, (first_value + 8 * sizeof(uchar))), int2); \
+#define GET_VALUES(first_value, left, middle, right)                                                        \
+    ({                                                                                                      \
+        int8 temp0 = CONVERT(vload8(0, (__global DATA_TYPE *)(first_value)), int8);                         \
+        int2 temp1 = CONVERT(vload2(0, (__global DATA_TYPE *)(first_value + 8 * sizeof(DATA_TYPE))), int2); \
         \
-        left   = CONVERT(temp0.s01234567, int8);                                  \
-        middle = CONVERT((int8)(temp0.s1234, temp0.s567, temp1.s0), int8);        \
-        right  = CONVERT((int8)(temp0.s2345, temp0.s67, temp1.s01), int8);        \
+        left   = CONVERT(temp0.s01234567, int8);                                                            \
+        middle = CONVERT((int8)(temp0.s1234, temp0.s567, temp1.s0), int8);                                  \
+        right  = CONVERT((int8)(temp0.s2345, temp0.s67, temp1.s01), int8);                                  \
     })
 #elif CONV_STRIDE_X == 2
-#define GET_VALUES(first_value, left, middle, right)                     \
-    ({                                                                   \
-        int16 temp0 = CONVERT(vload16(0, first_value), int16);           \
-        int   temp1 = CONVERT(*(first_value + 16 * sizeof(uchar)), int); \
+#define GET_VALUES(first_value, left, middle, right)                                                 \
+    ({                                                                                               \
+        int16 temp0 = CONVERT(vload16(0, (__global DATA_TYPE *)(first_value)), int16);               \
+        int temp1   = CONVERT(*((__global DATA_TYPE *)(first_value + 16 * sizeof(DATA_TYPE))), int); \
         \
-        left   = CONVERT(temp0.s02468ace, int8);                         \
-        middle = CONVERT(temp0.s13579bdf, int8);                         \
-        right  = CONVERT((int8)(temp0.s2468, temp0.sace, temp1), int8);  \
+        left   = CONVERT(temp0.s02468ace, int8);                                                     \
+        middle = CONVERT(temp0.s13579bdf, int8);                                                     \
+        right  = CONVERT((int8)(temp0.s2468, temp0.sace, temp1), int8);                              \
     })
 #else /* CONV_STRIDE_X */
-#define GET_VALUES(first_value, left, middle, right)                                \
-    ({                                                                              \
-        int16 temp0 = CONVERT(vload16(0, first_value), int16);                      \
-        int8  temp1 = CONVERT(vload8(0, (first_value + 16 * sizeof(uchar))), int8); \
+#define GET_VALUES(first_value, left, middle, right)                                                          \
+    ({                                                                                                        \
+        int16 temp0 = CONVERT(vload16(0, (__global DATA_TYPE *)(first_value)), int16);                        \
+        int8 temp1  = CONVERT(vload8(0, (__global DATA_TYPE *)(first_value + 16 * sizeof(DATA_TYPE))), int8); \
         \
-        left   = CONVERT((int8)(temp0.s0369, temp0.scf, temp1.s25), int8);          \
-        middle = CONVERT((int8)(temp0.s147a, temp0.sd, temp1.s036), int8);          \
-        right  = CONVERT((int8)(temp0.s258b, temp0.se, temp1.s147), int8);          \
+        left   = CONVERT((int8)(temp0.s0369, temp0.scf, temp1.s25), int8);                                    \
+        middle = CONVERT((int8)(temp0.s147a, temp0.sd, temp1.s036), int8);                                    \
+        right  = CONVERT((int8)(temp0.s258b, temp0.se, temp1.s147), int8);                                    \
     })
 #endif /* CONV_STRIDE_X */
 
 #else /* DILATION_X == 1 */
 
 #if CONV_STRIDE_X == 1
-#define GET_VALUES(first_value, left, middle, right)                                     \
-    ({                                                                                   \
-        left   = CONVERT(vload8(0, first_value), int8);                                  \
-        middle = CONVERT(vload8(0, first_value + DILATION_X * sizeof(uchar)), int8);     \
-        right  = CONVERT(vload8(0, first_value + 2 * DILATION_X * sizeof(uchar)), int8); \
+#define GET_VALUES(first_value, left, middle, right)                                                                 \
+    ({                                                                                                               \
+        left   = CONVERT(vload8(0, (__global DATA_TYPE *)(first_value)), int8);                                      \
+        middle = CONVERT(vload8(0, (__global DATA_TYPE *)(first_value + DILATION_X * sizeof(DATA_TYPE))), int8);     \
+        right  = CONVERT(vload8(0, (__global DATA_TYPE *)(first_value + 2 * DILATION_X * sizeof(DATA_TYPE))), int8); \
     })
 #elif CONV_STRIDE_X == 2
-#define GET_VALUES(first_value, left, middle, right)                                      \
-    ({                                                                                    \
-        int16 temp0 = CONVERT(vload16(0, first_value), int16);                            \
-        left        = CONVERT(temp0.s02468ace, int8);                                     \
+#define GET_VALUES(first_value, left, middle, right)                                                                  \
+    ({                                                                                                                \
+        int16 temp0 = CONVERT(vload16(0, (__global DATA_TYPE *)(first_value)), int16);                                \
+        left        = CONVERT(temp0.s02468ace, int8);                                                                 \
         \
-        temp0  = CONVERT(vload16(0, first_value + DILATION_X * sizeof(uchar)), int16);    \
-        middle = CONVERT(temp0.s02468ace, int8);                                          \
+        temp0  = CONVERT(vload16(0, (__global DATA_TYPE *)(first_value + DILATION_X * sizeof(DATA_TYPE))), int16);    \
+        middle = CONVERT(temp0.s02468ace, int8);                                                                      \
         \
-        temp0 = CONVERT(vload16(0, first_value + 2 * DILATION_X * sizeof(uchar)), int16); \
-        right = CONVERT(temp0.s02468ace, int8);                                           \
+        temp0 = CONVERT(vload16(0, (__global DATA_TYPE *)(first_value + 2 * DILATION_X * sizeof(DATA_TYPE))), int16); \
+        right = CONVERT(temp0.s02468ace, int8);                                                                       \
     })
 #else /* CONV_STRIDE_X */
-#define GET_VALUES(first_value, left, middle, right)                                             \
-    ({                                                                                           \
-        int16 temp0 = CONVERT(vload16(0, first_value), int16);                                   \
-        int8  temp1 = CONVERT(vload8(0, (first_value + 16 * sizeof(uchar))), int8);              \
-        left        = CONVERT((int8)(temp0.s0369, temp0.scf, temp1.s25), int8);                  \
+#define GET_VALUES(first_value, left, middle, right)                                                                       \
+    ({                                                                                                                     \
+        int16 temp0 = CONVERT(vload16(0, (__global DATA_TYPE *)(first_value)), int16);                                     \
+        int8 temp1  = CONVERT(vload8(0, (__global DATA_TYPE *)(first_value + 16 * sizeof(DATA_TYPE))), int8);              \
+        left        = CONVERT((int8)(temp0.s0369, temp0.scf, temp1.s25), int8);                                            \
         \
-        temp0  = CONVERT(vload16(0, first_value + DILATION_X * sizeof(uchar)), int16);           \
-        temp1  = CONVERT(vload8(0, (first_value + (16 + DILATION_X) * sizeof(uchar))), int8);    \
-        middle = CONVERT((int8)(temp0.s0369, temp0.scf, temp1.s25), int8);                       \
+        temp0  = CONVERT(vload16(0, (__global DATA_TYPE *)(first_value + DILATION_X * sizeof(DATA_TYPE))), int16);         \
+        temp1  = CONVERT(vload8(0, (__global DATA_TYPE *)(first_value + (16 + DILATION_X) * sizeof(DATA_TYPE))), int8);    \
+        middle = CONVERT((int8)(temp0.s0369, temp0.scf, temp1.s25), int8);                                                 \
         \
-        temp0 = CONVERT(vload16(0, first_value + 2 * DILATION_X * sizeof(uchar)), int16);        \
-        temp1 = CONVERT(vload8(0, (first_value + (16 + 2 * DILATION_X) * sizeof(uchar))), int8); \
-        right = CONVERT((int8)(temp0.s0369, temp0.scf, temp1.s25), int8);                        \
+        temp0 = CONVERT(vload16(0, (__global DATA_TYPE *)(first_value + 2 * DILATION_X * sizeof(DATA_TYPE))), int16);      \
+        temp1 = CONVERT(vload8(0, (__global DATA_TYPE *)(first_value + (16 + 2 * DILATION_X) * sizeof(DATA_TYPE))), int8); \
+        right = CONVERT((int8)(temp0.s0369, temp0.scf, temp1.s25), int8);                                                  \
     })
 
 #endif /* CONV_STRIDE_X */
@@ -140,49 +144,61 @@
 
 /** This function computes the depthwise convolution quantized.
  *
- * @param[in] src_ptr                               Pointer to the source tensor. Supported data types: QASYMM8
- * @param[in] src_stride_x                          Stride of the source tensor in X dimension (in bytes)
- * @param[in] src_step_x                            src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src_stride_y                          Stride of the source tensor in Y dimension (in bytes)
- * @param[in] src_step_y                            src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src_stride_z                          Stride of the source tensor in Z dimension (in bytes)
- * @param[in] src_step_z                            src_stride_z * number of elements along Y processed per workitem(in bytes)
- * @param[in] src_offset_first_element_in_bytes     The offset of the first element in the source tensor
- * @param[in] dst_ptr                               Pointer to the destination tensor. Supported data types: QASYMM8
- * @param[in] dst_stride_x                          Stride of the destination tensor in X dimension (in bytes)
- * @param[in] dst_step_x                            dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y                          Stride of the destination tensor in Y dimension (in bytes)
- * @param[in] dst_step_y                            dst_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_stride_z                          Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] dst_step_z                            dst_stride_z * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes     The offset of the first element in the destination tensor
- * @param[in] weights_ptr                           Pointer to the weights tensor. Supported data types: QASYMM8
- * @param[in] weights_stride_x                      Stride of the weights tensor in X dimension (in bytes)
- * @param[in] weights_step_x                        weights_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] weights_stride_y                      Stride of the weights tensor in Y dimension (in bytes)
- * @param[in] weights_step_y                        weights_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] weights_stride_z                      Stride of the weights tensor in Z dimension (in bytes)
- * @param[in] weights_step_z                        weights_stride_z * number of elements along Y processed per workitem(in bytes)
- * @param[in] weights_offset_first_element_in_bytes The offset of the first element in the weights tensor
- * @param[in] biases_ptr                            (Optional) Pointer to the biases vector. Supported data types: QASYMM8
- * @param[in] biases_stride_x                       (Optional) Stride of the biases vector in X dimension (in bytes)
- * @param[in] biases_step_x                         (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] biases_offset_first_element_in_bytes  (Optional) The offset of the first element in the biases vector
+ * @param[in] src_ptr                                          Pointer to the source tensor. Supported data types: QASYMM8
+ * @param[in] src_stride_x                                     Stride of the source tensor in X dimension (in bytes)
+ * @param[in] src_step_x                                       src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y                                     Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] src_step_y                                       src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_stride_z                                     Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] src_step_z                                       src_stride_z * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes                The offset of the first element in the source tensor
+ * @param[in] dst_ptr                                          Pointer to the destination tensor. Supported data types: QASYMM8
+ * @param[in] dst_stride_x                                     Stride of the destination tensor in X dimension (in bytes)
+ * @param[in] dst_step_x                                       dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y                                     Stride of the destination tensor in Y dimension (in bytes)
+ * @param[in] dst_step_y                                       dst_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_stride_z                                     Stride of the destination tensor in Z dimension (in bytes)
+ * @param[in] dst_step_z                                       dst_stride_z * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes                The offset of the first element in the destination tensor
+ * @param[in] weights_ptr                                      Pointer to the weights tensor. Supported data types: QASYMM8/QSYMM8_PER_CHANNEL
+ * @param[in] weights_stride_x                                 Stride of the weights tensor in X dimension (in bytes)
+ * @param[in] weights_step_x                                   weights_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] weights_stride_y                                 Stride of the weights tensor in Y dimension (in bytes)
+ * @param[in] weights_step_y                                   weights_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] weights_stride_z                                 Stride of the weights tensor in Z dimension (in bytes)
+ * @param[in] weights_step_z                                   weights_stride_z * number of elements along Y processed per workitem(in bytes)
+ * @param[in] weights_offset_first_element_in_bytes            The offset of the first element in the weights tensor
+ * @param[in] output_multipliers_ptr                           Pointer to the output multipliers vector. Supported data types: S32
+ * @param[in] output_multipliers_stride_x                      Stride of the output multipliers vector in X dimension (in bytes)
+ * @param[in] output_multipliers_step_x                        output_multipliers_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] output_multipliers_offset_first_element_in_bytes The offset of the first element in the output multipliers vector
+ * @param[in] output_shifts_ptr                                Pointer to the output shifts vector. Supported data types: S32
+ * @param[in] output_shifts_stride_x                           Stride of the output shifts vector in X dimension (in bytes)
+ * @param[in] output_shifts_step_x                             output_shifts_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] output_shifts_offset_first_element_in_bytes      The offset of the first element in the output shifts vector
+ * @param[in] biases_ptr                                       (Optional) Pointer to the biases vector. Supported data types: S32
+ * @param[in] biases_stride_x                                  (Optional) Stride of the biases vector in X dimension (in bytes)
+ * @param[in] biases_step_x                                    (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] biases_offset_first_element_in_bytes             (Optional) The offset of the first element in the biases vector
  */
 
-__kernel void dwc_3x3_native_qasymm8_nchw(
+__kernel void dwc_3x3_native_quantized8_nchw(
     TENSOR3D_DECLARATION(src),
     TENSOR3D_DECLARATION(dst),
-    TENSOR3D_DECLARATION(weights)
+    TENSOR3D_DECLARATION(weights),
+    VECTOR_DECLARATION(output_multipliers),
+    VECTOR_DECLARATION(output_shifts)
 #if defined(HAS_BIAS)
     ,
     VECTOR_DECLARATION(biases)
 #endif //defined(HAS_BIAS)
 )
 {
-    Image    src     = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(src);
-    Image    dst     = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(dst);
-    Tensor3D weights = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(weights);
+    Image    src                = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(src);
+    Image    dst                = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(dst);
+    Tensor3D weights            = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(weights);
+    Vector   output_multipliers = CONVERT_TO_VECTOR_STRUCT_NO_STEP(output_multipliers);
+    Vector   output_shifts      = CONVERT_TO_VECTOR_STRUCT_NO_STEP(output_shifts);
 
     // Extract channel and linearized batch indices
     const int channel = get_global_id(2) % DST_CHANNELS;
@@ -198,9 +214,20 @@
     src.ptr -= batch * (DST_CHANNELS / DEPTH_MULTIPLIER) * (DEPTH_MULTIPLIER - 1) * src_step_z + (channel - (channel / DEPTH_MULTIPLIER)) * src_step_z;
     __global uchar *weights_addr = weights.ptr + get_global_id(0) * weights_step_x + get_global_id(1) * weights_step_y + channel * weights_step_z;
 
