Enable FFT for FP16

Resolves: COMPMID-4051

Change-Id: I0c0bf97212dd281c19d5081e6247e7dc0c23cd6b
Signed-off-by: Giorgio Arena <giorgio.arena@arm.com>
Reviewed-on: https://review.mlplatform.org/c/ml/ComputeLibrary/+/4687
Tested-by: Arm Jenkins <bsgcomp@arm.com>
Reviewed-by: Gian Marco Iodice <gianmarco.iodice@arm.com>
Comments-Addressed: Arm Jenkins <bsgcomp@arm.com>
diff --git a/src/core/CL/cl_kernels/fft.cl b/src/core/CL/cl_kernels/fft.cl
index eb1eec5..b257451 100644
--- a/src/core/CL/cl_kernels/fft.cl
+++ b/src/core/CL/cl_kernels/fft.cl
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2019 Arm Limited.
+ * Copyright (c) 2019-2020 Arm Limited.
  *
  * SPDX-License-Identifier: MIT
  *
@@ -23,6 +23,7 @@
  */
 #include "helpers.h"
 
+#if defined(DATA_TYPE)
 /** Calculates and applies the twiddle factor to a given input.
  *
  * @param[in]     phi   The angle.
@@ -30,7 +31,8 @@
  */
 #define TWIDDLE_FACTOR_MULTIPLICATION(phi, input)  \
     {                                              \
-        float2 w, tmp;                             \
+        VEC_DATA_TYPE(DATA_TYPE, 2)                \
+        w, tmp;                                    \
         w.x   = native_cos(phi);                   \
         w.y   = native_sin(phi);                   \
         tmp.x = (w.x * input.x) - (w.y * input.y); \
@@ -43,12 +45,13 @@
  * @param[in,out] c0 Complex input 0.
  * @param[in,out] c1 Complex input 1.
  */
-#define DFT_2(c0, c1) \
-    {                 \
-        float2 v0;    \
-        v0 = c0;      \
-        c0 = v0 + c1; \
-        c1 = v0 - c1; \
+#define DFT_2(c0, c1)               \
+    {                               \
+        VEC_DATA_TYPE(DATA_TYPE, 2) \
+        v0;                         \
+        v0 = c0;                    \
+        c0 = v0 + c1;               \
+        c1 = v0 - c1;               \
     }
 
 // radix-3 butterfly unit factors
@@ -60,15 +63,17 @@
  * @param[in,out] c1 Complex input 1.
  * @param[in,out] c2 Complex input 2.
  */
-#define DFT_3(c0, c1, c2)                                  \
-    {                                                      \
-        float2 v0 = c1 + c2;                               \
-        float2 v1 = c1 - c2;                               \
-        c1.x      = c0.x - 0.5f * v0.x + v1.y * SQRT3DIV2; \
-        c1.y      = c0.y - 0.5f * v0.y - v1.x * SQRT3DIV2; \
-        c2.x      = c0.x - 0.5f * v0.x - v1.y * SQRT3DIV2; \
-        c2.y      = c0.y - 0.5f * v0.y + v1.x * SQRT3DIV2; \
-        c0        = c0 + v0;                               \
+#define DFT_3(c0, c1, c2)                             \
+    {                                                 \
+        VEC_DATA_TYPE(DATA_TYPE, 2)                   \
+        v0 = c1 + c2;                                 \
+        VEC_DATA_TYPE(DATA_TYPE, 2)                   \
+        v1   = c1 - c2;                               \
+        c1.x = c0.x - 0.5f * v0.x + v1.y * SQRT3DIV2; \
+        c1.y = c0.y - 0.5f * v0.y - v1.x * SQRT3DIV2; \
+        c2.x = c0.x - 0.5f * v0.x - v1.y * SQRT3DIV2; \
+        c2.y = c0.y - 0.5f * v0.y + v1.x * SQRT3DIV2; \
+        c0   = c0 + v0;                               \
     }
 
