blob: 255e486365c89967fb29ecca38342e96c93e25db [file] [log] [blame]
/*
* Copyright (c) 2017 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/NEON/kernels/NEGEMMLowpFinalizeKernel.h"
#include "arm_compute/core/AccessWindowStatic.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"
#include <arm_neon.h>
#include <cstddef>
#include <cstdint>
using namespace arm_compute;
namespace arm_compute
{
class Coordinates;
} // namespace arm_compute
template <bool add_a_offset, bool add_b_offset>
void NEGEMMLowpFinalizeKernel::finalize(const Window &window)
{
const int32x4_t c_offset_s32 = vdupq_n_s32(_c_offset);
const int32x4_t shift_s32 = vdupq_n_s32(-_shift);
Window collapsed_window = window.collapse_if_possible(IKernel::window(), Window::DimZ);
if(add_a_offset && add_b_offset) // true, true
{
// Set window for vector_sum_col
Window win_vector_sum_col(collapsed_window);
win_vector_sum_col.set(Window::DimY, Window::Dimension(0, 0, 0));
if(!_slide_vector_sum_col)
{
win_vector_sum_col.set(Window::DimZ, Window::Dimension(0, 0, 0));
}
// Set window for vector_sum_row
Window win_vector_sum_row(collapsed_window);
win_vector_sum_row.set(Window::DimX, Window::Dimension(0, 0, 0));
win_vector_sum_row.set(Window::DimY, Window::Dimension(0, 0, 0));
Iterator vector_sum_col(_vector_sum_col, win_vector_sum_col);
Iterator vector_sum_row(_vector_sum_row, win_vector_sum_row);
Iterator mm_result(_mm_result, window);
Iterator out(_output, window);
execute_window_loop(window, [&](const Coordinates & id)
{
// Compute the leftover term due to a_offset.
int32x4x4_t a_offset_term_s32 =
{
{
vld1q_s32(reinterpret_cast<const int32_t *>(vector_sum_col.ptr()) + 0),
vld1q_s32(reinterpret_cast<const int32_t *>(vector_sum_col.ptr()) + 4),
vld1q_s32(reinterpret_cast<const int32_t *>(vector_sum_col.ptr()) + 8),
vld1q_s32(reinterpret_cast<const int32_t *>(vector_sum_col.ptr()) + 12)
}
};
a_offset_term_s32.val[0] = vmulq_n_s32(a_offset_term_s32.val[0], _a_offset);
a_offset_term_s32.val[1] = vmulq_n_s32(a_offset_term_s32.val[1], _a_offset);
a_offset_term_s32.val[2] = vmulq_n_s32(a_offset_term_s32.val[2], _a_offset);
a_offset_term_s32.val[3] = vmulq_n_s32(a_offset_term_s32.val[3], _a_offset);
// Compute the leftover term due to b_offset.
int32x4_t b_offset_term_s32 = vld1q_dup_s32(reinterpret_cast<const int32_t *>(vector_sum_row.ptr()) + id.y());
b_offset_term_s32 = vmulq_n_s32(b_offset_term_s32, _b_offset);
// Add a_offset_term_s32 and b_offset_term_s32
int32x4x4_t offset_term_s32 =
{
{
vdupq_n_s32(_k_offset),
vdupq_n_s32(_k_offset),
vdupq_n_s32(_k_offset),
vdupq_n_s32(_k_offset)
}
};
offset_term_s32.val[0] = vaddq_s32(offset_term_s32.val[0], vaddq_s32(a_offset_term_s32.val[0], b_offset_term_s32));
offset_term_s32.val[1] = vaddq_s32(offset_term_s32.val[1], vaddq_s32(a_offset_term_s32.val[1], b_offset_term_s32));
offset_term_s32.val[2] = vaddq_s32(offset_term_s32.val[2], vaddq_s32(a_offset_term_s32.val[2], b_offset_term_s32));
offset_term_s32.val[3] = vaddq_s32(offset_term_s32.val[3], vaddq_s32(a_offset_term_s32.val[3], b_offset_term_s32));
// Add c_offset
offset_term_s32.val[0] = vaddq_s32(offset_term_s32.val[0], c_offset_s32);
offset_term_s32.val[1] = vaddq_s32(offset_term_s32.val[1], c_offset_s32);
offset_term_s32.val[2] = vaddq_s32(offset_term_s32.val[2], c_offset_s32);
offset_term_s32.val[3] = vaddq_s32(offset_term_s32.val[3], c_offset_s32);