-    uchar3 w0 = vload3(0, weights_addr + 0 * weights_stride_y);
-    uchar3 w1 = vload3(0, weights_addr + 1 * weights_stride_y);
-    uchar3 w2 = vload3(0, weights_addr + 2 * weights_stride_y);
+    VEC_DATA_TYPE(WEIGHTS_TYPE, 3)
+    w0 = vload3(0, (__global WEIGHTS_TYPE *)(weights_addr + 0 * weights_stride_y));
+    VEC_DATA_TYPE(WEIGHTS_TYPE, 3)
+    w1 = vload3(0, (__global WEIGHTS_TYPE *)(weights_addr + 1 * weights_stride_y));
+    VEC_DATA_TYPE(WEIGHTS_TYPE, 3)
+    w2 = vload3(0, (__global WEIGHTS_TYPE *)(weights_addr + 2 * weights_stride_y));
+
+#if defined(PER_CHANNEL_QUANTIZATION)
+    const int output_multiplier = *((__global int *)vector_offset(&output_multipliers, channel));
+    const int output_shift      = *((__global int *)vector_offset(&output_shifts, channel));
+#else  // defined(PER_CHANNEL_QUANTIZATION)
+    const int output_multiplier = *((__global int *)vector_offset(&output_multipliers, 0));
+    const int output_shift      = *((__global int *)vector_offset(&output_shifts, 0));
+#endif // defined(PER_CHANNEL_QUANTIZATION)
 
     int8 values0 = 0;
     int8 sum0    = 0;
@@ -285,9 +312,10 @@
 #endif /* WEIGHTS_OFFSET != 0 */
 
 #if INPUT_OFFSET != 0
-    ushort  sum_weights = 0;
-    ushort3 tmp_we      = convert_ushort3(w0) + convert_ushort3(w1) + convert_ushort3(w2);
-    sum_weights += tmp_we.s0 + tmp_we.s1 + tmp_we.s2;
+    VEC_WEIGHTS_PROMOTED_TYPE(3)
+    tmp_we = CONVERT(w0, VEC_WEIGHTS_PROMOTED_TYPE(3)) + CONVERT(w1, VEC_WEIGHTS_PROMOTED_TYPE(3)) + CONVERT(w2, VEC_WEIGHTS_PROMOTED_TYPE(3));
+
+    WEIGHTS_PROMOTED_TYPE sum_weights = tmp_we.s0 + tmp_we.s1 + tmp_we.s2;
     values0 += sum_weights * (int8)(INPUT_OFFSET);
 #if CONV_STRIDE_Y == 1 && DILATION_Y == 1
     values1 += sum_weights * (int8)(INPUT_OFFSET);
@@ -307,14 +335,13 @@
 
 #else // defined(REAL_MULTIPLIER)
 
-    values0                  = ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(values0, OUTPUT_MULTIPLIER, OUTPUT_SHIFT, 8);
+    values0                            = ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(values0, output_multiplier, output_shift, 8);
 
 #endif // defined(REAL_MULTIPLIER)
 
     values0 += (int8)OUTPUT_OFFSET;
-    uchar8 res0 = convert_uchar8_sat(values0);
-    res0        = max(res0, (uchar8)0);
-    res0        = min(res0, (uchar8)255);
+    VEC_TYPE(8)
+    res0 = CONVERT_SAT(values0, VEC_TYPE(8));
 
     vstore8(ACTIVATION_FUNC(res0), 0, dst.ptr);
 #if CONV_STRIDE_Y == 1 && DILATION_Y == 1
@@ -324,134 +351,156 @@
 
 #else // defined(REAL_MULTIPLIER)
 
-    values1                  = ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(values1, OUTPUT_MULTIPLIER, OUTPUT_SHIFT, 8);
+    values1                           = ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(values1, output_multiplier, output_shift, 8);
 
 #endif // defined(REAL_MULTIPLIER)
 
     values1 += (int8)OUTPUT_OFFSET;
-    uchar8 res1 = convert_uchar8_sat(values1);
-    res1        = max(res1, (uchar8)0);
-    res1        = min(res1, (uchar8)255);
+    VEC_TYPE(8)
+    res1 = CONVERT_SAT(values1, VEC_TYPE(8));
 
     vstore8(ACTIVATION_FUNC(res1), 0, dst.ptr + dst_stride_y);
 #endif /* CONV_STRIDE_Y == 1 && DILATION_Y==1*/
 }
 
-#else // !(defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8))
+#else // !defined(IS_DOT8)
+
 #if DILATION_X == 1
 #if CONV_STRIDE_X == 1
-#define GET_VALUES(first_value, left, middle, right)                 \
-    ({                                                               \
-        uchar8 temp0 = vload8(0, first_value);                       \
-        uchar2 temp1 = vload2(0, (first_value + 8 * sizeof(uchar))); \
+#define GET_VALUES(first_value, left, middle, right)                                    \
+    ({                                                                                  \
+        VEC_TYPE(8)                                                                     \
+        temp0 = vload8(0, (__global DATA_TYPE *)(first_value));                         \
+        VEC_TYPE(2)                                                                     \
+        temp1 = vload2(0, (__global DATA_TYPE *)(first_value + 8 * sizeof(DATA_TYPE))); \
         \
-        left   = temp0.s01234567;                                    \
-        middle = (uchar8)(temp0.s1234, temp0.s567, temp1.s0);        \
-        right  = (uchar8)(temp0.s2345, temp0.s67, temp1.s01);        \
+        left   = temp0.s01234567;                                                       \
+        middle = (VEC_TYPE(8))(temp0.s1234, temp0.s567, temp1.s0);                      \
+        right  = (VEC_TYPE(8))(temp0.s2345, temp0.s67, temp1.s01);                      \
     })
 #elif CONV_STRIDE_X == 2
-#define GET_VALUES(first_value, left, middle, right)         \
-    ({                                                       \
-        uchar16 temp0 = vload16(0, first_value);             \
-        uchar   temp1 = *(first_value + 16 * sizeof(uchar)); \
+#define GET_VALUES(first_value, left, middle, right)                                       \
+    ({                                                                                     \
+        VEC_TYPE(16)                                                                       \
+        temp0           = vload16(0, (__global DATA_TYPE *)(first_value));                 \
+        DATA_TYPE temp1 = *((__global DATA_TYPE *)(first_value + 16 * sizeof(DATA_TYPE))); \
         \
-        left   = temp0.s02468ace;                            \
-        middle = temp0.s13579bdf;                            \
-        right  = (uchar8)(temp0.s2468, temp0.sace, temp1);   \
+        left   = temp0.s02468ace;                                                          \
+        middle = temp0.s13579bdf;                                                          \
+        right  = (VEC_TYPE(8))(temp0.s2468, temp0.sace, temp1);                            \
     })
 #else /* CONV_STRIDE_X */
-#define GET_VALUES(first_value, left, middle, right)                   \
-    ({                                                                 \
-        uchar16 temp0 = vload16(0, first_value);                       \
-        uchar8  temp1 = vload8(0, (first_value + 16 * sizeof(uchar))); \
+#define GET_VALUES(first_value, left, middle, right)                                     \
+    ({                                                                                   \
+        VEC_TYPE(16)                                                                     \
+        temp0 = vload16(0, (__global DATA_TYPE *)(first_value));                         \
+        VEC_TYPE(8)                                                                      \
+        temp1 = vload8(0, (__global DATA_TYPE *)(first_value + 16 * sizeof(DATA_TYPE))); \
         \
-        left   = (uchar8)(temp0.s0369, temp0.scf, temp1.s25);          \
-        middle = (uchar8)(temp0.s147a, temp0.sd, temp1.s036);          \
-        right  = (uchar8)(temp0.s258b, temp0.se, temp1.s147);          \
+        left   = (VEC_TYPE(8))(temp0.s0369, temp0.scf, temp1.s25);                       \
+        middle = (VEC_TYPE(8))(temp0.s147a, temp0.sd, temp1.s036);                       \
+        right  = (VEC_TYPE(8))(temp0.s258b, temp0.se, temp1.s147);                       \
     })
 #endif /* CONV_STRIDE_X */
 #else  /*DILATION_X==1*/
 
 #if CONV_STRIDE_X == 1
-#define GET_VALUES(first_value, left, middle, right)                      \
-    ({                                                                    \
-        left   = vload8(0, first_value);                                  \
-        middle = vload8(0, first_value + DILATION_X * sizeof(uchar));     \
-        right  = vload8(0, first_value + 2 * DILATION_X * sizeof(uchar)); \
+#define GET_VALUES(first_value, left, middle, right)                                                  \
+    ({                                                                                                \
+        left   = vload8(0, (__global DATA_TYPE *)(first_value));                                      \
+        middle = vload8(0, (__global DATA_TYPE *)(first_value + DILATION_X * sizeof(DATA_TYPE)));     \
+        right  = vload8(0, (__global DATA_TYPE *)(first_value + 2 * DILATION_X * sizeof(DATA_TYPE))); \
     })
 #elif CONV_STRIDE_X == 2
-#define GET_VALUES(first_value, left, middle, right)                              \
-    ({                                                                            \
-        uchar16 temp0 = vload16(0, first_value);                                  \
-        left          = temp0.s02468ace;                                          \
-        temp0         = vload16(0, first_value + DILATION_X * sizeof(uchar));     \
-        middle        = temp0.s02468ace;                                          \
-        temp0         = vload16(0, first_value + 2 * DILATION_X * sizeof(uchar)); \
-        right         = temp0.s02468ace;                                          \
+#define GET_VALUES(first_value, left, middle, right)                                                   \
+    ({                                                                                                 \
+        VEC_TYPE(16)                                                                                   \
+        temp0  = vload16(0, (__global DATA_TYPE *)(first_value));                                      \
+        left   = temp0.s02468ace;                                                                      \
+        temp0  = vload16(0, (__global DATA_TYPE *)(first_value + DILATION_X * sizeof(DATA_TYPE)));     \
+        middle = temp0.s02468ace;                                                                      \
+        temp0  = vload16(0, (__global DATA_TYPE *)(first_value + 2 * DILATION_X * sizeof(DATA_TYPE))); \
+        right  = temp0.s02468ace;                                                                      \
     })
 #else /* CONV_STRIDE_X */
-#define GET_VALUES(first_value, left, middle, right)                              \
-    ({                                                                            \
-        uchar16 temp0 = vload16(0, first_value);                                  \
-        uchar8  temp1 = vload8(0, (first_value + 16 * sizeof(uchar)));            \
-        left          = (uchar8)(temp0.s0369, temp0.scf, temp1.s25);              \
+#define GET_VALUES(first_value, left, middle, right)                                                        \
+    ({                                                                                                      \
+        VEC_TYPE(16)                                                                                        \
+        temp0 = vload16(0, (__global DATA_TYPE *)(first_value));                                            \
+        VEC_TYPE(8)                                                                                         \
+        temp1 = vload8(0, (__global DATA_TYPE *)(first_value + 16 * sizeof(DATA_TYPE))));                   \
+        left = (VEC_TYPE(8))(temp0.s0369, temp0.scf, temp1.s25);                                            \
         \
-        temp0  = vload16(0, first_value + DILATION_X * sizeof(uchar));            \
-        temp1  = vload8(0, (first_value + (16 + DILATION_X) * sizeof(uchar)));    \
-        middle = (uchar8)(temp0.s0369, temp0.scf, temp1.s25);                     \
+        temp0  = vload16(0, (__global DATA_TYPE *)(first_value + DILATION_X * sizeof(DATA_TYPE)));          \
+        temp1  = vload8(0, (__global DATA_TYPE *)(first_value + (16 + DILATION_X) * sizeof(DATA_TYPE)));    \
+        middle = (VEC_TYPE(8))(temp0.s0369, temp0.scf, temp1.s25);                                          \
         \
-        temp0 = vload16(0, first_value + 2 * DILATION_X * sizeof(uchar));         \
-        temp1 = vload8(0, (first_value + (16 + 2 * DILATION_X) * sizeof(uchar))); \
-        right = (uchar8)(temp0.s0369, temp0.scf, temp1.s25);                      \
+        temp0 = vload16(0, (__global DATA_TYPE *)(first_value + 2 * DILATION_X * sizeof(DATA_TYPE)));       \
+        temp1 = vload8(0, (__global DATA_TYPE *)(first_value + (16 + 2 * DILATION_X) * sizeof(DATA_TYPE))); \
+        right = (VEC_TYPE(8))(temp0.s0369, temp0.scf, temp1.s25);                                           \
     })
 
 #endif /* CONV_STRIDE_X */
 #endif /*DILATION_X==1*/
 /** This function computes the depthwise convolution quantized using dot product when the data layout is NCHW.
  *
- * @param[in] src_ptr                               Pointer to the source tensor. Supported data types: QASYMM8
- * @param[in] src_stride_x                          Stride of the source tensor in X dimension (in bytes)
- * @param[in] src_step_x                            src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src_stride_y                          Stride of the source tensor in Y dimension (in bytes)
- * @param[in] src_step_y                            src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src_stride_z                          Stride of the source tensor in Z dimension (in bytes)
- * @param[in] src_step_z                            src_stride_z * number of elements along Y processed per workitem(in bytes)
- * @param[in] src_offset_first_element_in_bytes     The offset of the first element in the source tensor
- * @param[in] dst_ptr                               Pointer to the destination tensor. Supported data types: QASYMM8
- * @param[in] dst_stride_x                          Stride of the destination tensor in X dimension (in bytes)
- * @param[in] dst_step_x                            dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y                          Stride of the destination tensor in Y dimension (in bytes)
- * @param[in] dst_step_y                            dst_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_stride_z                          Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] dst_step_z                            dst_stride_z * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes     The offset of the first element in the destination tensor
- * @param[in] weights_ptr                           Pointer to the weights tensor. Supported data types: QASYMM8
- * @param[in] weights_stride_x                      Stride of the weights tensor in X dimension (in bytes)
- * @param[in] weights_step_x                        weights_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] weights_stride_y                      Stride of the weights tensor in Y dimension (in bytes)
- * @param[in] weights_step_y                        weights_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] weights_stride_z                      Stride of the weights tensor in Z dimension (in bytes)
- * @param[in] weights_step_z                        weights_stride_z * number of elements along Y processed per workitem(in bytes)
- * @param[in] weights_offset_first_element_in_bytes The offset of the first element in the weights tensor
- * @param[in] biases_ptr                            (Optional) Pointer to the biases vector. Supported data types: QASYMM8
- * @param[in] biases_stride_x                       (Optional) Stride of the biases vector in X dimension (in bytes)
- * @param[in] biases_step_x                         (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] biases_offset_first_element_in_bytes  (Optional) The offset of the first element in the biases vector
+ * @note Per-channel quantization is not supported by this kernel.
+ *
+ * @param[in] src_ptr                                          Pointer to the source tensor. Supported data types: QASYMM8
+ * @param[in] src_stride_x                                     Stride of the source tensor in X dimension (in bytes)
+ * @param[in] src_step_x                                       src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y                                     Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] src_step_y                                       src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_stride_z                                     Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] src_step_z                                       src_stride_z * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes                The offset of the first element in the source tensor
+ * @param[in] dst_ptr                                          Pointer to the destination tensor. Supported data types: QASYMM8
+ * @param[in] dst_stride_x                                     Stride of the destination tensor in X dimension (in bytes)
+ * @param[in] dst_step_x                                       dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y                                     Stride of the destination tensor in Y dimension (in bytes)
+ * @param[in] dst_step_y                                       dst_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_stride_z                                     Stride of the destination tensor in Z dimension (in bytes)
+ * @param[in] dst_step_z                                       dst_stride_z * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes                The offset of the first element in the destination tensor
+ * @param[in] weights_ptr                                      Pointer to the weights tensor. Supported data types: QASYMM8/QSYMM8_PER_CHANNEL
+ * @param[in] weights_stride_x                                 Stride of the weights tensor in X dimension (in bytes)
+ * @param[in] weights_step_x                                   weights_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] weights_stride_y                                 Stride of the weights tensor in Y dimension (in bytes)
+ * @param[in] weights_step_y                                   weights_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] weights_stride_z                                 Stride of the weights tensor in Z dimension (in bytes)
+ * @param[in] weights_step_z                                   weights_stride_z * number of elements along Y processed per workitem(in bytes)
+ * @param[in] weights_offset_first_element_in_bytes            The offset of the first element in the weights tensor
+ * @param[in] output_multipliers_ptr                           Pointer to the output multipliers vector. Supported data types: S32
+ * @param[in] output_multipliers_stride_x                      Stride of the output multipliers vector in X dimension (in bytes)
+ * @param[in] output_multipliers_step_x                        output_multipliers_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] output_multipliers_offset_first_element_in_bytes The offset of the first element in the output multipliers vector
+ * @param[in] output_shifts_ptr                                Pointer to the output shifts vector. Supported data types: S32
+ * @param[in] output_shifts_stride_x                           Stride of the output shifts vector in X dimension (in bytes)
+ * @param[in] output_shifts_step_x                             output_shifts_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] output_shifts_offset_first_element_in_bytes      The offset of the first element in the output shifts vector
+ * @param[in] biases_ptr                                       (Optional) Pointer to the biases vector. Supported data types: S32
+ * @param[in] biases_stride_x                                  (Optional) Stride of the biases vector in X dimension (in bytes)
+ * @param[in] biases_step_x                                    (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] biases_offset_first_element_in_bytes             (Optional) The offset of the first element in the biases vector
  */
 