 /**Computes radix-4 butterfly unit.
@@ -78,25 +83,26 @@
  * @param[in,out] c2 Complex input 2.
  * @param[in,out] c3 Complex input 3.
  */
-#define DFT_4(c0, c1, c2, c3)  \
-    {                          \
-        float2 v0, v1, v2, v3; \
-        v0   = c0 + c2;        \
-        v1   = c1 + c3;        \
-        v2   = c0 - c2;        \
-        v3.x = c1.y - c3.y;    \
-        v3.y = c3.x - c1.x;    \
-        c0   = v0 + v1;        \
-        c2   = v0 - v1;        \
-        c1   = v2 + v3;        \
-        c3   = v2 - v3;        \
+#define DFT_4(c0, c1, c2, c3)       \
+    {                               \
+        VEC_DATA_TYPE(DATA_TYPE, 2) \
+        v0, v1, v2, v3;             \
+        v0   = c0 + c2;             \
+        v1   = c1 + c3;             \
+        v2   = c0 - c2;             \
+        v3.x = c1.y - c3.y;         \
+        v3.y = c3.x - c1.x;         \
+        c0   = v0 + v1;             \
+        c2   = v0 - v1;             \
+        c1   = v2 + v3;             \
+        c3   = v2 - v3;             \
     }
 
 // radix-5 butterfly unit factors
-#define W5_A 0.30901699437494f
-#define W5_B 0.95105651629515f
-#define W5_C 0.80901699437494f
-#define W5_D 0.58778525229247f
+#define W5_A (DATA_TYPE)0.30901699437494f
+#define W5_B (DATA_TYPE)0.95105651629515f
+#define W5_C (DATA_TYPE)0.80901699437494f
+#define W5_D (DATA_TYPE)0.58778525229247f
 
 /** Computes radix-5 butterfly unit.
  *
@@ -106,28 +112,29 @@
  * @param[in,out] c3 Complex input 3.
  * @param[in,out] c4 Complex input 4.
  */
-#define DFT_5(c0, c1, c2, c3, c4)                 \
-    {                                             \
-        float2 v0, v1, v2, v3, v4;                \
-        v0 = c0;                                  \
-        v1 = W5_A * (c1 + c4) - W5_C * (c2 + c3); \
-        v2 = W5_C * (c1 + c4) - W5_A * (c2 + c3); \
-        v3 = W5_D * (c1 - c4) - W5_B * (c2 - c3); \
-        v4 = W5_B * (c1 - c4) + W5_D * (c2 - c3); \
-        c0 = v0 + c1 + c2 + c3 + c4;              \
-        c1 = v0 + v1 + (float2)(v4.y, -v4.x);     \
-        c2 = v0 - v2 + (float2)(v3.y, -v3.x);     \
-        c3 = v0 - v2 + (float2)(-v3.y, v3.x);     \
-        c4 = v0 + v1 + (float2)(-v4.y, v4.x);     \
+#define DFT_5(c0, c1, c2, c3, c4)                                  \
+    {                                                              \
+        VEC_DATA_TYPE(DATA_TYPE, 2)                                \
+        v0, v1, v2, v3, v4;                                        \
+        v0 = c0;                                                   \
+        v1 = W5_A * (c1 + c4) - W5_C * (c2 + c3);                  \
+        v2 = W5_C * (c1 + c4) - W5_A * (c2 + c3);                  \
+        v3 = W5_D * (c1 - c4) - W5_B * (c2 - c3);                  \
+        v4 = W5_B * (c1 - c4) + W5_D * (c2 - c3);                  \
+        c0 = v0 + c1 + c2 + c3 + c4;                               \
+        c1 = v0 + v1 + (VEC_DATA_TYPE(DATA_TYPE, 2))(v4.y, -v4.x); \
+        c2 = v0 - v2 + (VEC_DATA_TYPE(DATA_TYPE, 2))(v3.y, -v3.x); \
+        c3 = v0 - v2 + (VEC_DATA_TYPE(DATA_TYPE, 2))(-v3.y, v3.x); \
+        c4 = v0 + v1 + (VEC_DATA_TYPE(DATA_TYPE, 2))(-v4.y, v4.x); \
     }
 
 // radix-7 butterfly unit factors
-#define W7_A 0.62348980185873f
-#define W7_B 0.78183148246802f
-#define W7_C 0.22252093395631f
-#define W7_D 0.97492791218182f
-#define W7_E 0.90096886790241f
-#define W7_F 0.43388373911755f
+#define W7_A (DATA_TYPE)0.62348980185873f
+#define W7_B (DATA_TYPE)0.78183148246802f
+#define W7_C (DATA_TYPE)0.22252093395631f
+#define W7_D (DATA_TYPE)0.97492791218182f
+#define W7_E (DATA_TYPE)0.90096886790241f
+#define W7_F (DATA_TYPE)0.43388373911755f
 