int32x4x4_t in_s32 =
{
{
vld1q_s32(reinterpret_cast<const int32_t *>(mm_result.ptr()) + 0),
vld1q_s32(reinterpret_cast<const int32_t *>(mm_result.ptr()) + 4),
vld1q_s32(reinterpret_cast<const int32_t *>(mm_result.ptr()) + 8),
vld1q_s32(reinterpret_cast<const int32_t *>(mm_result.ptr()) + 12)
}
};
// Add the offset terms to GEMM's result
in_s32.val[0] = vaddq_s32(in_s32.val[0], offset_term_s32.val[0]);
in_s32.val[1] = vaddq_s32(in_s32.val[1], offset_term_s32.val[1]);
in_s32.val[2] = vaddq_s32(in_s32.val[2], offset_term_s32.val[2]);
in_s32.val[3] = vaddq_s32(in_s32.val[3], offset_term_s32.val[3]);
// Multiply by c_mult_int
in_s32.val[0] = vmulq_n_s32(in_s32.val[0], _c_mult_int);
in_s32.val[1] = vmulq_n_s32(in_s32.val[1], _c_mult_int);
in_s32.val[2] = vmulq_n_s32(in_s32.val[2], _c_mult_int);
in_s32.val[3] = vmulq_n_s32(in_s32.val[3], _c_mult_int);
// Shift final result (negative value shift right)
in_s32.val[0] = vshlq_s32(in_s32.val[0], shift_s32);
in_s32.val[1] = vshlq_s32(in_s32.val[1], shift_s32);
in_s32.val[2] = vshlq_s32(in_s32.val[2], shift_s32);
in_s32.val[3] = vshlq_s32(in_s32.val[3], shift_s32);
// Convert S32 to U16
const int16x8x2_t in_s16 =
{
{
vcombine_s16(vqmovn_s32(in_s32.val[0]), vqmovn_s32(in_s32.val[1])),
vcombine_s16(vqmovn_s32(in_s32.val[2]), vqmovn_s32(in_s32.val[3])),
}
};
// Convert S16 to S8
const int8x16_t out_s8 = vcombine_s8(vqmovn_s16(in_s16.val[0]), vqmovn_s16(in_s16.val[1]));
vst1q_s8(reinterpret_cast<int8_t *>(out.ptr()), out_s8);
},
vector_sum_col, vector_sum_row, mm_result, out);
}
else if(!add_a_offset && add_b_offset) // false, true
{
// Set window for vector_sum_row
Window win_vector_sum_row(collapsed_window);
win_vector_sum_row.set(Window::DimX, Window::Dimension(0, 0, 0));
win_vector_sum_row.set(Window::DimY, Window::Dimension(0, 0, 0));
Iterator vector_sum_row(_vector_sum_row, win_vector_sum_row);
Iterator mm_result(_mm_result, window);
Iterator out(_output, window);
execute_window_loop(window, [&](const Coordinates & id)
{
// Compute the leftover term due to b_offset.
int32x4_t b_offset_term_s32 = vld1q_dup_s32(reinterpret_cast<const int32_t *>(vector_sum_row.ptr()) + id.y());
b_offset_term_s32 = vmulq_n_s32(b_offset_term_s32, _b_offset);
// Add b_offset_term_s32 and c_offset_term_s32
int32x4_t offset_term_s32 = vaddq_s32(b_offset_term_s32, c_offset_s32);
int32x4x4_t in_s32 =
{
{
vld1q_s32(reinterpret_cast<const int32_t *>(mm_result.ptr()) + 0),
vld1q_s32(reinterpret_cast<const int32_t *>(mm_result.ptr()) + 4),
vld1q_s32(reinterpret_cast<const int32_t *>(mm_result.ptr()) + 8),
vld1q_s32(reinterpret_cast<const int32_t *>(mm_result.ptr()) + 12)
}
};
// Add the offset terms to GEMM's result
in_s32.val[0] = vaddq_s32(in_s32.val[0], offset_term_s32);
in_s32.val[1] = vaddq_s32(in_s32.val[1], offset_term_s32);
in_s32.val[2] = vaddq_s32(in_s32.val[2], offset_term_s32);
in_s32.val[3] = vaddq_s32(in_s32.val[3], offset_term_s32);
// Multiply by c_mult_int
in_s32.val[0] = vmulq_n_s32(in_s32.val[0], _c_mult_int);
in_s32.val[1] = vmulq_n_s32(in_s32.val[1], _c_mult_int);
in_s32.val[2] = vmulq_n_s32(in_s32.val[2], _c_mult_int);
in_s32.val[3] = vmulq_n_s32(in_s32.val[3], _c_mult_int);
// Shift final result (negative value shift right)
in_s32.val[0] = vshlq_s32(in_s32.val[0], shift_s32);
in_s32.val[1] = vshlq_s32(in_s32.val[1], shift_s32);
in_s32.val[2] = vshlq_s32(in_s32.val[2], shift_s32);