-__kernel void dwc_3x3_native_qasymm8_dot8_nchw(
+__kernel void dwc_3x3_native_quantized8_dot8_nchw(
     TENSOR3D_DECLARATION(src),
     TENSOR3D_DECLARATION(dst),
-    TENSOR3D_DECLARATION(weights)
+    TENSOR3D_DECLARATION(weights),
+    VECTOR_DECLARATION(output_multipliers),
+    VECTOR_DECLARATION(output_shifts)
 #if defined(HAS_BIAS)
     ,
     VECTOR_DECLARATION(biases)
 #endif //defined(HAS_BIAS)
 )
 {
-    Image    src     = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(src);
-    Image    dst     = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(dst);
-    Tensor3D weights = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(weights);
+    Image    src                = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(src);
+    Image    dst                = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(dst);
+    Tensor3D weights            = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(weights);
+    Vector   output_multipliers = CONVERT_TO_VECTOR_STRUCT_NO_STEP(output_multipliers);
+    Vector   output_shifts      = CONVERT_TO_VECTOR_STRUCT_NO_STEP(output_shifts);
 
     // Extract channel and linearized batch indices
     const int channel = get_global_id(2) % DST_CHANNELS;
@@ -467,13 +516,22 @@
     src.ptr -= batch * (DST_CHANNELS / DEPTH_MULTIPLIER) * (DEPTH_MULTIPLIER - 1) * src_step_z + (channel - (channel / DEPTH_MULTIPLIER)) * src_step_z;
     __global uchar *weights_addr = weights.ptr + get_global_id(0) * weights_step_x + get_global_id(1) * weights_step_y + channel * weights_step_z;
 
-    uchar3 w0 = vload3(0, weights_addr + 0 * weights_stride_y);
-    uchar3 w1 = vload3(0, weights_addr + 1 * weights_stride_y);
-    uchar3 w2 = vload3(0, weights_addr + 2 * weights_stride_y);
+    VEC_TYPE(3)
+    w0 = vload3(0, (__global WEIGHTS_TYPE *)(weights_addr + 0 * weights_stride_y));
+    VEC_TYPE(3)
+    w1 = vload3(0, (__global WEIGHTS_TYPE *)(weights_addr + 1 * weights_stride_y));
+    VEC_TYPE(3)
+    w2 = vload3(0, (__global WEIGHTS_TYPE *)(weights_addr + 2 * weights_stride_y));
 
-    uchar8 left0, middle0, right0;
-    uchar8 left1, middle1, right1;
-    uchar8 left2, middle2, right2;
+    const int output_multiplier = *((__global int *)vector_offset(&output_multipliers, 0));
+    const int output_shift      = *((__global int *)vector_offset(&output_shifts, 0));
+
+    VEC_TYPE(8)
+    left0, middle0, right0;
+    VEC_TYPE(8)
+    left1, middle1, right1;
+    VEC_TYPE(8)
+    left2, middle2, right2;
 
     int8 values0 = 0;
     int8 sum0    = 0;
@@ -491,9 +549,10 @@
 #if CONV_STRIDE_Y == 1 && DILATION_Y == 1
     // If conv_stride_y is equals to 1, we compute two output rows
 
-    uchar8 left3, middle3, right3;
-    int8   values1 = 0;
-    int8   sum1    = 0;
+    VEC_TYPE(8)
+    left3, middle3, right3;
+    int8 values1 = 0;
+    int8 sum1    = 0;
 
     GET_VALUES(src.ptr + 3 * src_stride_y, left3, middle3, right3);
 
@@ -504,69 +563,69 @@
 #endif /* WEIGHTS_OFFSET != 0 */
 #endif // CONV_STRIDE_Y == 1 && DILATION_Y==1
 
-    ARM_DOT((uchar4)(left0.s0, middle0.s0, right0.s0, left1.s0), (uchar4)(w0.s0, w0.s1, w0.s2, w1.s0), values0.s0);
-    ARM_DOT((uchar4)(middle1.s0, right1.s0, left2.s0, middle2.s0), (uchar4)(w1.s1, w1.s2, w2.s0, w2.s1), values0.s0);
+    ARM_DOT((VEC_TYPE(4))(left0.s0, middle0.s0, right0.s0, left1.s0), (VEC_TYPE(4))(w0.s0, w0.s1, w0.s2, w1.s0), values0.s0);
+    ARM_DOT((VEC_TYPE(4))(middle1.s0, right1.s0, left2.s0, middle2.s0), (VEC_TYPE(4))(w1.s1, w1.s2, w2.s0, w2.s1), values0.s0);
     values0.s0 += right2.s0 * w2.s2;
 
-    ARM_DOT((uchar4)(left0.s1, middle0.s1, right0.s1, left1.s1), (uchar4)(w0.s0, w0.s1, w0.s2, w1.s0), values0.s1);
-    ARM_DOT((uchar4)(middle1.s1, right1.s1, left2.s1, middle2.s1), (uchar4)(w1.s1, w1.s2, w2.s0, w2.s1), values0.s1);
+    ARM_DOT((VEC_TYPE(4))(left0.s1, middle0.s1, right0.s1, left1.s1), (VEC_TYPE(4))(w0.s0, w0.s1, w0.s2, w1.s0), values0.s1);
+    ARM_DOT((VEC_TYPE(4))(middle1.s1, right1.s1, left2.s1, middle2.s1), (VEC_TYPE(4))(w1.s1, w1.s2, w2.s0, w2.s1), values0.s1);
     values0.s1 += right2.s1 * w2.s2;
 
-    ARM_DOT((uchar4)(left0.s2, middle0.s2, right0.s2, left1.s2), (uchar4)(w0.s0, w0.s1, w0.s2, w1.s0), values0.s2);
-    ARM_DOT((uchar4)(middle1.s2, right1.s2, left2.s2, middle2.s2), (uchar4)(w1.s1, w1.s2, w2.s0, w2.s1), values0.s2);
+    ARM_DOT((VEC_TYPE(4))(left0.s2, middle0.s2, right0.s2, left1.s2), (VEC_TYPE(4))(w0.s0, w0.s1, w0.s2, w1.s0), values0.s2);
+    ARM_DOT((VEC_TYPE(4))(middle1.s2, right1.s2, left2.s2, middle2.s2), (VEC_TYPE(4))(w1.s1, w1.s2, w2.s0, w2.s1), values0.s2);
     values0.s2 += right2.s2 * w2.s2;
 
-    ARM_DOT((uchar4)(left0.s3, middle0.s3, right0.s3, left1.s3), (uchar4)(w0.s0, w0.s1, w0.s2, w1.s0), values0.s3);
-    ARM_DOT((uchar4)(middle1.s3, right1.s3, left2.s3, middle2.s3), (uchar4)(w1.s1, w1.s2, w2.s0, w2.s1), values0.s3);
+    ARM_DOT((VEC_TYPE(4))(left0.s3, middle0.s3, right0.s3, left1.s3), (VEC_TYPE(4))(w0.s0, w0.s1, w0.s2, w1.s0), values0.s3);
+    ARM_DOT((VEC_TYPE(4))(middle1.s3, right1.s3, left2.s3, middle2.s3), (VEC_TYPE(4))(w1.s1, w1.s2, w2.s0, w2.s1), values0.s3);
     values0.s3 += right2.s3 * w2.s2;
 
-    ARM_DOT((uchar4)(left0.s4, middle0.s4, right0.s4, left1.s4), (uchar4)(w0.s0, w0.s1, w0.s2, w1.s0), values0.s4);
-    ARM_DOT((uchar4)(middle1.s4, right1.s4, left2.s4, middle2.s4), (uchar4)(w1.s1, w1.s2, w2.s0, w2.s1), values0.s4);
+    ARM_DOT((VEC_TYPE(4))(left0.s4, middle0.s4, right0.s4, left1.s4), (VEC_TYPE(4))(w0.s0, w0.s1, w0.s2, w1.s0), values0.s4);
+    ARM_DOT((VEC_TYPE(4))(middle1.s4, right1.s4, left2.s4, middle2.s4), (VEC_TYPE(4))(w1.s1, w1.s2, w2.s0, w2.s1), values0.s4);
     values0.s4 += right2.s4 * w2.s2;
 
-    ARM_DOT((uchar4)(left0.s5, middle0.s5, right0.s5, left1.s5), (uchar4)(w0.s0, w0.s1, w0.s2, w1.s0), values0.s5);
-    ARM_DOT((uchar4)(middle1.s5, right1.s5, left2.s5, middle2.s5), (uchar4)(w1.s1, w1.s2, w2.s0, w2.s1), values0.s5);
+    ARM_DOT((VEC_TYPE(4))(left0.s5, middle0.s5, right0.s5, left1.s5), (VEC_TYPE(4))(w0.s0, w0.s1, w0.s2, w1.s0), values0.s5);
+    ARM_DOT((VEC_TYPE(4))(middle1.s5, right1.s5, left2.s5, middle2.s5), (VEC_TYPE(4))(w1.s1, w1.s2, w2.s0, w2.s1), values0.s5);
     values0.s5 += right2.s5 * w2.s2;
 
-    ARM_DOT((uchar4)(left0.s6, middle0.s6, right0.s6, left1.s6), (uchar4)(w0.s0, w0.s1, w0.s2, w1.s0), values0.s6);
-    ARM_DOT((uchar4)(middle1.s6, right1.s6, left2.s6, middle2.s6), (uchar4)(w1.s1, w1.s2, w2.s0, w2.s1), values0.s6);
+    ARM_DOT((VEC_TYPE(4))(left0.s6, middle0.s6, right0.s6, left1.s6), (VEC_TYPE(4))(w0.s0, w0.s1, w0.s2, w1.s0), values0.s6);
+    ARM_DOT((VEC_TYPE(4))(middle1.s6, right1.s6, left2.s6, middle2.s6), (VEC_TYPE(4))(w1.s1, w1.s2, w2.s0, w2.s1), values0.s6);
     values0.s6 += right2.s6 * w2.s2;
 
-    ARM_DOT((uchar4)(left0.s7, middle0.s7, right0.s7, left1.s7), (uchar4)(w0.s0, w0.s1, w0.s2, w1.s0), values0.s7);
-    ARM_DOT((uchar4)(middle1.s7, right1.s7, left2.s7, middle2.s7), (uchar4)(w1.s1, w1.s2, w2.s0, w2.s1), values0.s7);
+    ARM_DOT((VEC_TYPE(4))(left0.s7, middle0.s7, right0.s7, left1.s7), (VEC_TYPE(4))(w0.s0, w0.s1, w0.s2, w1.s0), values0.s7);
+    ARM_DOT((VEC_TYPE(4))(middle1.s7, right1.s7, left2.s7, middle2.s7), (VEC_TYPE(4))(w1.s1, w1.s2, w2.s0, w2.s1), values0.s7);
     values0.s7 += right2.s7 * w2.s2;
 
 #if CONV_STRIDE_Y == 1 && DILATION_Y == 1
-    ARM_DOT((uchar4)(left1.s0, middle1.s0, right1.s0, left2.s0), (uchar4)(w0.s0, w0.s1, w0.s2, w1.s0), values1.s0);
-    ARM_DOT((uchar4)(middle2.s0, right2.s0, left3.s0, middle3.s0), (uchar4)(w1.s1, w1.s2, w2.s0, w2.s1), values1.s0);
+    ARM_DOT((VEC_TYPE(4))(left1.s0, middle1.s0, right1.s0, left2.s0), (VEC_TYPE(4))(w0.s0, w0.s1, w0.s2, w1.s0), values1.s0);
+    ARM_DOT((VEC_TYPE(4))(middle2.s0, right2.s0, left3.s0, middle3.s0), (VEC_TYPE(4))(w1.s1, w1.s2, w2.s0, w2.s1), values1.s0);
     values1.s0 += right3.s0 * w2.s2;
 
-    ARM_DOT((uchar4)(left1.s1, middle1.s1, right1.s1, left2.s1), (uchar4)(w0.s0, w0.s1, w0.s2, w1.s0), values1.s1);
-    ARM_DOT((uchar4)(middle2.s1, right2.s1, left3.s1, middle3.s1), (uchar4)(w1.s1, w1.s2, w2.s0, w2.s1), values1.s1);
+    ARM_DOT((VEC_TYPE(4))(left1.s1, middle1.s1, right1.s1, left2.s1), (VEC_TYPE(4))(w0.s0, w0.s1, w0.s2, w1.s0), values1.s1);
+    ARM_DOT((VEC_TYPE(4))(middle2.s1, right2.s1, left3.s1, middle3.s1), (VEC_TYPE(4))(w1.s1, w1.s2, w2.s0, w2.s1), values1.s1);
     values1.s1 += right3.s1 * w2.s2;
 
-    ARM_DOT((uchar4)(left1.s2, middle1.s2, right1.s2, left2.s2), (uchar4)(w0.s0, w0.s1, w0.s2, w1.s0), values1.s2);
-    ARM_DOT((uchar4)(middle2.s2, right2.s2, left3.s2, middle3.s2), (uchar4)(w1.s1, w1.s2, w2.s0, w2.s1), values1.s2);
+    ARM_DOT((VEC_TYPE(4))(left1.s2, middle1.s2, right1.s2, left2.s2), (VEC_TYPE(4))(w0.s0, w0.s1, w0.s2, w1.s0), values1.s2);
+    ARM_DOT((VEC_TYPE(4))(middle2.s2, right2.s2, left3.s2, middle3.s2), (VEC_TYPE(4))(w1.s1, w1.s2, w2.s0, w2.s1), values1.s2);
     values1.s2 += right3.s2 * w2.s2;
 
-    ARM_DOT((uchar4)(left1.s3, middle1.s3, right1.s3, left2.s3), (uchar4)(w0.s0, w0.s1, w0.s2, w1.s0), values1.s3);
-    ARM_DOT((uchar4)(middle2.s3, right2.s3, left3.s3, middle3.s3), (uchar4)(w1.s1, w1.s2, w2.s0, w2.s1), values1.s3);
+    ARM_DOT((VEC_TYPE(4))(left1.s3, middle1.s3, right1.s3, left2.s3), (VEC_TYPE(4))(w0.s0, w0.s1, w0.s2, w1.s0), values1.s3);
+    ARM_DOT((VEC_TYPE(4))(middle2.s3, right2.s3, left3.s3, middle3.s3), (VEC_TYPE(4))(w1.s1, w1.s2, w2.s0, w2.s1), values1.s3);
     values1.s3 += right3.s3 * w2.s2;
 