 /** Computes radix-7 butterfly unit.
  *
@@ -141,7 +148,8 @@
  */
 #define DFT_7(c0, c1, c2, c3, c4, c5, c6)                            \
     {                                                                \
-        float2 v0, v1, v2, v3, v4, v5, v6;                           \
+        VEC_DATA_TYPE(DATA_TYPE, 2)                                  \
+        v0, v1, v2, v3, v4, v5, v6;                                  \
         v0 = c0;                                                     \
         v1 = W7_A * (c1 + c6) - W7_C * (c2 + c5) - W7_E * (c3 + c4); \
         v2 = W7_C * (c1 + c6) + W7_E * (c2 + c5) - W7_A * (c3 + c4); \
@@ -150,12 +158,12 @@
         v5 = W7_D * (c1 - c6) - W7_F * (c2 - c5) - W7_B * (c3 - c4); \
         v6 = W7_F * (c1 - c6) - W7_B * (c2 - c5) + W7_D * (c3 - c4); \
         c0 = v0 + c1 + c2 + c3 + c4 + c5 + c6;                       \
-        c1 = v0 + v1 + (float2)(v4.y, -v4.x);                        \
-        c2 = v0 - v2 + (float2)(v5.y, -v5.x);                        \
-        c3 = v0 - v3 + (float2)(v6.y, -v6.x);                        \
-        c4 = v0 - v3 + (float2)(-v6.y, v6.x);                        \
-        c5 = v0 - v2 + (float2)(-v5.y, v5.x);                        \
-        c6 = v0 + v1 + (float2)(-v4.y, v4.x);                        \
+        c1 = v0 + v1 + (VEC_DATA_TYPE(DATA_TYPE, 2))(v4.y, -v4.x);   \
+        c2 = v0 - v2 + (VEC_DATA_TYPE(DATA_TYPE, 2))(v5.y, -v5.x);   \
+        c3 = v0 - v3 + (VEC_DATA_TYPE(DATA_TYPE, 2))(v6.y, -v6.x);   \
+        c4 = v0 - v3 + (VEC_DATA_TYPE(DATA_TYPE, 2))(-v6.y, v6.x);   \
+        c5 = v0 - v2 + (VEC_DATA_TYPE(DATA_TYPE, 2))(-v5.y, v5.x);   \
+        c6 = v0 + v1 + (VEC_DATA_TYPE(DATA_TYPE, 2))(-v4.y, v4.x);   \
     }
 
 /** Computes radix-8 butterfly unit.
@@ -169,52 +177,55 @@
  * @param[in,out] c6 Complex input 6.
  * @param[in,out] c7 Complex input 7.
  */
-#define DFT_8(c0, c1, c2, c3, c4, c5, c6, c7)  \
-    {                                          \
-        float2 v0, v1, v2, v3, v4, v5, v6, v7; \
-        float2 s0, s1, s2, s3, s4, s5, s6, s7; \
-        float2 t0, t1, t2;                     \
-        v0   = c0 + c4;                        \
-        v1   = c1 + c5;                        \
-        v2   = c2 + c6;                        \
-        v3   = c3 + c7;                        \
-        v4   = c0 - c4;                        \
-        v5   = c1 - c5;                        \
-        v6   = c2 - c6;                        \
-        v7   = c3 - c7;                        \
-        s0   = v0 + v2;                        \
-        s1   = v1 + v3;                        \
-        s2   = v0 - v2;                        \
-        s3   = v1 - v3;                        \
-        s4.x = v4.x - v6.y;                    \
-        s4.y = v4.y + v6.x;                    \
-        s5.x = v5.x - v7.y;                    \
-        s5.y = v5.y + v7.x;                    \
-        s6.x = v4.x + v6.y;                    \
-        s6.y = v4.y - v6.x;                    \
-        s7.x = v5.x + v7.y;                    \
-        s7.y = v5.y - v7.x;                    \
-        t0.x = -s3.y;                          \
-        t0.y = s3.x;                           \
-        t1.x = M_SQRT1_2_F * (s5.x - s5.y);    \
-        t1.y = M_SQRT1_2_F * (s5.x + s5.y);    \
-        t2.x = -M_SQRT1_2_F * (s7.x + s7.y);   \
-        t2.y = M_SQRT1_2_F * (s7.x - s7.y);    \
-        c0   = s0 + s1;                        \
-        c1   = s6 - t2;                        \
-        c2   = s2 - t0;                        \
-        c3   = s4 - t1;                        \
-        c4   = s0 - s1;                        \
-        c5   = s6 + t2;                        \
-        c6   = s2 + t0;                        \
-        c7   = s4 + t1;                        \
+#define DFT_8(c0, c1, c2, c3, c4, c5, c6, c7) \
+    {                                         \
+        VEC_DATA_TYPE(DATA_TYPE, 2)           \
+        v0, v1, v2, v3, v4, v5, v6, v7;       \
+        VEC_DATA_TYPE(DATA_TYPE, 2)           \
+        s0, s1, s2, s3, s4, s5, s6, s7;       \
+        VEC_DATA_TYPE(DATA_TYPE, 2)           \
+        t0, t1, t2;                           \
+        v0   = c0 + c4;                       \
+        v1   = c1 + c5;                       \
+        v2   = c2 + c6;                       \
+        v3   = c3 + c7;                       \
+        v4   = c0 - c4;                       \
+        v5   = c1 - c5;                       \
+        v6   = c2 - c6;                       \
+        v7   = c3 - c7;                       \
+        s0   = v0 + v2;                       \
+        s1   = v1 + v3;                       \
+        s2   = v0 - v2;                       \
+        s3   = v1 - v3;                       \
+        s4.x = v4.x - v6.y;                   \
+        s4.y = v4.y + v6.x;                   \
+        s5.x = v5.x - v7.y;                   \
+        s5.y = v5.y + v7.x;                   \
+        s6.x = v4.x + v6.y;                   \
+        s6.y = v4.y - v6.x;                   \
+        s7.x = v5.x + v7.y;                   \
+        s7.y = v5.y - v7.x;                   \
+        t0.x = -s3.y;                         \
+        t0.y = s3.x;                          \
+        t1.x = M_SQRT1_2_F * (s5.x - s5.y);   \
+        t1.y = M_SQRT1_2_F * (s5.x + s5.y);   \
+        t2.x = -M_SQRT1_2_F * (s7.x + s7.y);  \
+        t2.y = M_SQRT1_2_F * (s7.x - s7.y);   \
+        c0   = s0 + s1;                       \
+        c1   = s6 - t2;                       \
+        c2   = s2 - t0;                       \
+        c3   = s4 - t1;                       \
+        c4   = s0 - s1;                       \
+        c5   = s6 + t2;                       \
+        c6   = s2 + t0;                       \
+        c7   = s4 + t1;                       \
     }
 