in_s32.val[3] = vshlq_s32(in_s32.val[3], shift_s32);
// Convert S32 to U16
const int16x8x2_t in_s16 =
{
{
vcombine_s16(vqmovn_s32(in_s32.val[0]), vqmovn_s32(in_s32.val[1])),
vcombine_s16(vqmovn_s32(in_s32.val[2]), vqmovn_s32(in_s32.val[3])),
}
};
// Convert S16 to S8
const int8x16_t out_s8 = vcombine_s8(vqmovn_s16(in_s16.val[0]), vqmovn_s16(in_s16.val[1]));
vst1q_s8(reinterpret_cast<int8_t *>(out.ptr()), out_s8);
},
vector_sum_row, mm_result, out);
}
else if(add_a_offset && !add_b_offset) // true, false
{
// Set window for vector_sum_col
Window win_vector_sum_col(collapsed_window);
win_vector_sum_col.set(Window::DimY, Window::Dimension(0, 0, 0));
if(!_slide_vector_sum_col)
{
win_vector_sum_col.set(Window::DimZ, Window::Dimension(0, 0, 0));
}
Iterator vector_sum_col(_vector_sum_col, win_vector_sum_col);
Iterator mm_result(_mm_result, window);
Iterator out(_output, window);
execute_window_loop(window, [&](const Coordinates & id)
{
// Compute the leftover term due to a_offset.
int32x4x4_t a_offset_term_s32 =
{
{
vld1q_s32(reinterpret_cast<const int32_t *>(vector_sum_col.ptr()) + 0),
vld1q_s32(reinterpret_cast<const int32_t *>(vector_sum_col.ptr()) + 4),
vld1q_s32(reinterpret_cast<const int32_t *>(vector_sum_col.ptr()) + 8),
vld1q_s32(reinterpret_cast<const int32_t *>(vector_sum_col.ptr()) + 12)
}
};
a_offset_term_s32.val[0] = vmulq_n_s32(a_offset_term_s32.val[0], _a_offset);
a_offset_term_s32.val[1] = vmulq_n_s32(a_offset_term_s32.val[1], _a_offset);
a_offset_term_s32.val[2] = vmulq_n_s32(a_offset_term_s32.val[2], _a_offset);
a_offset_term_s32.val[3] = vmulq_n_s32(a_offset_term_s32.val[3], _a_offset);
// Add a_offset_term_s32 and b_offset_term_s32
int32x4x4_t offset_term_s32 =
{
{
vaddq_s32(c_offset_s32, a_offset_term_s32.val[0]),
vaddq_s32(c_offset_s32, a_offset_term_s32.val[1]),
vaddq_s32(c_offset_s32, a_offset_term_s32.val[2]),
vaddq_s32(c_offset_s32, a_offset_term_s32.val[3])
}
};
int32x4x4_t in_s32 =
{
{
vld1q_s32(reinterpret_cast<const int32_t *>(mm_result.ptr()) + 0),
vld1q_s32(reinterpret_cast<const int32_t *>(mm_result.ptr()) + 4),
vld1q_s32(reinterpret_cast<const int32_t *>(mm_result.ptr()) + 8),
vld1q_s32(reinterpret_cast<const int32_t *>(mm_result.ptr()) + 12)
}
};
// Add the offset terms to GEMM's result
in_s32.val[0] = vaddq_s32(in_s32.val[0], offset_term_s32.val[0]);
in_s32.val[1] = vaddq_s32(in_s32.val[1], offset_term_s32.val[1]);
in_s32.val[2] = vaddq_s32(in_s32.val[2], offset_term_s32.val[2]);
in_s32.val[3] = vaddq_s32(in_s32.val[3], offset_term_s32.val[3]);
// Multiply by c_mult_int
in_s32.val[0] = vmulq_n_s32(in_s32.val[0], _c_mult_int);
in_s32.val[1] = vmulq_n_s32(in_s32.val[1], _c_mult_int);
in_s32.val[2] = vmulq_n_s32(in_s32.val[2], _c_mult_int);
in_s32.val[3] = vmulq_n_s32(in_s32.val[3], _c_mult_int);
// Shift final result (negative value shift right)
in_s32.val[0] = vshlq_s32(in_s32.val[0], shift_s32);
in_s32.val[1] = vshlq_s32(in_s32.val[1], shift_s32);
in_s32.val[2] = vshlq_s32(in_s32.val[2], shift_s32);
in_s32.val[3] = vshlq_s32(in_s32.val[3], shift_s32);
// Convert S32 to S16
const int16x8x2_t in_s16 =
{
{
vcombine_s16(vqmovn_s32(in_s32.val[0]), vqmovn_s32(in_s32.val[1])),
vcombine_s16(vqmovn_s32(in_s32.val[2]), vqmovn_s32(in_s32.val[3]))
}
};
// Convert S16 to S8
const int8x16_t out_s8 = vcombine_s8(vqmovn_s16(in_s16.val[0]), vqmovn_s16(in_s16.val[1]));