-    ARM_DOT((uchar4)(left1.s4, middle1.s4, right1.s4, left2.s4), (uchar4)(w0.s0, w0.s1, w0.s2, w1.s0), values1.s4);
-    ARM_DOT((uchar4)(middle2.s4, right2.s4, left3.s4, middle3.s4), (uchar4)(w1.s1, w1.s2, w2.s0, w2.s1), values1.s4);
+    ARM_DOT((VEC_TYPE(4))(left1.s4, middle1.s4, right1.s4, left2.s4), (VEC_TYPE(4))(w0.s0, w0.s1, w0.s2, w1.s0), values1.s4);
+    ARM_DOT((VEC_TYPE(4))(middle2.s4, right2.s4, left3.s4, middle3.s4), (VEC_TYPE(4))(w1.s1, w1.s2, w2.s0, w2.s1), values1.s4);
     values1.s4 += right3.s4 * w2.s2;
 
-    ARM_DOT((uchar4)(left1.s5, middle1.s5, right1.s5, left2.s5), (uchar4)(w0.s0, w0.s1, w0.s2, w1.s0), values1.s5);
-    ARM_DOT((uchar4)(middle2.s5, right2.s5, left3.s5, middle3.s5), (uchar4)(w1.s1, w1.s2, w2.s0, w2.s1), values1.s5);
+    ARM_DOT((VEC_TYPE(4))(left1.s5, middle1.s5, right1.s5, left2.s5), (VEC_TYPE(4))(w0.s0, w0.s1, w0.s2, w1.s0), values1.s5);
+    ARM_DOT((VEC_TYPE(4))(middle2.s5, right2.s5, left3.s5, middle3.s5), (VEC_TYPE(4))(w1.s1, w1.s2, w2.s0, w2.s1), values1.s5);
     values1.s5 += right3.s5 * w2.s2;
 
-    ARM_DOT((uchar4)(left1.s6, middle1.s6, right1.s6, left2.s6), (uchar4)(w0.s0, w0.s1, w0.s2, w1.s0), values1.s6);
-    ARM_DOT((uchar4)(middle2.s6, right2.s6, left3.s6, middle3.s6), (uchar4)(w1.s1, w1.s2, w2.s0, w2.s1), values1.s6);
+    ARM_DOT((VEC_TYPE(4))(left1.s6, middle1.s6, right1.s6, left2.s6), (VEC_TYPE(4))(w0.s0, w0.s1, w0.s2, w1.s0), values1.s6);
+    ARM_DOT((VEC_TYPE(4))(middle2.s6, right2.s6, left3.s6, middle3.s6), (VEC_TYPE(4))(w1.s1, w1.s2, w2.s0, w2.s1), values1.s6);
     values1.s6 += right3.s6 * w2.s2;
 
-    ARM_DOT((uchar4)(left1.s7, middle1.s7, right1.s7, left2.s7), (uchar4)(w0.s0, w0.s1, w0.s2, w1.s0), values1.s7);
-    ARM_DOT((uchar4)(middle2.s7, right2.s7, left3.s7, middle3.s7), (uchar4)(w1.s1, w1.s2, w2.s0, w2.s1), values1.s7);
+    ARM_DOT((VEC_TYPE(4))(left1.s7, middle1.s7, right1.s7, left2.s7), (VEC_TYPE(4))(w0.s0, w0.s1, w0.s2, w1.s0), values1.s7);
+    ARM_DOT((VEC_TYPE(4))(middle2.s7, right2.s7, left3.s7, middle3.s7), (VEC_TYPE(4))(w1.s1, w1.s2, w2.s0, w2.s1), values1.s7);
     values1.s7 += right3.s7 * w2.s2;
 #endif // CONV_STRIDE_Y == 1 && DILATION_Y==1
 
@@ -585,8 +644,9 @@
 #endif /* WEIGHTS_OFFSET != 0 */
 
 #if INPUT_OFFSET != 0
-    ushort  sum_weights = 0;
-    ushort3 tmp_we      = convert_ushort3(w0) + convert_ushort3(w1) + convert_ushort3(w2);
+    WEIGHTS_PROMOTED_TYPE sum_weights = 0;
+    VEC_WEIGHTS_PROMOTED_TYPE(3)
+    tmp_we = CONVERT(w0, VEC_WEIGHTS_PROMOTED_TYPE(3)) + CONVERT(w1, VEC_WEIGHTS_PROMOTED_TYPE(3)) + CONVERT(w2, VEC_WEIGHTS_PROMOTED_TYPE(3));
     sum_weights += tmp_we.s0 + tmp_we.s1 + tmp_we.s2;
     values0 += sum_weights * (int8)(INPUT_OFFSET);
 #if CONV_STRIDE_Y == 1 && DILATION_Y == 1
@@ -607,14 +667,13 @@
 
 #else // defined(REAL_MULTIPLIER)
 
-    values0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(values0, OUTPUT_MULTIPLIER, OUTPUT_SHIFT, 8);
+    values0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(values0, output_multiplier, output_shift, 8);
 
 #endif // defined(REAL_MULTIPLIER)
 
     values0 += (int8)OUTPUT_OFFSET;
-    uchar8 res0 = convert_uchar8_sat(values0);
-    res0        = max(res0, (uchar8)0);
-    res0        = min(res0, (uchar8)255);
+    VEC_TYPE(8)
+    res0 = CONVERT_SAT(values0, VEC_TYPE(8));
 
     vstore8(ACTIVATION_FUNC(res0), 0, dst.ptr);
 #if CONV_STRIDE_Y == 1 && DILATION_Y == 1
@@ -625,20 +684,19 @@
 
 #else // defined(REAL_MULTIPLIER)
 
-    values1 = ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(values1, OUTPUT_MULTIPLIER, OUTPUT_SHIFT, 8);
+    values1 = ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(values1, output_multiplier, output_shift, 8);
 
 #endif // defined(REAL_MULTIPLIER)
 
     values1 += (int8)OUTPUT_OFFSET;
-    uchar8 res1 = convert_uchar8_sat(values1);
-    res1        = max(res1, (uchar8)0);
-    res1        = min(res1, (uchar8)255);
+    VEC_TYPE(8)
+    res1 = CONVERT_SAT(values1, VEC_TYPE(8));
 
     vstore8(ACTIVATION_FUNC(res1), 0, dst.ptr + dst_stride_y);
 #endif /* CONV_STRIDE_Y == 1 && DILATION_Y==1*/
 }
 
-#endif // defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
+#endif // !defined(IS_DOT8)
 
 #endif /* defined(CONV_STRIDE_Y) && defined(CONV_STRIDE_X) && defined(DEPTH_MULTIPLIER) && defined(DST_CHANNELS) */
 
@@ -646,7 +704,7 @@
 
 #define asymm_mult_by_quant_multiplier_less_than_one(x, y, z) ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(x, y, z, VEC_SIZE)
 
-#define MULTIPLY_ADD(x, y, acc) acc += CONVERT(CONVERT(x, VEC_USHORT) * CONVERT(y, VEC_USHORT), VEC_INT)
+#define MULTIPLY_ADD(x, y, acc) acc += CONVERT(CONVERT(x, VEC_WEIGHTS_PROMOTED_TYPE(VEC_SIZE)) * CONVERT(y, VEC_WEIGHTS_PROMOTED_TYPE(VEC_SIZE)), VEC_INT)
 
 #if WEIGHTS_OFFSET != 0
 #define MULTIPLY_ADD_ACCUMULATE(x, y, acc, sum) \
@@ -661,23 +719,23 @@
 #if defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
 #define DOT_PRODUCT(acc, val0, val1, val2, val3, val4, val5, val6, val7, val8, w0, w1) \
     ({                                                                                 \
-        ARM_DOT((uchar4)(val0, val1, val2, val3), w0.s0123, acc);                      \
-        ARM_DOT((uchar4)(val4, val5, val6, val7), w0.s4567, acc);                      \
+        ARM_DOT((VEC_TYPE(4))(val0, val1, val2, val3), w0.s0123, acc);                 \
+        ARM_DOT((VEC_TYPE(4))(val4, val5, val6, val7), w0.s4567, acc);                 \
         acc += val8 * w1;                                                              \
     })
 
 #define DOT_PRODUCT_REDUCTION(sum, val0, val1, val2, val3, val4, val5, val6, val7, val8) \
     ({                                                                                   \
         sum = val0;                                                                      \
-        ARM_DOT((uchar4)(val1, val2, val3, val4), (uchar4)1, sum);                       \
-        ARM_DOT((uchar4)(val5, val6, val7, val8), (uchar4)1, sum);                       \
+        ARM_DOT((VEC_TYPE(4))(val1, val2, val3, val4), (VEC_TYPE(4))1, sum);             \
+        ARM_DOT((VEC_TYPE(4))(val5, val6, val7, val8), (VEC_TYPE(4))1, sum);             \
     })
 
 #define DOT_PRODUCT_REDUCTION_WEIGHTS(sum, w0, w1) \
     ({                                             \
         sum = w1;                                  \
-        ARM_DOT(w0.s0123, (uchar4)1, sum);         \
-        ARM_DOT(w0.s4567, (uchar4)1, sum);         \
+        ARM_DOT(w0.s0123, (VEC_TYPE(4))1, sum);    \
+        ARM_DOT(w0.s4567, (VEC_TYPE(4))1, sum);    \
     })
 
 #endif // defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
@@ -694,42 +752,52 @@
  * @note The convolution stride along the width must be passed at compile time using -DCONV_STRIDE_X (e.g. -DCONV_STRIDE_Y=X)
  * @note The convolution stride along the height must be passed at compile time using -DCONV_STRIDE_Y (e.g. -DCONV_STRIDE_Y=1)
  *
- * @param[in] src_ptr                               Pointer to the source tensor. Supported data types: QASYMM8
- * @param[in] src_stride_x                          Stride of the source tensor in X dimension (in bytes)
- * @param[in] src_step_x                            src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src_stride_y                          Stride of the source tensor in Y dimension (in bytes)
- * @param[in] src_step_y                            src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src_stride_z                          Stride of the source tensor in Z dimension (in bytes)
- * @param[in] src_step_z                            src_stride_y * number of elements along Z processed per workitem(in bytes)
- * @param[in] src_stride_w                          Stride of the source tensor in W dimension (in bytes)
- * @param[in] src_step_w                            src_stride_w * number of elements along W processed per workitem(in bytes)
- * @param[in] src_offset_first_element_in_bytes     The offset of the first element in the source tensor
- * @param[in] dst_ptr                               Pointer to the destination tensor. Supported data types: same as @p src_ptr
- * @param[in] dst_stride_x                          Stride of the destination tensor in X dimension (in bytes)
- * @param[in] dst_step_x                            dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y                          Stride of the destination tensor in Y dimension (in bytes)
- * @param[in] dst_step_y                            dst_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_stride_z                          Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] dst_step_z                            dst_stride_z * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_stride_w                          Stride of the destination tensor in W dimension (in bytes)
- * @param[in] dst_step_w                            dst_stride_w * number of elements along W processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes     The offset of the first element in the destination tensor
- * @param[in] weights_ptr                           Pointer to the weights tensor reshaped. Supported data types: same as @p src_ptr
- * @param[in] weights_stride_x                      Stride of the weights tensor in X dimension (in bytes)
- * @param[in] weights_step_x                        weights_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] weights_stride_y                      Stride of the weights tensor in Y dimension (in bytes)
- * @param[in] weights_step_y                        weights_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] weights_offset_first_element_in_bytes The offset of the first element in the weights tensor
- * @param[in] biases_ptr                            (Optional) Pointer to the biases vector. Supported data types: same as @p src_ptr
- * @param[in] biases_stride_x                       (Optional) Stride of the biases vector in X dimension (in bytes)
- * @param[in] biases_step_x                         (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] biases_offset_first_element_in_bytes  (Optional) The offset of the first element in the biases vector
- * @param[in] max_offset                            Max offset for the input tensor
+ * @param[in] src_ptr                                          Pointer to the source tensor. Supported data types: QASYMM8
+ * @param[in] src_stride_x                                     Stride of the source tensor in X dimension (in bytes)
+ * @param[in] src_step_x                                       src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y                                     Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] src_step_y                                       src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_stride_z                                     Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] src_step_z                                       src_stride_y * number of elements along Z processed per workitem(in bytes)
+ * @param[in] src_stride_w                                     Stride of the source tensor in W dimension (in bytes)
+ * @param[in] src_step_w                                       src_stride_w * number of elements along W processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes                The offset of the first element in the source tensor
+ * @param[in] dst_ptr                                          Pointer to the destination tensor. Supported data types: same as @p src_ptr
+ * @param[in] dst_stride_x                                     Stride of the destination tensor in X dimension (in bytes)
+ * @param[in] dst_step_x                                       dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y                                     Stride of the destination tensor in Y dimension (in bytes)
+ * @param[in] dst_step_y                                       dst_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_stride_z                                     Stride of the destination tensor in Z dimension (in bytes)
+ * @param[in] dst_step_z                                       dst_stride_z * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_stride_w                                     Stride of the destination tensor in W dimension (in bytes)
+ * @param[in] dst_step_w                                       dst_stride_w * number of elements along W processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes                The offset of the first element in the destination tensor
+ * @param[in] weights_ptr                                      Pointer to the weights tensor reshaped. Supported data types: QASYMM8/QSYMM8_PER_CHANNEL
+ * @param[in] weights_stride_x                                 Stride of the weights tensor in X dimension (in bytes)
+ * @param[in] weights_step_x                                   weights_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] weights_stride_y                                 Stride of the weights tensor in Y dimension (in bytes)
+ * @param[in] weights_step_y                                   weights_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] weights_offset_first_element_in_bytes            The offset of the first element in the weights tensor
+ * @param[in] output_multipliers_ptr                           Pointer to the output multipliers vector. Supported data types: S32
+ * @param[in] output_multipliers_stride_x                      Stride of the output multipliers vector in X dimension (in bytes)
+ * @param[in] output_multipliers_step_x                        output_multipliers_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] output_multipliers_offset_first_element_in_bytes The offset of the first element in the output multipliers vector
+ * @param[in] output_shifts_ptr                                Pointer to the output shifts vector. Supported data types: S32
+ * @param[in] output_shifts_stride_x                           Stride of the output shifts vector in X dimension (in bytes)
+ * @param[in] output_shifts_step_x                             output_shifts_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] output_shifts_offset_first_element_in_bytes      The offset of the first element in the output shifts vector
+ * @param[in] biases_ptr                                       (Optional) Pointer to the biases vector. Supported data types: S32
+ * @param[in] biases_stride_x                                  (Optional) Stride of the biases vector in X dimension (in bytes)
+ * @param[in] biases_step_x                                    (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] biases_offset_first_element_in_bytes             (Optional) The offset of the first element in the biases vector
+ * @param[in] max_offset                                       Max offset for the input tensor
  */
-__kernel void dwc_3x3_reshaped_qasymm8_nhwc(
+__kernel void dwc_3x3_reshaped_quantized8_nhwc(
     TENSOR4D_DECLARATION(src),
     TENSOR4D_DECLARATION(dst),
     IMAGE_DECLARATION(weights),
+    VECTOR_DECLARATION(output_multipliers),
+    VECTOR_DECLARATION(output_shifts),
 #if defined(HAS_BIAS)
     VECTOR_DECLARATION(biases),
 #endif /* defined(HAS_BIAS) */
@@ -741,7 +809,7 @@
     int z = get_global_id(2) % (int)DST_DEPTH; // spatial coordinate y
     int b = get_global_id(2) / (int)DST_DEPTH; // batch
 #else                                          // defined(DST_DEPTH)
-    int      z               = get_global_id(2); // spatial coordinate y
+    int      z                         = get_global_id(2); // spatial coordinate y
 #endif                                         // defined(DST_DEPTH)
 