 /** Computes the first stage of a radix-2 DFT on axis 0.
  *
  * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
  *
- * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F32
+ * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F16/f32
  * @param[in,out] input_stride_x                       Stride of the source tensor in X dimension (in bytes)
  * @param[in,out] input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
  * @param[in,out] input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
@@ -231,7 +242,7 @@
  * @param[in]     output_step_z                        (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes)
  * @param[in]     output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image
  */
-kernel void fft_radix_2_first_stage_axis_0(
+__kernel void fft_radix_2_first_stage_axis_0(
     TENSOR3D_DECLARATION(input)
 #ifndef IN_PLACE
     ,
@@ -248,20 +259,21 @@
 #endif /* IN_PLACE */
 
     // Load two complex input values
-    float4 data = vload4(0, (__global float *)input.ptr);
+    VEC_DATA_TYPE(DATA_TYPE, 4)
+    data = vload4(0, (__global DATA_TYPE *)input.ptr);
 
     // Compute DFT N = 2
     DFT_2(data.s01, data.s23);
 
     // Store two complex output values
-    vstore4(data, 0, (__global float *)output.ptr);
+    vstore4(data, 0, (__global DATA_TYPE *)output.ptr);
 }
 
 /** Computes the first stage of a radix-2 DFT on axis 1.
  *
  * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
  *
- * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F32
+ * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F16/f32
  * @param[in,out] input_stride_x                       Stride of the source tensor in X dimension (in bytes)
  * @param[in,out] input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
  * @param[in,out] input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
@@ -278,7 +290,7 @@
  * @param[in]     output_step_z                        (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes)
  * @param[in]     output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image
  */
-kernel void fft_radix_2_first_stage_axis_1(
+__kernel void fft_radix_2_first_stage_axis_1(
     TENSOR3D_DECLARATION(input)
 #ifndef IN_PLACE
     ,
@@ -295,22 +307,24 @@
 #endif /* IN_PLACE */
 
     // Load two complex input values
-    float2 data1 = vload2(0, (__global float *)input.ptr);
-    float2 data2 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 1, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data1 = vload2(0, (__global DATA_TYPE *)input.ptr);
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0));
 
     // Compute DFT N = 2
     DFT_2(data1, data2);
 
     // Store two complex output values
-    vstore2(data1, 0, (__global float *)output.ptr);
-    vstore2(data2, 0, (__global float *)tensor3D_offset(&output, 0, 1, 0));
+    vstore2(data1, 0, (__global DATA_TYPE *)output.ptr);
+    vstore2(data2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 1, 0));
 }
 