vst1q_s8(reinterpret_cast<int8_t *>(out.ptr()), out_s8);
},
vector_sum_col, mm_result, out);
}
else // false, false
{
Iterator mm_result(_mm_result, window);
Iterator out(_output, window);
execute_window_loop(window, [&](const Coordinates & id)
{
int32x4x4_t in_s32 =
{
{
vld1q_s32(reinterpret_cast<const int32_t *>(mm_result.ptr()) + 0),
vld1q_s32(reinterpret_cast<const int32_t *>(mm_result.ptr()) + 4),
vld1q_s32(reinterpret_cast<const int32_t *>(mm_result.ptr()) + 8),
vld1q_s32(reinterpret_cast<const int32_t *>(mm_result.ptr()) + 12)
}
};
// Add the offset terms to GEMM's result
in_s32.val[0] = vaddq_s32(in_s32.val[0], c_offset_s32);
in_s32.val[1] = vaddq_s32(in_s32.val[1], c_offset_s32);
in_s32.val[2] = vaddq_s32(in_s32.val[2], c_offset_s32);
in_s32.val[3] = vaddq_s32(in_s32.val[3], c_offset_s32);
// Multiply by c_mult_int
in_s32.val[0] = vmulq_n_s32(in_s32.val[0], _c_mult_int);
in_s32.val[1] = vmulq_n_s32(in_s32.val[1], _c_mult_int);
in_s32.val[2] = vmulq_n_s32(in_s32.val[2], _c_mult_int);
in_s32.val[3] = vmulq_n_s32(in_s32.val[3], _c_mult_int);
// Shift final result (negative value shift right)
in_s32.val[0] = vshlq_s32(in_s32.val[0], shift_s32);
in_s32.val[1] = vshlq_s32(in_s32.val[1], shift_s32);
in_s32.val[2] = vshlq_s32(in_s32.val[2], shift_s32);
in_s32.val[3] = vshlq_s32(in_s32.val[3], shift_s32);
// Convert S32 to S16
const int16x8x2_t in_s16 =
{
{
vcombine_s16(vqmovn_s32(in_s32.val[0]), vqmovn_s32(in_s32.val[1])),
vcombine_s16(vqmovn_s32(in_s32.val[2]), vqmovn_s32(in_s32.val[3]))
}
};
// Convert U16 to S8
const int8x16_t out_s8 = vcombine_s8(vqmovn_s16(in_s16.val[0]), vqmovn_s16(in_s16.val[1]));
vst1q_s8(reinterpret_cast<int8_t *>(out.ptr()), out_s8);
},
mm_result, out);
}
}
NEGEMMLowpFinalizeKernel::NEGEMMLowpFinalizeKernel()
: _func(nullptr), _vector_sum_col(nullptr), _vector_sum_row(nullptr), _mm_result(nullptr), _output(nullptr), _a_offset(0), _b_offset(0), _c_offset(0), _k_offset(0), _c_mult_int(0), _shift(0),
_slide_vector_sum_col(true)
{
}
void NEGEMMLowpFinalizeKernel::configure(const ITensor *vector_sum_col, const ITensor *vector_sum_row, const ITensor *mm_result, ITensor *output, int32_t num_mtx_a_cols, int32_t a_offset,
int32_t b_offset,
int32_t c_offset, int32_t c_mult_int, int32_t shift)
{
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(mm_result, 1, DataType::S32);
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::S8);
TensorShape mm_result_shape = mm_result->info()->tensor_shape();
TensorShape output_shape = output->info()->tensor_shape();
mm_result_shape.collapse(2);
output_shape.collapse(2);
ARM_COMPUTE_ERROR_ON_MSG(mm_result_shape[2] != output_shape[2], "mm_result tensor must have the same number of batches of output tensor");
// If a_offset == 0, vector_sum_col can be a nullptr
if(a_offset != 0)
{
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(vector_sum_col, 1, DataType::S32);
ARM_COMPUTE_ERROR_ON(vector_sum_col->info()->dimension(0) != mm_result->info()->dimension(0));
TensorShape vector_sum_col_shape = vector_sum_col->info()->tensor_shape();
vector_sum_col_shape.collapse(1);
// Check if vector_sum_col_shape should be slidden or not
// Don't slide vector_sum_col_shape along the y dimension if vector_sum_col_shape has just 1 dimension and vector_sum_row_shape more than 1
// This scenario can happen when the the matrix multiplication is used to perform a convolution operation