     __global uchar *weights_addr = weights_ptr + weights_offset_first_element_in_bytes + x * weights_stride_y;
@@ -749,7 +817,7 @@
 #if defined(DST_DEPTH)
     __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * VEC_SIZE + b * src_stride_w;
 #else  /* defined(DST_DEPTH) */
-    __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * VEC_SIZE;
+    __global uchar *src_addr           = src_ptr + src_offset_first_element_in_bytes + x * VEC_SIZE;
 #endif /* defined(DST_DEPTH) */
 
     int  z_coord = 0;
@@ -768,19 +836,30 @@
     VEC_INT acc = 0, sum = 0;
 
     // Load weights
-    uchar16 w0_tmp = VLOAD(16)(0, weights_addr);
-    uchar16 w1_tmp = VLOAD(16)(0, weights_addr + 16);
-    uchar4  w8     = VLOAD(4)(0, weights_addr + 2 * 16);
+    VEC_DATA_TYPE(WEIGHTS_TYPE, 16)
+    w0_tmp = VLOAD(16)(0, (__global WEIGHTS_TYPE *)(weights_addr));
+    VEC_DATA_TYPE(WEIGHTS_TYPE, 16)
+    w1_tmp = VLOAD(16)(0, (__global WEIGHTS_TYPE *)(weights_addr + 16));
+    VEC_DATA_TYPE(WEIGHTS_TYPE, 4)
+    w8 = VLOAD(4)(0, (__global WEIGHTS_TYPE *)(weights_addr + 2 * 16));
 
-    uchar4 w0 = w0_tmp.s0123;
-    uchar4 w1 = w0_tmp.s4567;
-    uchar4 w2 = w0_tmp.s89AB;
-    uchar4 w3 = w0_tmp.sCDEF;
+    VEC_DATA_TYPE(WEIGHTS_TYPE, 4)
+    w0 = w0_tmp.s0123;
+    VEC_DATA_TYPE(WEIGHTS_TYPE, 4)
+    w1 = w0_tmp.s4567;
+    VEC_DATA_TYPE(WEIGHTS_TYPE, 4)
+    w2 = w0_tmp.s89AB;
+    VEC_DATA_TYPE(WEIGHTS_TYPE, 4)
+    w3 = w0_tmp.sCDEF;
 
-    uchar4 w4 = w1_tmp.s0123;
-    uchar4 w5 = w1_tmp.s4567;
-    uchar4 w6 = w1_tmp.s89AB;
-    uchar4 w7 = w1_tmp.sCDEF;
+    VEC_DATA_TYPE(WEIGHTS_TYPE, 4)
+    w4 = w1_tmp.s0123;
+    VEC_DATA_TYPE(WEIGHTS_TYPE, 4)
+    w5 = w1_tmp.s4567;
+    VEC_DATA_TYPE(WEIGHTS_TYPE, 4)
+    w6 = w1_tmp.s89AB;
+    VEC_DATA_TYPE(WEIGHTS_TYPE, 4)
+    w7 = w1_tmp.sCDEF;
 
 #if INPUT_OFFSET != 0
     VEC_INT sum_we = CONVERT(w0, VEC_INT) + CONVERT(w1, VEC_INT) + CONVERT(w2, VEC_INT)
@@ -798,27 +877,36 @@
     offset  = y_offset + (int4)(z_coord * src_stride_z);
     offset  = min(offset, (int4)max_offset);
 
-    VEC_UCHAR values0 = VLOAD(VEC_SIZE)(0, src_addr + offset.s0);
-    VEC_UCHAR values1 = VLOAD(VEC_SIZE)(0, src_addr + offset.s1);
-    VEC_UCHAR values2 = VLOAD(VEC_SIZE)(0, src_addr + offset.s2);
+    VEC_TYPE(VEC_SIZE)
+    values0 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s0));
+    VEC_TYPE(VEC_SIZE)
+    values1 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s1));
+    VEC_TYPE(VEC_SIZE)
+    values2 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s2));
 
     // z == 1
     // z_coord can be only negative for z = 0 so we do not need to clamp it
     // Moreover z_coord cannot be out-of-bound for z = 1 so we do not need to clamp the offset
-    z_coord           = z * (int)CONV_STRIDE_Y - (int)CONV_PAD_TOP + DILATION_Y;
-    offset            = y_offset + (int4)(z_coord * src_stride_z);
-    VEC_UCHAR values3 = VLOAD(VEC_SIZE)(0, src_addr + offset.s0);
-    VEC_UCHAR values4 = VLOAD(VEC_SIZE)(0, src_addr + offset.s1);
-    VEC_UCHAR values5 = VLOAD(VEC_SIZE)(0, src_addr + offset.s2);
+    z_coord = z * (int)CONV_STRIDE_Y - (int)CONV_PAD_TOP + DILATION_Y;
+    offset  = y_offset + (int4)(z_coord * src_stride_z);
+    VEC_TYPE(VEC_SIZE)
+    values3 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s0));
+    VEC_TYPE(VEC_SIZE)
+    values4 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s1));
+    VEC_TYPE(VEC_SIZE)
+    values5 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s2));
 
     // z == 2
     // Offset can be out-of-bound so we need to check if it is greater than max_offset
-    z_coord           = z * (int)CONV_STRIDE_Y - (int)CONV_PAD_TOP + DILATION_Y * 2;
-    offset            = y_offset + (int4)(z_coord * src_stride_z);
-    offset            = min(offset, (int4)max_offset);
-    VEC_UCHAR values6 = VLOAD(VEC_SIZE)(0, src_addr + offset.s0);
-    VEC_UCHAR values7 = VLOAD(VEC_SIZE)(0, src_addr + offset.s1);
-    VEC_UCHAR values8 = VLOAD(VEC_SIZE)(0, src_addr + offset.s2);
+    z_coord = z * (int)CONV_STRIDE_Y - (int)CONV_PAD_TOP + DILATION_Y * 2;
+    offset  = y_offset + (int4)(z_coord * src_stride_z);
+    offset  = min(offset, (int4)max_offset);
+    VEC_TYPE(VEC_SIZE)
+    values6 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s0));
+    VEC_TYPE(VEC_SIZE)
+    values7 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s1));
+    VEC_TYPE(VEC_SIZE)
+    values8 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s2));
 
     MULTIPLY_ADD_ACCUMULATE(values0, w0, acc, sum);
     MULTIPLY_ADD_ACCUMULATE(values1, w1, acc, sum);
@@ -854,24 +942,34 @@
 
     acc = CONVERT(round(CONVERT(acc, VEC_FLOAT) * (VEC_FLOAT)REAL_MULTIPLIER), VEC_INT);
 
-#else  // defined(REAL_MULTIPLIER)
+#else // defined(REAL_MULTIPLIER)
+#if defined(PER_CHANNEL_QUANTIZATION)
+    Vector          output_multipliers = CONVERT_TO_VECTOR_STRUCT(output_multipliers);
+    Vector          output_shifts      = CONVERT_TO_VECTOR_STRUCT(output_shifts);
+    VEC_INT         output_multiplier  = VLOAD(VEC_SIZE)(0, (__global int *)output_multipliers.ptr);
+    VEC_INT         output_shift       = VLOAD(VEC_SIZE)(0, (__global int *)output_shifts.ptr);
+#else  // defined(PER_CHANNEL_QUANTIZATION)
+    const int output_multiplier = *((__global int *)(output_multipliers_ptr + output_multipliers_offset_first_element_in_bytes));
+    const int output_shift      = *((__global int *)(output_shifts_ptr + output_shifts_offset_first_element_in_bytes));
+#endif // defined(PER_CHANNEL_QUANTIZATION)
 
-    acc                      = asymm_mult_by_quant_multiplier_less_than_one(acc, OUTPUT_MULTIPLIER, OUTPUT_SHIFT);
+    acc                                = asymm_mult_by_quant_multiplier_less_than_one(acc, output_multiplier, output_shift);
+
 #endif // defined(REAL_MULTIPLIER)
 
     acc += (VEC_INT)OUTPUT_OFFSET;
 
-    VEC_UCHAR res = CONVERT_SAT(acc, VEC_UCHAR);
-    res           = CLAMP(res, (VEC_UCHAR)0, (VEC_UCHAR)255);
+    VEC_TYPE(VEC_SIZE)
+    res = CONVERT_SAT(acc, VEC_TYPE(VEC_SIZE));
 
 #if defined(DST_DEPTH)
     __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x * dst_step_x + y * dst_step_y + z * dst_step_z + b * dst_stride_w;
 #else  /* defined(DST_DEPTH) */
-    __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x * dst_step_x + y * dst_step_y + z * dst_step_z;
+    __global uchar *dst_addr           = dst_ptr + dst_offset_first_element_in_bytes + x * dst_step_x + y * dst_step_y + z * dst_step_z;
 #endif /* defined(DST_DEPTH) */
 
     VSTORE(VEC_SIZE)
-    (ACTIVATION_FUNC(res), 0, dst_addr);
+    (ACTIVATION_FUNC(res), 0, (__global DATA_TYPE *)(dst_addr));
 }
 #endif // defined(CONV_STRIDE_X) && defined(CONV_STRIDE_Y)
 
@@ -887,43 +985,53 @@
  * @note The convolution pad top must be passed at compile time using -DCONV_PAD_TOP (e.g. -DCONV_PAD_TOP=1)
  * @note The convolution pad top must be passed at compile time using -DCONV_PAD_LEFT (e.g. -DCONV_PAD_LEFT=1).
  *
- * @param[in] src_ptr                               Pointer to the source tensor. Supported data types: QASYMM8
- * @param[in] src_stride_x                          Stride of the source tensor in X dimension (in bytes)
- * @param[in] src_step_x                            src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src_stride_y                          Stride of the source tensor in Y dimension (in bytes)
- * @param[in] src_step_y                            src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src_stride_z                          Stride of the source tensor in Z dimension (in bytes)
- * @param[in] src_step_z                            src_stride_y * number of elements along Z processed per workitem(in bytes)
- * @param[in] src_stride_w                          Stride of the source tensor in W dimension (in bytes)
- * @param[in] src_step_w                            src_stride_w * number of elements along W processed per workitem(in bytes)
- * @param[in] src_offset_first_element_in_bytes     The offset of the first element in the source tensor
- * @param[in] dst_ptr                               Pointer to the destination tensor. Supported data types: same as @p src_ptr
- * @param[in] dst_stride_x                          Stride of the destination tensor in X dimension (in bytes)
- * @param[in] dst_step_x                            dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y                          Stride of the destination tensor in Y dimension (in bytes)
- * @param[in] dst_step_y                            dst_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_stride_z                          Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] dst_step_z                            dst_stride_z * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_stride_w                          Stride of the destination tensor in W dimension (in bytes)
- * @param[in] dst_step_w                            dst_stride_w * number of elements along W processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes     The offset of the first element in the destination tensor
- * @param[in] weights_ptr                           Pointer to the weights tensor. Supported data types: same as @p src_ptr
- * @param[in] weights_stride_x                      Stride of the weights tensor in X dimension (in bytes)
- * @param[in] weights_step_x                        weights_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] weights_stride_y                      Stride of the weights tensor in Y dimension (in bytes)
- * @param[in] weights_step_y                        weights_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] weights_offset_first_element_in_bytes The offset of the first element in the weights tensor
- * @param[in] biases_ptr                            (Optional) Pointer to the biases vector. Supported data types: same as @p src_ptr
- * @param[in] biases_stride_x                       (Optional) Stride of the biases vector in X dimension (in bytes)
- * @param[in] biases_step_x                         (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] biases_offset_first_element_in_bytes  (Optional) The offset of the first element in the biases vector
- * @param[in] max_offset                            Max offset for the input tensor
+ * @param[in] src_ptr                                          Pointer to the source tensor. Supported data types: QASYMM8
+ * @param[in] src_stride_x                                     Stride of the source tensor in X dimension (in bytes)
+ * @param[in] src_step_x                                       src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y                                     Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] src_step_y                                       src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_stride_z                                     Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] src_step_z                                       src_stride_y * number of elements along Z processed per workitem(in bytes)
+ * @param[in] src_stride_w                                     Stride of the source tensor in W dimension (in bytes)
+ * @param[in] src_step_w                                       src_stride_w * number of elements along W processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes                The offset of the first element in the source tensor
+ * @param[in] dst_ptr                                          Pointer to the destination tensor. Supported data types: same as @p src_ptr
+ * @param[in] dst_stride_x                                     Stride of the destination tensor in X dimension (in bytes)
+ * @param[in] dst_step_x                                       dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y                                     Stride of the destination tensor in Y dimension (in bytes)
+ * @param[in] dst_step_y                                       dst_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_stride_z                                     Stride of the destination tensor in Z dimension (in bytes)
+ * @param[in] dst_step_z                                       dst_stride_z * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_stride_w                                     Stride of the destination tensor in W dimension (in bytes)
+ * @param[in] dst_step_w                                       dst_stride_w * number of elements along W processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes                The offset of the first element in the destination tensor
+ * @param[in] weights_ptr                                      Pointer to the weights tensor. Supported data types: QASYMM8/QSYMM8_PER_CHANNEL
+ * @param[in] weights_stride_x                                 Stride of the weights tensor in X dimension (in bytes)
+ * @param[in] weights_step_x                                   weights_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] weights_stride_y                                 Stride of the weights tensor in Y dimension (in bytes)
+ * @param[in] weights_step_y                                   weights_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] weights_offset_first_element_in_bytes            The offset of the first element in the weights tensor
+ * @param[in] output_multipliers_ptr                           Pointer to the output multipliers vector. Supported data types: S32
+ * @param[in] output_multipliers_stride_x                      Stride of the output multipliers vector in X dimension (in bytes)
+ * @param[in] output_multipliers_step_x                        output_multipliers_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] output_multipliers_offset_first_element_in_bytes The offset of the first element in the output multipliers vector
+ * @param[in] output_shifts_ptr                                Pointer to the output shifts vector. Supported data types: S32
+ * @param[in] output_shifts_stride_x                           Stride of the output shifts vector in X dimension (in bytes)
+ * @param[in] output_shifts_step_x                             output_shifts_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] output_shifts_offset_first_element_in_bytes      The offset of the first element in the output shifts vector
+ * @param[in] biases_ptr                                       (Optional) Pointer to the biases vector. Supported data types: S32
+ * @param[in] biases_stride_x                                  (Optional) Stride of the biases vector in X dimension (in bytes)
+ * @param[in] biases_step_x                                    (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] biases_offset_first_element_in_bytes             (Optional) The offset of the first element in the biases vector
+ * @param[in] max_offset                                       Max offset for the input tensor
  */
 
-__kernel void dwc_3x3_reshaped_qasymm8_stride1_nhwc(
+__kernel void dwc_3x3_reshaped_quantized8_stride1_nhwc(
     TENSOR4D_DECLARATION(src),
     TENSOR4D_DECLARATION(dst),
     IMAGE_DECLARATION(weights),
+    VECTOR_DECLARATION(output_multipliers),
+    VECTOR_DECLARATION(output_shifts),
 #if defined(HAS_BIAS)
     VECTOR_DECLARATION(biases),
 #endif /* defined(HAS_BIAS) */
@@ -935,7 +1043,7 @@
     int z = get_global_id(2) % (int)DST_DEPTH; // spatial coordinate y
     int b = get_global_id(2) / (int)DST_DEPTH; // batch
 #else                                          // defined(DST_DEPTH)
-    int             z        = get_global_id(2); // spatial coordinate y
+    int             z                  = get_global_id(2); // spatial coordinate y
 #endif                                         // defined(DST_DEPTH)
 