 /** Computes the first stage of a radix-3 DFT on axis 0.
  *
  * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
  *
- * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F32
+ * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F16/f32
  * @param[in,out] input_stride_x                       Stride of the source tensor in X dimension (in bytes)
  * @param[in,out] input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
  * @param[in,out] input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
@@ -327,7 +341,7 @@
  * @param[in]     output_step_z                        (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes)
  * @param[in]     output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image
  */
-kernel void fft_radix_3_first_stage_axis_0(
+__kernel void fft_radix_3_first_stage_axis_0(
     TENSOR3D_DECLARATION(input)
 #ifndef IN_PLACE
     ,
@@ -344,22 +358,24 @@
 #endif /* IN_PLACE */
 
     // Load three complex input values
-    float4 data0 = vload4(0, (__global float *)input.ptr);
-    float2 data1 = vload2(0, (__global float *)tensor3D_offset(&input, 2, 0, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 4)
+    data0 = vload4(0, (__global DATA_TYPE *)input.ptr);
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 2, 0, 0));
 
     // Compute DFT N = 3
     DFT_3(data0.s01, data0.s23, data1.s01);
 
     // Store three complex output values
-    vstore4(data0, 0, (__global float *)output.ptr);
-    vstore2(data1, 0, (__global float *)tensor3D_offset(&output, 2, 0, 0));
+    vstore4(data0, 0, (__global DATA_TYPE *)output.ptr);
+    vstore2(data1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 2, 0, 0));
 }
 
 /** Computes the first stage of a radix-3 DFT on axis 1.
  *
  * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
  *
- * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F32
+ * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F16/f32
  * @param[in,out] input_stride_x                       Stride of the source tensor in X dimension (in bytes)
  * @param[in,out] input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
  * @param[in,out] input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
@@ -376,7 +392,7 @@
  * @param[in]     output_step_z                        (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes)
  * @param[in]     output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image
  */
-kernel void fft_radix_3_first_stage_axis_1(
+__kernel void fft_radix_3_first_stage_axis_1(
     TENSOR3D_DECLARATION(input)
 #ifndef IN_PLACE
     ,
@@ -393,24 +409,27 @@
 #endif /* IN_PLACE */
 
     // Load three complex input values
-    float2 data0 = vload2(0, (__global float *)input.ptr);
-    float2 data1 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 1, 0));
-    float2 data2 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 2, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data0 = vload2(0, (__global DATA_TYPE *)input.ptr);
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2, 0));
 
     // Compute DFT N = 3
     DFT_3(data0, data1, data2);
 
     // Store three complex output values
-    vstore2(data0, 0, (__global float *)output.ptr);
-    vstore2(data1, 0, (__global float *)tensor3D_offset(&output, 0, 1, 0));
-    vstore2(data2, 0, (__global float *)tensor3D_offset(&output, 0, 2, 0));
+    vstore2(data0, 0, (__global DATA_TYPE *)output.ptr);
+    vstore2(data1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 1, 0));
+    vstore2(data2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 2, 0));
 }
 
 /** Computes the first stage of a radix-4 DFT on axis 0.
  *
  * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
  *
- * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F32
+ * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F16/f32
  * @param[in,out] input_stride_x                       Stride of the source tensor in X dimension (in bytes)
  * @param[in,out] input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
  * @param[in,out] input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
@@ -427,7 +446,7 @@
  * @param[in]     output_step_z                        (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes)
  * @param[in]     output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image
  */
-kernel void fft_radix_4_first_stage_axis_0(
+__kernel void fft_radix_4_first_stage_axis_0(
     TENSOR3D_DECLARATION(input)
 #ifndef IN_PLACE
     ,
@@ -444,20 +463,21 @@
 #endif /* IN_PLACE */
 
     // Load four complex input values
-    float8 data = vload8(0, (__global float *)input.ptr);
+    VEC_DATA_TYPE(DATA_TYPE, 8)
+    data = vload8(0, (__global DATA_TYPE *)input.ptr);
 
     // Compute DFT N = 4
     DFT_4(data.s01, data.s23, data.s45, data.s67);
 
     // Store four complex output values
-    vstore8(data, 0, (__global float *)output.ptr);
+    vstore8(data, 0, (__global DATA_TYPE *)output.ptr);
 }
 