_slide_vector_sum_col = vector_sum_col_shape[1] != 1;
}
// If b_offset == 0, vector_sum_row can be a nullptr
if(b_offset != 0)
{
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(vector_sum_row, 1, DataType::S32);
ARM_COMPUTE_ERROR_ON(vector_sum_row->info()->dimension(0) != mm_result->info()->dimension(1));
TensorShape vector_sum_row_shape = vector_sum_row->info()->tensor_shape();
vector_sum_row_shape.collapse(1);
ARM_COMPUTE_ERROR_ON_MSG(vector_sum_row_shape[1] != output_shape[2], "mm_result tensor must have the same number of batches of output tensor");
if(a_offset != 0)
{
TensorShape vector_sum_col_shape = vector_sum_col->info()->tensor_shape();
vector_sum_col_shape.collapse(1);
ARM_COMPUTE_ERROR_ON_MSG(vector_sum_col_shape[1] != 1
&& vector_sum_col_shape[1] != vector_sum_row_shape[1],
"vector_sum_col tensor must have the same number of batches of vector_sum_row_shape or the number of batches must be set to 1");
}
}
_vector_sum_col = vector_sum_col;
_vector_sum_row = vector_sum_row;
_mm_result = mm_result;
_output = output;
_a_offset = a_offset;
_b_offset = b_offset;
_k_offset = a_offset * b_offset * num_mtx_a_cols;
_c_offset = c_offset;
_c_mult_int = c_mult_int;
_shift = shift;
constexpr unsigned int num_elems_processed_per_iteration = 16;
// Configure kernel window
Window win = calculate_max_window(*output->info(), Steps(num_elems_processed_per_iteration));
AccessWindowHorizontal mm_result_access(mm_result->info(), 0, num_elems_processed_per_iteration);
AccessWindowHorizontal output_result_access(output->info(), 0, num_elems_processed_per_iteration);
// Accordingly with a_offset and b_offset, we can have 4 cases:
// a_offset != 0 && b_offset != 0
// a_offset = 0 && b_offset != 0
// a_offset != 0 && b_offset = 0
// a_offset = 0 && b_offset = 0
if(a_offset != 0 && b_offset != 0)
{
// Set the function to use
_func = &NEGEMMLowpFinalizeKernel::finalize<true, true>;
AccessWindowStatic vector_sum_row_access(vector_sum_row->info(), 0, 0, vector_sum_row->info()->dimension(0), 0);
AccessWindowHorizontal vector_sum_col_access(vector_sum_col->info(), 0, num_elems_processed_per_iteration);
update_window_and_padding(win,
vector_sum_col_access,
vector_sum_row_access,
mm_result_access,
output_result_access);
}
else if(a_offset == 0 && b_offset != 0)
{
// Set the function to use
_func = &NEGEMMLowpFinalizeKernel::finalize<false, true>;
AccessWindowStatic vector_sum_row_access(vector_sum_row->info(), 0, 0, vector_sum_row->info()->dimension(0), 0);
update_window_and_padding(win,
vector_sum_row_access,
mm_result_access,
output_result_access);
}
else if(a_offset != 0 && b_offset == 0)
{
// Set the function to use
_func = &NEGEMMLowpFinalizeKernel::finalize<true, false>;
AccessWindowHorizontal vector_sum_col_access(vector_sum_col->info(), 0, num_elems_processed_per_iteration);
update_window_and_padding(win,
vector_sum_col_access,
mm_result_access,
output_result_access);
}
else
{
// Set the function to use
_func = &NEGEMMLowpFinalizeKernel::finalize<false, false>;
update_window_and_padding(win,
mm_result_access,
output_result_access);
}
output_result_access.set_valid_region(win, ValidRegion(Coordinates(0, 0), output->info()->tensor_shape()));
INEKernel::configure(win);
}
void NEGEMMLowpFinalizeKernel::run(const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
(this->*_func)(window);
}