     __global uchar *weights_addr = weights_ptr + weights_offset_first_element_in_bytes + x * weights_stride_y;
@@ -943,7 +1051,7 @@
 #if defined(DST_DEPTH)
     __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * VEC_SIZE + b * src_stride_w;
 #else  /* defined(DST_DEPTH) */
-    __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * VEC_SIZE;
+    __global uchar *src_addr           = src_ptr + src_offset_first_element_in_bytes + x * VEC_SIZE;
 #endif /* defined(DST_DEPTH) */
 
     int  z_coord = 0;
@@ -965,19 +1073,30 @@
     VEC_INT acc3 = 0, sum3 = 0;
 
     // Load weights
-    uchar16 w0_tmp = VLOAD(16)(0, weights_addr);
-    uchar16 w1_tmp = VLOAD(16)(0, weights_addr + 16);
-    uchar4  w8     = VLOAD(4)(0, weights_addr + 2 * 16);
+    VEC_DATA_TYPE(WEIGHTS_TYPE, 16)
+    w0_tmp = VLOAD(16)(0, (__global WEIGHTS_TYPE *)(weights_addr));
+    VEC_DATA_TYPE(WEIGHTS_TYPE, 16)
+    w1_tmp = VLOAD(16)(0, (__global WEIGHTS_TYPE *)(weights_addr + 16));
+    VEC_DATA_TYPE(WEIGHTS_TYPE, 4)
+    w8 = VLOAD(4)(0, (__global WEIGHTS_TYPE *)(weights_addr + 2 * 16));
 
-    uchar4 w0 = w0_tmp.s0123;
-    uchar4 w1 = w0_tmp.s4567;
-    uchar4 w2 = w0_tmp.s89AB;
-    uchar4 w3 = w0_tmp.sCDEF;
+    VEC_DATA_TYPE(WEIGHTS_TYPE, 4)
+    w0 = w0_tmp.s0123;
+    VEC_DATA_TYPE(WEIGHTS_TYPE, 4)
+    w1 = w0_tmp.s4567;
+    VEC_DATA_TYPE(WEIGHTS_TYPE, 4)
+    w2 = w0_tmp.s89AB;
+    VEC_DATA_TYPE(WEIGHTS_TYPE, 4)
+    w3 = w0_tmp.sCDEF;
 
-    uchar4 w4 = w1_tmp.s0123;
-    uchar4 w5 = w1_tmp.s4567;
-    uchar4 w6 = w1_tmp.s89AB;
-    uchar4 w7 = w1_tmp.sCDEF;
+    VEC_DATA_TYPE(WEIGHTS_TYPE, 4)
+    w4 = w1_tmp.s0123;
+    VEC_DATA_TYPE(WEIGHTS_TYPE, 4)
+    w5 = w1_tmp.s4567;
+    VEC_DATA_TYPE(WEIGHTS_TYPE, 4)
+    w6 = w1_tmp.s89AB;
+    VEC_DATA_TYPE(WEIGHTS_TYPE, 4)
+    w7 = w1_tmp.sCDEF;
 
 #if INPUT_OFFSET != 0
     VEC_INT sum_we = CONVERT(w0, VEC_INT) + CONVERT(w1, VEC_INT) + CONVERT(w2, VEC_INT)
@@ -995,40 +1114,56 @@
     offset  = y_offset + (int4)(z_coord * src_stride_z);
     offset  = min(offset, (int4)max_offset);
 
-    VEC_UCHAR values0 = VLOAD(VEC_SIZE)(0, src_addr + offset.s0);
-    VEC_UCHAR values1 = VLOAD(VEC_SIZE)(0, src_addr + offset.s1);
-    VEC_UCHAR values2 = VLOAD(VEC_SIZE)(0, src_addr + offset.s2);
-    VEC_UCHAR values3 = VLOAD(VEC_SIZE)(0, src_addr + offset.s3);
+    VEC_TYPE(VEC_SIZE)
+    values0 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s0));
+    VEC_TYPE(VEC_SIZE)
+    values1 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s1));
+    VEC_TYPE(VEC_SIZE)
+    values2 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s2));
+    VEC_TYPE(VEC_SIZE)
+    values3 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s3));
 
     // z == 1
     // z_coord can be only negative for z = 0 so we do not need to clamp it
     // Moreover z_coord cannot be out-of-bound for z = 1 so we do not need to clamp the offset
-    z_coord           = z * (int)NUM_PLANES_PROCESSED - (int)CONV_PAD_TOP + 1;
-    offset            = y_offset + (int4)(z_coord * src_stride_z);
-    VEC_UCHAR values4 = VLOAD(VEC_SIZE)(0, src_addr + offset.s0);
-    VEC_UCHAR values5 = VLOAD(VEC_SIZE)(0, src_addr + offset.s1);
-    VEC_UCHAR values6 = VLOAD(VEC_SIZE)(0, src_addr + offset.s2);
-    VEC_UCHAR values7 = VLOAD(VEC_SIZE)(0, src_addr + offset.s3);
+    z_coord = z * (int)NUM_PLANES_PROCESSED - (int)CONV_PAD_TOP + 1;
+    offset  = y_offset + (int4)(z_coord * src_stride_z);
+    VEC_TYPE(VEC_SIZE)
+    values4 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s0));
+    VEC_TYPE(VEC_SIZE)
+    values5 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s1));
+    VEC_TYPE(VEC_SIZE)
+    values6 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s2));
+    VEC_TYPE(VEC_SIZE)
+    values7 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s3));
 
     // z == 2
     // After z = 1 we can simply add src_stride_z to offset without updating z_coord
     // However offset can be out-of-bound so we need to check if it is greater than max_offset
     offset += (int4)src_stride_z;
-    offset             = min(offset, (int4)max_offset);
-    VEC_UCHAR values8  = VLOAD(VEC_SIZE)(0, src_addr + offset.s0);
-    VEC_UCHAR values9  = VLOAD(VEC_SIZE)(0, src_addr + offset.s1);
-    VEC_UCHAR values10 = VLOAD(VEC_SIZE)(0, src_addr + offset.s2);
-    VEC_UCHAR values11 = VLOAD(VEC_SIZE)(0, src_addr + offset.s3);
+    offset = min(offset, (int4)max_offset);
+    VEC_TYPE(VEC_SIZE)
+    values8 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s0));
+    VEC_TYPE(VEC_SIZE)
+    values9 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s1));
+    VEC_TYPE(VEC_SIZE)
+    values10 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s2));
+    VEC_TYPE(VEC_SIZE)
+    values11 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s3));
 
     // z == 3
     // After z = 1 we can simply add src_stride_z to offset without updating z_coord
     // However offset can be out-of-bound so we need to check if it is greater than max_offset
     offset += (int4)(src_stride_z);
-    offset             = min(offset, (int4)max_offset);
-    VEC_UCHAR values12 = VLOAD(VEC_SIZE)(0, src_addr + offset.s0);
-    VEC_UCHAR values13 = VLOAD(VEC_SIZE)(0, src_addr + offset.s1);
-    VEC_UCHAR values14 = VLOAD(VEC_SIZE)(0, src_addr + offset.s2);
-    VEC_UCHAR values15 = VLOAD(VEC_SIZE)(0, src_addr + offset.s3);
+    offset = min(offset, (int4)max_offset);
+    VEC_TYPE(VEC_SIZE)
+    values12 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s0));
+    VEC_TYPE(VEC_SIZE)
+    values13 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s1));
+    VEC_TYPE(VEC_SIZE)
+    values14 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s2));
+    VEC_TYPE(VEC_SIZE)
+    values15 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s3));
 
     MULTIPLY_ADD_ACCUMULATE(values0, w0, acc0, sum0);
     MULTIPLY_ADD_ACCUMULATE(values1, w1, acc0, sum0);
@@ -1115,10 +1250,20 @@
 
 #else // defined(REAL_MULTIPLIER)
 
-    acc0                     = asymm_mult_by_quant_multiplier_less_than_one(acc0, OUTPUT_MULTIPLIER, OUTPUT_SHIFT);
-    acc1                     = asymm_mult_by_quant_multiplier_less_than_one(acc1, OUTPUT_MULTIPLIER, OUTPUT_SHIFT);
-    acc2                     = asymm_mult_by_quant_multiplier_less_than_one(acc2, OUTPUT_MULTIPLIER, OUTPUT_SHIFT);
-    acc3                     = asymm_mult_by_quant_multiplier_less_than_one(acc3, OUTPUT_MULTIPLIER, OUTPUT_SHIFT);
+#if defined(PER_CHANNEL_QUANTIZATION)
+    Vector          output_multipliers = CONVERT_TO_VECTOR_STRUCT(output_multipliers);
+    Vector          output_shifts      = CONVERT_TO_VECTOR_STRUCT(output_shifts);
+    VEC_INT         output_multiplier  = VLOAD(VEC_SIZE)(0, (__global int *)output_multipliers.ptr);
+    VEC_INT         output_shift       = VLOAD(VEC_SIZE)(0, (__global int *)output_shifts.ptr);
+#else  // defined(PER_CHANNEL_QUANTIZATION)
+    const int output_multiplier = *((__global int *)(output_multipliers_ptr + output_multipliers_offset_first_element_in_bytes));
+    const int output_shift      = *((__global int *)(output_shifts_ptr + output_shifts_offset_first_element_in_bytes));
+#endif // defined(PER_CHANNEL_QUANTIZATION)
+
+    acc0                     = asymm_mult_by_quant_multiplier_less_than_one(acc0, output_multiplier, output_shift);
+    acc1                     = asymm_mult_by_quant_multiplier_less_than_one(acc1, output_multiplier, output_shift);
+    acc2                     = asymm_mult_by_quant_multiplier_less_than_one(acc2, output_multiplier, output_shift);
+    acc3                     = asymm_mult_by_quant_multiplier_less_than_one(acc3, output_multiplier, output_shift);
 
 #endif // defined(REAL_MULTIPLIER)
 
@@ -1127,15 +1272,14 @@
     acc2 += (VEC_INT)OUTPUT_OFFSET;
     acc3 += (VEC_INT)OUTPUT_OFFSET;
 
-    VEC_UCHAR res0 = CONVERT_SAT(acc0, VEC_UCHAR);
-    VEC_UCHAR res1 = CONVERT_SAT(acc1, VEC_UCHAR);
-    VEC_UCHAR res2 = CONVERT_SAT(acc2, VEC_UCHAR);
-    VEC_UCHAR res3 = CONVERT_SAT(acc3, VEC_UCHAR);
-
-    res0 = CLAMP(res0, (VEC_UCHAR)0, (VEC_UCHAR)255);
-    res1 = CLAMP(res1, (VEC_UCHAR)0, (VEC_UCHAR)255);
-    res2 = CLAMP(res2, (VEC_UCHAR)0, (VEC_UCHAR)255);
-    res3 = CLAMP(res3, (VEC_UCHAR)0, (VEC_UCHAR)255);
+    VEC_TYPE(VEC_SIZE)
+    res0 = CONVERT_SAT(acc0, VEC_TYPE(VEC_SIZE));
+    VEC_TYPE(VEC_SIZE)
+    res1 = CONVERT_SAT(acc1, VEC_TYPE(VEC_SIZE));
+    VEC_TYPE(VEC_SIZE)
+    res2 = CONVERT_SAT(acc2, VEC_TYPE(VEC_SIZE));
+    VEC_TYPE(VEC_SIZE)
+    res3 = CONVERT_SAT(acc3, VEC_TYPE(VEC_SIZE));
 
 #if defined(DST_DEPTH)
     __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x * dst_step_x + y * dst_step_y + (z * NUM_PLANES_PROCESSED) * dst_step_z + b * dst_stride_w;
@@ -1153,15 +1297,16 @@
 #endif // ((DST_DIM_2 % NUM_PLANES_PROCESSED) != 0)
     {
         VSTORE(VEC_SIZE)
-        (ACTIVATION_FUNC(res2), 0, dst_addr + 0 * dst_stride_y + 1 * dst_stride_z);
+        (ACTIVATION_FUNC(res2), 0, (__global DATA_TYPE *)(dst_addr + 0 * dst_stride_y + 1 * dst_stride_z));
         VSTORE(VEC_SIZE)
-        (ACTIVATION_FUNC(res3), 0, dst_addr + 1 * dst_stride_y + 1 * dst_stride_z);
+        (ACTIVATION_FUNC(res3), 0, (__global DATA_TYPE *)(dst_addr + 1 * dst_stride_y + 1 * dst_stride_z));
     }
 }
 