 /** Computes the first stage of a radix-4 DFT on axis 1.
  *
  * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
  *
- * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F32
+ * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F16/f32
  * @param[in,out] input_stride_x                       Stride of the source tensor in X dimension (in bytes)
  * @param[in,out] input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
  * @param[in,out] input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
@@ -474,7 +494,7 @@
  * @param[in]     output_step_z                        (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes)
  * @param[in]     output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image
  */
-kernel void fft_radix_4_first_stage_axis_1(
+__kernel void fft_radix_4_first_stage_axis_1(
     TENSOR3D_DECLARATION(input)
 #ifndef IN_PLACE
     ,
@@ -491,26 +511,30 @@
 #endif /* IN_PLACE */
 
     // Load four complex input values
-    float2 data0 = vload2(0, (__global float *)input.ptr);
-    float2 data1 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 1, 0));
-    float2 data2 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 2, 0));
-    float2 data3 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 3, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data0 = vload2(0, (__global DATA_TYPE *)input.ptr);
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data3 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 3, 0));
 
     // Compute DFT N = 4
     DFT_4(data0, data1, data2, data3);
 
     // Store four complex output values
-    vstore2(data0, 0, (__global float *)output.ptr);
-    vstore2(data1, 0, (__global float *)tensor3D_offset(&output, 0, 1, 0));
-    vstore2(data2, 0, (__global float *)tensor3D_offset(&output, 0, 2, 0));
-    vstore2(data3, 0, (__global float *)tensor3D_offset(&output, 0, 3, 0));
+    vstore2(data0, 0, (__global DATA_TYPE *)output.ptr);
+    vstore2(data1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 1, 0));
+    vstore2(data2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 2, 0));
+    vstore2(data3, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 3, 0));
 }
 
 /** Computes the first stage of a radix-5 DFT on axis 0.
  *
  * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
  *
- * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F32
+ * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F16/f32
  * @param[in,out] input_stride_x                       Stride of the source tensor in X dimension (in bytes)
  * @param[in,out] input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
  * @param[in,out] input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
@@ -527,7 +551,7 @@
  * @param[in]     output_step_z                        (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes)
  * @param[in]     output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image
  */
-kernel void fft_radix_5_first_stage_axis_0(
+__kernel void fft_radix_5_first_stage_axis_0(
     TENSOR3D_DECLARATION(input)
 #ifndef IN_PLACE
     ,
@@ -544,22 +568,24 @@
 #endif /* IN_PLACE */
 
     // Load five complex input values
-    float8 data0 = vload8(0, (__global float *)input.ptr);
-    float2 data1 = vload2(0, (__global float *)tensor3D_offset(&input, 4, 0, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 8)
+    data0 = vload8(0, (__global DATA_TYPE *)input.ptr);
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 4, 0, 0));
 
     // Compute DFT N = 5
     DFT_5(data0.s01, data0.s23, data0.s45, data0.s67, data1.s01);
 
     // Store five complex output values
-    vstore8(data0, 0, (__global float *)output.ptr);
-    vstore2(data1, 0, (__global float *)tensor3D_offset(&output, 4, 0, 0));
+    vstore8(data0, 0, (__global DATA_TYPE *)output.ptr);
+    vstore2(data1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 4, 0, 0));
 }
 
 /** Computes the first stage of a radix-5 DFT on axis 1.
  *
  * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
  *
- * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F32
+ * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F16/f32
  * @param[in,out] input_stride_x                       Stride of the source tensor in X dimension (in bytes)
  * @param[in,out] input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
  * @param[in,out] input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
@@ -576,7 +602,7 @@
  * @param[in]     output_step_z                        (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes)
  * @param[in]     output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image
  */
-kernel void fft_radix_5_first_stage_axis_1(
+__kernel void fft_radix_5_first_stage_axis_1(
     TENSOR3D_DECLARATION(input)
 #ifndef IN_PLACE
     ,
@@ -593,28 +619,33 @@
 #endif /* IN_PLACE */
 
     // Load five complex input values
-    float2 data0 = vload2(0, (__global float *)input.ptr);
-    float2 data1 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 1, 0));
-    float2 data2 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 2, 0));
-    float2 data3 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 3, 0));
-    float2 data4 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 4, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data0 = vload2(0, (__global DATA_TYPE *)input.ptr);
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data3 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 3, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data4 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 4, 0));
 
     // Compute DFT N = 5
     DFT_5(data0, data1, data2, data3, data4);
 
     // Store five complex output values
-    vstore2(data0, 0, (__global float *)output.ptr);
-    vstore2(data1, 0, (__global float *)tensor3D_offset(&output, 0, 1, 0));
-    vstore2(data2, 0, (__global float *)tensor3D_offset(&output, 0, 2, 0));
-    vstore2(data3, 0, (__global float *)tensor3D_offset(&output, 0, 3, 0));
-    vstore2(data4, 0, (__global float *)tensor3D_offset(&output, 0, 4, 0));
+    vstore2(data0, 0, (__global DATA_TYPE *)output.ptr);
+    vstore2(data1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 1, 0));
+    vstore2(data2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 2, 0));
+    vstore2(data3, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 3, 0));
+    vstore2(data4, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 4, 0));
 }
 
 /** Computes the first stage of a radix-7 DFT on axis 0.
  *
  * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
  *
- * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F32
+ * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F16/f32
  * @param[in,out] input_stride_x                       Stride of the source tensor in X dimension (in bytes)
  * @param[in,out] input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
  * @param[in,out] input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
@@ -631,7 +662,7 @@
  * @param[in]     output_step_z                        (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes)
  * @param[in]     output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image
  */
-kernel void fft_radix_7_first_stage_axis_0(
+__kernel void fft_radix_7_first_stage_axis_0(
     TENSOR3D_DECLARATION(input)
 #ifndef IN_PLACE
     ,
@@ -648,24 +679,27 @@
 #endif /* IN_PLACE */
 
     // Load seven complex input values
-    float8 data0 = vload8(0, (__global float *)input.ptr);
-    float4 data1 = vload4(0, (__global float *)tensor3D_offset(&input, 4, 0, 0));
-    float2 data2 = vload2(0, (__global float *)tensor3D_offset(&input, 6, 0, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 8)
+    data0 = vload8(0, (__global DATA_TYPE *)input.ptr);
+    VEC_DATA_TYPE(DATA_TYPE, 4)
+    data1 = vload4(0, (__global DATA_TYPE *)tensor3D_offset(&input, 4, 0, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 6, 0, 0));
 
     // Compute DFT N = 7
     DFT_7(data0.s01, data0.s23, data0.s45, data0.s67, data1.s01, data1.s23, data2.s01);
 
     // Store seven complex output values
-    vstore8(data0, 0, (__global float *)output.ptr);
-    vstore4(data1, 0, (__global float *)tensor3D_offset(&output, 4, 0, 0));
-    vstore2(data2, 0, (__global float *)tensor3D_offset(&output, 6, 0, 0));
+    vstore8(data0, 0, (__global DATA_TYPE *)output.ptr);
+    vstore4(data1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 4, 0, 0));
+    vstore2(data2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 6, 0, 0));
 }
 
 /** Computes the first stage of a radix-7 DFT on axis 1.
  *
  * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
  *
- * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F32
+ * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F16/f32
  * @param[in,out] input_stride_x                       Stride of the source tensor in X dimension (in bytes)
  * @param[in,out] input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
  * @param[in,out] input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
@@ -682,7 +716,7 @@
  * @param[in]     output_step_z                        (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes)
  * @param[in]     output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image
  */
-kernel void fft_radix_7_first_stage_axis_1(
+__kernel void fft_radix_7_first_stage_axis_1(
     TENSOR3D_DECLARATION(input)
 #ifndef IN_PLACE
     ,
@@ -699,32 +733,39 @@
 #endif /* IN_PLACE */
 
     // Load seven complex input values
-    float2 data0 = vload2(0, (__global float *)input.ptr);
-    float2 data1 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 1, 0));
-    float2 data2 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 2, 0));
-    float2 data3 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 3, 0));
-    float2 data4 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 4, 0));
-    float2 data5 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 5, 0));
-    float2 data6 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 6, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data0 = vload2(0, (__global DATA_TYPE *)input.ptr);
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data3 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 3, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data4 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 4, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data5 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 5, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data6 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 6, 0));
 
     // Compute DFT N = 7
     DFT_7(data0, data1, data2, data3, data4, data5, data6);
 
     // Store seven complex output values
-    vstore2(data0, 0, (__global float *)output.ptr);
-    vstore2(data1, 0, (__global float *)tensor3D_offset(&output, 0, 1, 0));
-    vstore2(data2, 0, (__global float *)tensor3D_offset(&output, 0, 2, 0));
-    vstore2(data3, 0, (__global float *)tensor3D_offset(&output, 0, 3, 0));
-    vstore2(data4, 0, (__global float *)tensor3D_offset(&output, 0, 4, 0));
-    vstore2(data5, 0, (__global float *)tensor3D_offset(&output, 0, 5, 0));
-    vstore2(data6, 0, (__global float *)tensor3D_offset(&output, 0, 6, 0));
+    vstore2(data0, 0, (__global DATA_TYPE *)output.ptr);
+    vstore2(data1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 1, 0));
+    vstore2(data2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 2, 0));
+    vstore2(data3, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 3, 0));
+    vstore2(data4, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 4, 0));
+    vstore2(data5, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 5, 0));
+    vstore2(data6, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 6, 0));
 }
 