 #if defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8) && VEC_SIZE == 4
 /** This function computes the depthwise convolution quantized for NHWC data layout when the stride along the width and height is 1 using dot product.
  *
+ * @note Per-channel quantization is not supported by this kernel.
  * @note This kernel assumes VEC_SIZE is 4.
  * @note The weights tensor is expected to be reshaped using @ref CLDepthwiseConvolutionLayerReshapeWeightsKernel.
  * @note The number of elements read per thread must be passed at compile time using -DVEC_SIZE (e.g. -DVEC_SIZE=2)
@@ -1173,42 +1318,52 @@
  * @note If REAL_MULTIPLIER is passed at compile time (i.e. -DREAL_MULTIPLIER=1.355f), the final quantization is performed using a floating point multiplication.
  *       If not, the quantization will be performed using a fixed point multiplication
  *
- * @param[in] src_ptr                               Pointer to the source tensor. Supported data types: QASYMM8
- * @param[in] src_stride_x                          Stride of the source tensor in X dimension (in bytes)
- * @param[in] src_step_x                            src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src_stride_y                          Stride of the source tensor in Y dimension (in bytes)
- * @param[in] src_step_y                            src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src_stride_z                          Stride of the source tensor in Z dimension (in bytes)
- * @param[in] src_step_z                            src_stride_y * number of elements along Z processed per workitem(in bytes)
- * @param[in] src_stride_w                          Stride of the source tensor in W dimension (in bytes)
- * @param[in] src_step_w                            src_stride_w * number of elements along W processed per workitem(in bytes)
- * @param[in] src_offset_first_element_in_bytes     The offset of the first element in the source tensor
- * @param[in] dst_ptr                               Pointer to the destination tensor. Supported data types: QASYMM8
- * @param[in] dst_stride_x                          Stride of the destination tensor in X dimension (in bytes)
- * @param[in] dst_step_x                            dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y                          Stride of the destination tensor in Y dimension (in bytes)
- * @param[in] dst_step_y                            dst_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_stride_z                          Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] dst_step_z                            dst_stride_z * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_stride_w                          Stride of the destination tensor in W dimension (in bytes)
- * @param[in] dst_step_w                            dst_stride_w * number of elements along W processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes     The offset of the first element in the destination tensor
- * @param[in] weights_ptr                           Pointer to the weights tensor. Supported data types: QASYMM8
- * @param[in] weights_stride_x                      Stride of the weights tensor in X dimension (in bytes)
- * @param[in] weights_step_x                        weights_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] weights_stride_y                      Stride of the weights tensor in Y dimension (in bytes)
- * @param[in] weights_step_y                        weights_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] weights_offset_first_element_in_bytes The offset of the first element in the weights tensor
- * @param[in] biases_ptr                            (Optional) Pointer to the biases vector. Supported data types: QASYMM8
- * @param[in] biases_stride_x                       (Optional) Stride of the biases vector in X dimension (in bytes)
- * @param[in] biases_step_x                         (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] biases_offset_first_element_in_bytes  (Optional) The offset of the first element in the biases vector
- * @param[in] max_offset                            The maximum allowed offset for the input tensor
+ * @param[in] src_ptr                                          Pointer to the source tensor. Supported data types: QASYMM8
+ * @param[in] src_stride_x                                     Stride of the source tensor in X dimension (in bytes)
+ * @param[in] src_step_x                                       src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y                                     Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] src_step_y                                       src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_stride_z                                     Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] src_step_z                                       src_stride_y * number of elements along Z processed per workitem(in bytes)
+ * @param[in] src_stride_w                                     Stride of the source tensor in W dimension (in bytes)
+ * @param[in] src_step_w                                       src_stride_w * number of elements along W processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes                The offset of the first element in the source tensor
+ * @param[in] dst_ptr                                          Pointer to the destination tensor. Supported data types: same as @p src_ptr
+ * @param[in] dst_stride_x                                     Stride of the destination tensor in X dimension (in bytes)
+ * @param[in] dst_step_x                                       dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y                                     Stride of the destination tensor in Y dimension (in bytes)
+ * @param[in] dst_step_y                                       dst_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_stride_z                                     Stride of the destination tensor in Z dimension (in bytes)
+ * @param[in] dst_step_z                                       dst_stride_z * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_stride_w                                     Stride of the destination tensor in W dimension (in bytes)
+ * @param[in] dst_step_w                                       dst_stride_w * number of elements along W processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes                The offset of the first element in the destination tensor
+ * @param[in] weights_ptr                                      Pointer to the weights tensor. Supported data types: same as @p src_ptr
+ * @param[in] weights_stride_x                                 Stride of the weights tensor in X dimension (in bytes)
+ * @param[in] weights_step_x                                   weights_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] weights_stride_y                                 Stride of the weights tensor in Y dimension (in bytes)
+ * @param[in] weights_step_y                                   weights_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] weights_offset_first_element_in_bytes            The offset of the first element in the weights tensor
+ * @param[in] output_multipliers_ptr                           Pointer to the output multipliers vector. Supported data types: S32
+ * @param[in] output_multipliers_stride_x                      Stride of the output multipliers vector in X dimension (in bytes)
+ * @param[in] output_multipliers_step_x                        output_multipliers_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] output_multipliers_offset_first_element_in_bytes The offset of the first element in the output multipliers vector
+ * @param[in] output_shifts_ptr                                Pointer to the output shifts vector. Supported data types: S32
+ * @param[in] output_shifts_stride_x                           Stride of the output shifts vector in X dimension (in bytes)
+ * @param[in] output_shifts_step_x                             output_shifts_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] output_shifts_offset_first_element_in_bytes      The offset of the first element in the output shifts vector
+ * @param[in] biases_ptr                                       (Optional) Pointer to the biases vector. Supported data types: S32
+ * @param[in] biases_stride_x                                  (Optional) Stride of the biases vector in X dimension (in bytes)
+ * @param[in] biases_step_x                                    (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] biases_offset_first_element_in_bytes             (Optional) The offset of the first element in the biases vector
+ * @param[in] max_offset                                       The maximum allowed offset for the input tensor
  */
-__kernel void dwc_3x3_reshaped_qasymm8_dot8_stride1_nhwc(
+__kernel void dwc_3x3_reshaped_quantized8_dot8_stride1_nhwc(
     TENSOR4D_DECLARATION(src),
     TENSOR4D_DECLARATION(dst),
     IMAGE_DECLARATION(weights),
+    VECTOR_DECLARATION(output_multipliers),
+    VECTOR_DECLARATION(output_shifts),
 #if defined(HAS_BIAS)
     VECTOR_DECLARATION(biases),
 #endif // defined(HAS_BIAS)
@@ -1220,7 +1375,7 @@
     int z = get_global_id(2) % (int)DST_DEPTH; // spatial coordinate y
     int b = get_global_id(2) / (int)DST_DEPTH; // batch
 #else                                          // defined(DST_DEPTH)
-    int      z               = get_global_id(2); // spatial coordinate y
+    int      z                        = get_global_id(2); // spatial coordinate y
 #endif                                         // defined(DST_DEPTH)
 
     __global uchar *weights_addr = weights_ptr + weights_offset_first_element_in_bytes + x * weights_stride_y;
@@ -1228,7 +1383,7 @@
 #if defined(DST_DEPTH)
     __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * VEC_SIZE + b * src_stride_w;
 #else  /* defined(DST_DEPTH) */
-    __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * VEC_SIZE;
+    __global uchar *src_addr          = src_ptr + src_offset_first_element_in_bytes + x * VEC_SIZE;
 #endif /* defined(DST_DEPTH) */
 
     int  z_coord = 0;
@@ -1250,16 +1405,19 @@
     VEC_INT sum1 = 0;
 
     // Load weights
-    uchar16 w0 = VLOAD(16)(0, weights_addr);
-    uchar16 w1 = VLOAD(16)(0, weights_addr + 16);
-    uchar4  w2 = VLOAD(4)(0, weights_addr + 32);
+    VEC_TYPE(16)
+    w0 = VLOAD(16)(0, (__global WEIGHTS_TYPE *)(weights_addr));
+    VEC_TYPE(16)
+    w1 = VLOAD(16)(0, (__global WEIGHTS_TYPE *)(weights_addr + 16));
+    VEC_TYPE(4)
+    w2 = VLOAD(4)(0, (__global WEIGHTS_TYPE *)(weights_addr + 32));
 
 #if INPUT_OFFSET != 0
     // Initilize the final result with the weights reduction multiplied by INPUT_OFFSET
     DOT_PRODUCT_REDUCTION_WEIGHTS(acc0.s0, w0.s01234567, w0.s8);
-    DOT_PRODUCT_REDUCTION_WEIGHTS(acc0.s1, (uchar8)((w0.s9ABC), (w0.sDEF), w1.s0), w1.s1);
+    DOT_PRODUCT_REDUCTION_WEIGHTS(acc0.s1, (VEC_TYPE(8))((w0.s9ABC), (w0.sDEF), w1.s0), w1.s1);
     DOT_PRODUCT_REDUCTION_WEIGHTS(acc0.s2, w1.s23456789, w1.sA);
-    DOT_PRODUCT_REDUCTION_WEIGHTS(acc0.s3, (uchar8)((w1.sBCD), (w1.sEF), (w2.s012)), w2.s3);
+    DOT_PRODUCT_REDUCTION_WEIGHTS(acc0.s3, (VEC_TYPE(8))((w1.sBCD), (w1.sEF), (w2.s012)), w2.s3);
 
     // Multiply the weights reduction with INPUT_OFFSET
     acc0 = INPUT_OFFSET * acc0;
@@ -1277,30 +1435,42 @@
     offset  = y_offset + (int4)(z_coord * src_stride_z);
     offset  = min(offset, (int4)max_offset);
 
-    VEC_UCHAR values0 = VLOAD(VEC_SIZE)(0, src_addr + offset.s0);
-    VEC_UCHAR values1 = VLOAD(VEC_SIZE)(0, src_addr + offset.s1);
-    VEC_UCHAR values2 = VLOAD(VEC_SIZE)(0, src_addr + offset.s2);
-    VEC_UCHAR values3 = VLOAD(VEC_SIZE)(0, src_addr + offset.s3);
+    VEC_TYPE(VEC_SIZE)
+    values0 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s0));
+    VEC_TYPE(VEC_SIZE)
+    values1 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s1));
+    VEC_TYPE(VEC_SIZE)
+    values2 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s2));
+    VEC_TYPE(VEC_SIZE)
+    values3 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s3));
 
     // z == 1
     // z_coord can be only negative for z = 0 so we do not need to clamp it
     // Moreover z_coord cannot be out-of-bound for z = 1 so we do not need to clamp the offset
-    z_coord           = z - (int)CONV_PAD_TOP + 1;
-    offset            = y_offset + (int4)(z_coord * src_stride_z);
-    VEC_UCHAR values4 = VLOAD(VEC_SIZE)(0, src_addr + offset.s0);
-    VEC_UCHAR values5 = VLOAD(VEC_SIZE)(0, src_addr + offset.s1);
-    VEC_UCHAR values6 = VLOAD(VEC_SIZE)(0, src_addr + offset.s2);
-    VEC_UCHAR values7 = VLOAD(VEC_SIZE)(0, src_addr + offset.s3);
+    z_coord = z - (int)CONV_PAD_TOP + 1;
+    offset  = y_offset + (int4)(z_coord * src_stride_z);
+    VEC_TYPE(VEC_SIZE)
+    values4 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s0));
+    VEC_TYPE(VEC_SIZE)
+    values5 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s1));
+    VEC_TYPE(VEC_SIZE)
+    values6 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s2));
+    VEC_TYPE(VEC_SIZE)
+    values7 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s3));
 
     // z == 2
     // After z = 1 we can simply add src_stride_z to offset without updating z_coord
     // However offset can be out-of-bound so we need to check if it is greater than max_offset
     offset += (int4)src_stride_z;
-    offset             = min(offset, (int4)max_offset);
-    VEC_UCHAR values8  = VLOAD(VEC_SIZE)(0, src_addr + offset.s0);
-    VEC_UCHAR values9  = VLOAD(VEC_SIZE)(0, src_addr + offset.s1);
-    VEC_UCHAR values10 = VLOAD(VEC_SIZE)(0, src_addr + offset.s2);
-    VEC_UCHAR values11 = VLOAD(VEC_SIZE)(0, src_addr + offset.s3);
+    offset = min(offset, (int4)max_offset);
+    VEC_TYPE(VEC_SIZE)
+    values8 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s0));
+    VEC_TYPE(VEC_SIZE)
+    values9 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s1));
+    VEC_TYPE(VEC_SIZE)
+    values10 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s2));
+    VEC_TYPE(VEC_SIZE)
+    values11 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s3));
 
     DOT_PRODUCT_REDUCTION(sum0.s0, values0.s0, values1.s0, values2.s0, values4.s0, values5.s0, values6.s0, values8.s0, values9.s0, values10.s0);
     DOT_PRODUCT_REDUCTION(sum1.s0, values1.s0, values2.s0, values3.s0, values5.s0, values6.s0, values7.s0, values9.s0, values10.s0, values11.s0);
@@ -1309,8 +1479,8 @@
 
     DOT_PRODUCT_REDUCTION(sum0.s1, values0.s1, values1.s1, values2.s1, values4.s1, values5.s1, values6.s1, values8.s1, values9.s1, values10.s1);
     DOT_PRODUCT_REDUCTION(sum1.s1, values1.s1, values2.s1, values3.s1, values5.s1, values6.s1, values7.s1, values9.s1, values10.s1, values11.s1);
-    DOT_PRODUCT(acc0.s1, values0.s1, values1.s1, values2.s1, values4.s1, values5.s1, values6.s1, values8.s1, values9.s1, values10.s1, (uchar8)((w0.s9ABC), (w0.sDEF), w1.s0), w1.s1);
-    DOT_PRODUCT(acc1.s1, values1.s1, values2.s1, values3.s1, values5.s1, values6.s1, values7.s1, values9.s1, values10.s1, values11.s1, (uchar8)((w0.s9ABC), (w0.sDEF), w1.s0), w1.s1);
+    DOT_PRODUCT(acc0.s1, values0.s1, values1.s1, values2.s1, values4.s1, values5.s1, values6.s1, values8.s1, values9.s1, values10.s1, (VEC_TYPE(8))((w0.s9ABC), (w0.sDEF), w1.s0), w1.s1);
+    DOT_PRODUCT(acc1.s1, values1.s1, values2.s1, values3.s1, values5.s1, values6.s1, values7.s1, values9.s1, values10.s1, values11.s1, (VEC_TYPE(8))((w0.s9ABC), (w0.sDEF), w1.s0), w1.s1);
 
     DOT_PRODUCT_REDUCTION(sum0.s2, values0.s2, values1.s2, values2.s2, values4.s2, values5.s2, values6.s2, values8.s2, values9.s2, values10.s2);
     DOT_PRODUCT_REDUCTION(sum1.s2, values1.s2, values2.s2, values3.s2, values5.s2, values6.s2, values7.s2, values9.s2, values10.s2, values11.s2);
@@ -1319,8 +1489,8 @@
 
     DOT_PRODUCT_REDUCTION(sum0.s3, values0.s3, values1.s3, values2.s3, values4.s3, values5.s3, values6.s3, values8.s3, values9.s3, values10.s3);
     DOT_PRODUCT_REDUCTION(sum1.s3, values1.s3, values2.s3, values3.s3, values5.s3, values6.s3, values7.s3, values9.s3, values10.s3, values11.s3);
-    DOT_PRODUCT(acc0.s3, values0.s3, values1.s3, values2.s3, values4.s3, values5.s3, values6.s3, values8.s3, values9.s3, values10.s3, (uchar8)((w1.sBCD), (w1.sEF), (w2.s012)), w2.s3);
-    DOT_PRODUCT(acc1.s3, values1.s3, values2.s3, values3.s3, values5.s3, values6.s3, values7.s3, values9.s3, values10.s3, values11.s3, (uchar8)((w1.sBCD), (w1.sEF), (w2.s012)), w2.s3);
+    DOT_PRODUCT(acc0.s3, values0.s3, values1.s3, values2.s3, values4.s3, values5.s3, values6.s3, values8.s3, values9.s3, values10.s3, (VEC_TYPE(8))((w1.sBCD), (w1.sEF), (w2.s012)), w2.s3);
+    DOT_PRODUCT(acc1.s3, values1.s3, values2.s3, values3.s3, values5.s3, values6.s3, values7.s3, values9.s3, values10.s3, values11.s3, (VEC_TYPE(8))((w1.sBCD), (w1.sEF), (w2.s012)), w2.s3);
 
 #if defined(HAS_BIAS)
     Vector biases = CONVERT_TO_VECTOR_STRUCT(biases);
@@ -1349,19 +1519,20 @@
     acc1 = CONVERT(round(CONVERT(acc1, VEC_FLOAT) * (VEC_FLOAT)REAL_MULTIPLIER), VEC_INT);
 
 #else // defined(REAL_MULTIPLIER)
+    const int       output_multiplier = *((__global int *)(output_multipliers_ptr + output_multipliers_offset_first_element_in_bytes));
+    const int       output_shift      = *((__global int *)(output_shifts_ptr + output_shifts_offset_first_element_in_bytes));
 
-    acc0                     = asymm_mult_by_quant_multiplier_less_than_one(acc0, OUTPUT_MULTIPLIER, OUTPUT_SHIFT);
-    acc1                     = asymm_mult_by_quant_multiplier_less_than_one(acc1, OUTPUT_MULTIPLIER, OUTPUT_SHIFT);
+    acc0                     = asymm_mult_by_quant_multiplier_less_than_one(acc0, output_multiplier, output_shift);
+    acc1                     = asymm_mult_by_quant_multiplier_less_than_one(acc1, output_multiplier, output_shift);
 
 #endif // defined(REAL_MULTIPLIER)
     acc0 += (VEC_INT)OUTPUT_OFFSET;
     acc1 += (VEC_INT)OUTPUT_OFFSET;
 
-    VEC_UCHAR res0 = CONVERT_SAT(acc0, VEC_UCHAR);
-    VEC_UCHAR res1 = CONVERT_SAT(acc1, VEC_UCHAR);
-
-    res0 = CLAMP(res0, (VEC_UCHAR)0, (VEC_UCHAR)255);
-    res1 = CLAMP(res1, (VEC_UCHAR)0, (VEC_UCHAR)255);
+    VEC_TYPE(VEC_SIZE)
+    res0 = CONVERT_SAT(acc0, VEC_TYPE(VEC_SIZE));
+    VEC_TYPE(VEC_SIZE)
+    res1 = CONVERT_SAT(acc1, VEC_TYPE(VEC_SIZE));
 
 #if defined(DST_DEPTH)
     __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x * dst_step_x + y * dst_step_y + z * dst_step_z + b * dst_stride_w;
@@ -1370,9 +1541,9 @@
 #endif /* defined(DST_DEPTH) */
 
     VSTORE(VEC_SIZE)
-    (ACTIVATION_FUNC(res0), 0, dst_addr + 0 * dst_stride_y);
+    (ACTIVATION_FUNC(res0), 0, (__global DATA_TYPE *)(dst_addr + 0 * dst_stride_y));
     VSTORE(VEC_SIZE)
-    (ACTIVATION_FUNC(res1), 0, dst_addr + 1 * dst_stride_y);
+    (ACTIVATION_FUNC(res1), 0, (__global DATA_TYPE *)(dst_addr + 1 * dst_stride_y));
 }
 #endif // defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8) && VEC_SIZE==4
 
@@ -1380,9 +1551,11 @@
 
 #endif // defined(VEC_SIZE) && defined(SRC_DIM_1) && defined(SRC_DIM_2) && defined(CONV_PAD_TOP) && defined(CONV_PAD_LEFT)
 
-#endif // defined(WEIGHTS_OFFSET) && defined(INPUT_OFFSET) && defined(K_OFFSET) && ((defined(OUTPUT_OFFSET) && defined(OUTPUT_MULTIPLIER) && defined(OUTPUT_SHIFT)) || defined(REAL_MULTIPLIER))
+#endif // defined(WEIGHTS_PROMOTED_TYPE)
 
-#if defined(SRC_DIM1) && defined(SRC_DIM2) && defined(KERNEL_WIDTH) && defined(KERNEL_HEIGHT) && defined(N0) && defined(DILATION_X) && defined(DILATION_Y) && defined(CONV_STRIDE_X) && defined(CONV_STRIDE_Y) && defined(CONV_PAD_LEFT) && defined(CONV_PAD_TOP) && defined(INPUT_OFFSET) && defined(WEIGHTS_OFFSET) && defined(OUTPUT_OFFSET) && defined(OUTPUT_MULTIPLIER) && defined(OUTPUT_SHIFT)
+#endif // defined(WEIGHTS_OFFSET) && defined(INPUT_OFFSET) && defined(K_OFFSET) && (defined(OUTPUT_OFFSET) || defined(REAL_MULTIPLIER))
+
+#if defined(SRC_DIM1) && defined(SRC_DIM2) && defined(KERNEL_WIDTH) && defined(KERNEL_HEIGHT) && defined(N0) && defined(DILATION_X) && defined(DILATION_Y) && defined(CONV_STRIDE_X) && defined(CONV_STRIDE_Y) && defined(CONV_PAD_LEFT) && defined(CONV_PAD_TOP) && defined(INPUT_OFFSET) && defined(WEIGHTS_OFFSET) && defined(OUTPUT_OFFSET)
 /** This function computes the depthwise convolution for NHWC data layout. This kernel assumes that the weights tensor is NOT reshaped
  *
  * @note The number of elements processed must be passed at compile time using -DN0 (e.g. -DN0=2)
@@ -1398,43 +1571,53 @@
  * @note It is possible to select the activation function to apply using -DACTIVATION_TYPE e.g. -DACTIVATION_TYPE=relu
  * @note A, B variables required by some activation functions are set using -DA_VAL= and -DB_VAL= respectively
  *
- * @param[in] src_ptr                               Pointer to the source tensor. Supported data types: QASYMM8
- * @param[in] src_stride_x                          Stride of the source tensor in X dimension (in bytes)
- * @param[in] src_step_x                            src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src_stride_y                          Stride of the source tensor in Y dimension (in bytes)
- * @param[in] src_step_y                            src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src_stride_z                          Stride of the source tensor in Z dimension (in bytes)
- * @param[in] src_step_z                            src_stride_y * number of elements along Z processed per workitem(in bytes)
- * @param[in] src_stride_w                          Stride of the source tensor in W dimension (in bytes)
- * @param[in] src_step_w                            src_stride_w * number of elements along W processed per workitem(in bytes)
- * @param[in] src_offset_first_element_in_bytes     The offset of the first element in the source tensor
- * @param[in] dst_ptr                               Pointer to the destination tensor. Supported data types: same as src_ptr
- * @param[in] dst_stride_x                          Stride of the destination tensor in X dimension (in bytes)
- * @param[in] dst_step_x                            dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y                          Stride of the destination tensor in Y dimension (in bytes)
- * @param[in] dst_step_y                            dst_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_stride_z                          Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] dst_step_z                            dst_stride_z * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_stride_w                          Stride of the destination tensor in W dimension (in bytes)
- * @param[in] dst_step_w                            dst_stride_w * number of elements along W processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes     The offset of the first element in the destination tensor
- * @param[in] weights_ptr                           Pointer to the weights tensor. Supported data types: QASYMM8
- * @param[in] weights_stride_x                      Stride of the weights tensor in X dimension (in bytes)
- * @param[in] weights_step_x                        weights_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] weights_stride_y                      Stride of the weights tensor in Y dimension (in bytes)
- * @param[in] weights_step_y                        weights_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] weights_stride_z                      Stride of the weights tensor in Z dimension (in bytes)
- * @param[in] weights_step_z                        weights_stride_z * number of elements along Y processed per workitem(in bytes)
- * @param[in] weights_offset_first_element_in_bytes The offset of the first element in the weights tensor
- * @param[in] biases_ptr                            (Optional) Pointer to the biases vector. Supported data types: same as src_ptr
- * @param[in] biases_stride_x                       (Optional) Stride of the biases vector in X dimension (in bytes)
- * @param[in] biases_step_x                         (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] biases_offset_first_element_in_bytes  (Optional) The offset of the first element in the biases vector
+ * @param[in] src_ptr                                          Pointer to the source tensor. Supported data types: QASYMM8
+ * @param[in] src_stride_x                                     Stride of the source tensor in X dimension (in bytes)
+ * @param[in] src_step_x                                       src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y                                     Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] src_step_y                                       src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_stride_z                                     Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] src_step_z                                       src_stride_y * number of elements along Z processed per workitem(in bytes)
+ * @param[in] src_stride_w                                     Stride of the source tensor in W dimension (in bytes)
+ * @param[in] src_step_w                                       src_stride_w * number of elements along W processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes                The offset of the first element in the source tensor
+ * @param[in] dst_ptr                                          Pointer to the destination tensor. Supported data types: same as @p src_ptr
+ * @param[in] dst_stride_x                                     Stride of the destination tensor in X dimension (in bytes)
+ * @param[in] dst_step_x                                       dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y                                     Stride of the destination tensor in Y dimension (in bytes)
+ * @param[in] dst_step_y                                       dst_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_stride_z                                     Stride of the destination tensor in Z dimension (in bytes)
+ * @param[in] dst_step_z                                       dst_stride_z * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_stride_w                                     Stride of the destination tensor in W dimension (in bytes)
+ * @param[in] dst_step_w                                       dst_stride_w * number of elements along W processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes                The offset of the first element in the destination tensor
+ * @param[in] weights_ptr                                      Pointer to the weights tensor. Supported data types: QASYMM8/QSYMM8_PER_CHANNEL
+ * @param[in] weights_stride_x                                 Stride of the weights tensor in X dimension (in bytes)
+ * @param[in] weights_step_x                                   weights_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] weights_stride_y                                 Stride of the weights tensor in Y dimension (in bytes)
+ * @param[in] weights_step_y                                   weights_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] weights_stride_z                                 Stride of the weights tensor in Z dimension (in bytes)
+ * @param[in] weights_step_z                                   weights_stride_z * number of elements along Y processed per workitem(in bytes)
+ * @param[in] weights_offset_first_element_in_bytes            The offset of the first element in the weights tensor
+ * @param[in] output_multipliers_ptr                           Pointer to the output multipliers vector. Supported data types: S32
+ * @param[in] output_multipliers_stride_x                      Stride of the output multipliers vector in X dimension (in bytes)
+ * @param[in] output_multipliers_step_x                        output_multipliers_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] output_multipliers_offset_first_element_in_bytes The offset of the first element in the output multipliers vector
+ * @param[in] output_shifts_ptr                                Pointer to the output shifts vector. Supported data types: S32
+ * @param[in] output_shifts_stride_x                           Stride of the output shifts vector in X dimension (in bytes)
+ * @param[in] output_shifts_step_x                             output_shifts_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] output_shifts_offset_first_element_in_bytes      The offset of the first element in the output shifts vector
+ * @param[in] biases_ptr                                       (Optional) Pointer to the biases vector. Supported data types: S32
+ * @param[in] biases_stride_x                                  (Optional) Stride of the biases vector in X dimension (in bytes)
+ * @param[in] biases_step_x                                    (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] biases_offset_first_element_in_bytes             (Optional) The offset of the first element in the biases vector
  */
 __kernel void dwc_MxN_native_quantized8_nhwc(
     TENSOR4D_DECLARATION(src),
     TENSOR4D_DECLARATION(dst),
-    TENSOR3D_DECLARATION(weights)
+    TENSOR3D_DECLARATION(weights),
+    VECTOR_DECLARATION(output_multipliers),
+    VECTOR_DECLARATION(output_shifts)
 #if defined(HAS_BIAS)
     ,
     VECTOR_DECLARATION(biases)
@@ -1447,19 +1630,30 @@
     int z = get_global_id(2) % (int)DST_DEPTH; // spatial coordinate y
     int b = get_global_id(2) / (int)DST_DEPTH; // batch
 #else                                          // defined(DST_DEPTH)
-    int z = get_global_id(2); // spatial coordinate y
+    int       z                 = get_global_id(2); // spatial coordinate y
 #endif                                         // defined(DST_DEPTH)
 
-    __global uchar *s_addr = src_ptr + src_offset_first_element_in_bytes + x * sizeof(uchar) * (int)N0;
+    __global uchar *s_addr = src_ptr + src_offset_first_element_in_bytes + x * sizeof(DATA_TYPE) * (int)N0;
 
-    __global uchar *d_addr = dst_ptr + dst_offset_first_element_in_bytes + x * sizeof(uchar) * (int)DEPTH_MULTIPLIER * (int)N0 + y * dst_stride_y + z * dst_stride_z;
+    __global uchar *d_addr = dst_ptr + dst_offset_first_element_in_bytes + x * sizeof(DATA_TYPE) * (int)DEPTH_MULTIPLIER * (int)N0 + y * dst_stride_y + z * dst_stride_z;
 
-    __global uchar *w_addr = weights_ptr + weights_offset_first_element_in_bytes + x * sizeof(uchar) * (int)DEPTH_MULTIPLIER * (int)N0;
+    __global uchar *w_addr = weights_ptr + weights_offset_first_element_in_bytes + x * sizeof(WEIGHTS_TYPE) * (int)DEPTH_MULTIPLIER * (int)N0;
 
 #if defined(HAS_BIAS)
     __global uchar *b_addr = biases_ptr + biases_offset_first_element_in_bytes + x * sizeof(int) * (int)DEPTH_MULTIPLIER * (int)N0;
 #endif // defined(HAS_BIAS)
 
+#if defined(PER_CHANNEL_QUANTIZATION)
+    __global uchar *out_mul_addr   = output_multipliers_ptr + output_multipliers_offset_first_element_in_bytes + x * sizeof(int) * (int)DEPTH_MULTIPLIER * (int)N0;
+    __global uchar *out_shift_addr = output_shifts_ptr + output_shifts_offset_first_element_in_bytes + x * sizeof(int) * (int)DEPTH_MULTIPLIER * (int)N0;
+
+    VEC_INT output_multiplier = (VEC_INT)0;
+    VEC_INT output_shift      = (VEC_INT)0;
+#else  // defined(PER_CHANNEL_QUANTIZATION)
+    const int output_multiplier = *((__global int *)(output_multipliers_ptr + output_multipliers_offset_first_element_in_bytes));
+    const int output_shift      = *((__global int *)(output_shifts_ptr + output_shifts_offset_first_element_in_bytes));
+#endif // defined(PER_CHANNEL_QUANTIZATION)
+
 #if defined(DST_DEPTH)
     s_addr += b * src_stride_w;
     d_addr += b * dst_stride_w;
@@ -1489,8 +1683,8 @@
                         int w_offset = xk * weights_stride_y + yk * weights_stride_z;
 
                         // Load input and weights values
-                        VEC_SHORT i = CONVERT(VLOAD(N0)(0, (__global uchar *)(s_addr + s_offset)), VEC_SHORT);
-                        VEC_SHORT w = CONVERT(VLOAD(N0)(0, (__global uchar *)(w_addr + w_offset)), VEC_SHORT);
+                        VEC_SHORT i = CONVERT(VLOAD(N0)(0, (__global DATA_TYPE *)(s_addr + s_offset)), VEC_SHORT);
+                        VEC_SHORT w = CONVERT(VLOAD(N0)(0, (__global WEIGHTS_TYPE *)(w_addr + w_offset)), VEC_SHORT);
 
                         res += (i + (VEC_SHORT)INPUT_OFFSET) * (w + (VEC_SHORT)WEIGHTS_OFFSET);
                     }
@@ -1505,21 +1699,32 @@
         res += bias;
 #endif // defined(HAS_BIAS)
 
-        res = CONVERT(ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(CONVERT(res, VEC_INT), OUTPUT_MULTIPLIER, OUTPUT_SHIFT, N0), VEC_SHORT);
+#if defined(PER_CHANNEL_QUANTIZATION)
+        output_multiplier = VLOAD(N0)(0, (__global int *)(out_mul_addr));
+        output_shift      = VLOAD(N0)(0, (__global int *)(out_shift_addr));
+#endif // defined(PER_CHANNEL_QUANTIZATION)
+
+        res = CONVERT(ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(CONVERT(res, VEC_INT), output_multiplier, output_shift, N0), VEC_SHORT);
         res += (VEC_SHORT)OUTPUT_OFFSET;
 
-        VEC_UCHAR res1 = CONVERT_SAT(res, VEC_UCHAR);
+        VEC_TYPE(VEC_SIZE)
+        res1 = CONVERT_SAT(res, VEC_TYPE(VEC_SIZE));
 
         VSTORE(N0)
-        (ACTIVATION_FUNC(res1), 0, (__global uchar *)(d_addr));
+        (ACTIVATION_FUNC(res1), 0, (__global DATA_TYPE *)(d_addr));
 
 #if DEPTH_MULTIPLIER > 1
-        w_addr += sizeof(uchar);
-        d_addr += sizeof(uchar);
+        w_addr += sizeof(WEIGHTS_TYPE);
+        d_addr += sizeof(DATA_TYPE);
+#if defined(PER_CHANNEL_QUANTIZATION)
+        out_mul_addr += sizeof(int);
+        out_shift_addr += sizeof(int);
+#endif // defined(PER_CHANNEL_QUANTIZATION)
 #if defined(HAS_BIAS)
         b_addr += sizeof(int);
 #endif // defined(HAS_BIAS)
     }
 #endif // DEPTH_MULTIPLIER > 1
 }
-#endif // defined(SRC_DIM1) && defined(SRC_DIM2) && defined(KERNEL_WIDTH) && defined(KERNEL_HEIGHT) && defiend(N0) && defined(DILATION_X) && defined(DILATION_Y) && defined(CONV_STRIDE_X) && defined(CONV_STRIDE_Y) && defined(CONV_PAD_LEFT) && defined(CONV_PAD_TOP) && defined(INPUT_OFFSET) && defined(WEIGHTS_OFFSET) && defined(OUTPUT_OFFSET) && defined(OUTPUT_MULTIPLIER) && defined(OUTPUT_SHIFT)
+#endif // defined(SRC_DIM1) && defined(SRC_DIM2) && defined(KERNEL_WIDTH) && defined(KERNEL_HEIGHT) && defiend(N0) && defined(DILATION_X) && defined(DILATION_Y) && defined(CONV_STRIDE_X) && defined(CONV_STRIDE_Y) && defined(CONV_PAD_LEFT) && defined(CONV_PAD_TOP) && defined(INPUT_OFFSET) && defined(WEIGHTS_OFFSET) && defined(OUTPUT_OFFSET)
+#endif // defined(DATA_TYPE) && defined(WEIGHTS_TYPE)