 /** Computes the first stage of a radix-8 DFT on axis 0.
  *
  * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
  *
- * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F32
+ * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F16/f32
  * @param[in,out] input_stride_x                       Stride of the source tensor in X dimension (in bytes)
  * @param[in,out] input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
  * @param[in,out] input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
@@ -741,7 +782,7 @@
  * @param[in]     output_step_z                        (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes)
  * @param[in]     output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image
  */
-kernel void fft_radix_8_first_stage_axis_0(
+__kernel void fft_radix_8_first_stage_axis_0(
     TENSOR3D_DECLARATION(input)
 #ifndef IN_PLACE
     ,
@@ -758,20 +799,21 @@
 #endif /* IN_PLACE */
 
     // Load eight complex input values
-    float16 data = vload16(0, (__global float *)input.ptr);
+    VEC_DATA_TYPE(DATA_TYPE, 16)
+    data = vload16(0, (__global DATA_TYPE *)input.ptr);
 
     // Compute DFT N = 8
     DFT_8(data.s01, data.s23, data.s45, data.s67, data.s89, data.sAB, data.sCD, data.sEF);
 
     // Store eight complex output values
-    vstore16(data, 0, (__global float *)output.ptr);
+    vstore16(data, 0, (__global DATA_TYPE *)output.ptr);
 }
 
 /** Computes the first stage of a radix-8 DFT on axis 1.
  *
  * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
  *
- * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F32
+ * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F16/f32
  * @param[in,out] input_stride_x                       Stride of the source tensor in X dimension (in bytes)
  * @param[in,out] input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
  * @param[in,out] input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
@@ -788,7 +830,7 @@
  * @param[in]     output_step_z                        (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes)
  * @param[in]     output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image
  */
-kernel void fft_radix_8_first_stage_axis_1(
+__kernel void fft_radix_8_first_stage_axis_1(
     TENSOR3D_DECLARATION(input)
 #ifndef IN_PLACE
     ,
@@ -805,34 +847,42 @@
 #endif /* IN_PLACE */
 
     // Load eight complex input values
-    float2 data0 = vload2(0, (__global float *)input.ptr);
-    float2 data1 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 1, 0));
-    float2 data2 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 2, 0));
-    float2 data3 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 3, 0));
-    float2 data4 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 4, 0));
-    float2 data5 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 5, 0));
-    float2 data6 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 6, 0));
-    float2 data7 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 7, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data0 = vload2(0, (__global DATA_TYPE *)input.ptr);
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data3 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 3, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data4 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 4, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data5 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 5, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data6 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 6, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data7 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 7, 0));
 
     // Compute DFT N = 8
     DFT_8(data0, data1, data2, data3, data4, data5, data6, data7);
 
     // Store eight complex output values
-    vstore2(data0, 0, (__global float *)output.ptr);
-    vstore2(data1, 0, (__global float *)tensor3D_offset(&output, 0, 1, 0));
-    vstore2(data2, 0, (__global float *)tensor3D_offset(&output, 0, 2, 0));
-    vstore2(data3, 0, (__global float *)tensor3D_offset(&output, 0, 3, 0));
-    vstore2(data4, 0, (__global float *)tensor3D_offset(&output, 0, 4, 0));
-    vstore2(data5, 0, (__global float *)tensor3D_offset(&output, 0, 5, 0));
-    vstore2(data6, 0, (__global float *)tensor3D_offset(&output, 0, 6, 0));
-    vstore2(data7, 0, (__global float *)tensor3D_offset(&output, 0, 7, 0));
+    vstore2(data0, 0, (__global DATA_TYPE *)output.ptr);
+    vstore2(data1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 1, 0));
+    vstore2(data2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 2, 0));
+    vstore2(data3, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 3, 0));
+    vstore2(data4, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 4, 0));
+    vstore2(data5, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 5, 0));
+    vstore2(data6, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 6, 0));
+    vstore2(data7, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 7, 0));
 }
 
 /** Computes a stage of a radix-2 FFT on axis 0.
  *
  * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
  *
- * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F32
+ * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F16/f32
  * @param[in,out] input_stride_x                       Stride of the source tensor in X dimension (in bytes)
  * @param[in,out] input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
  * @param[in,out] input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
@@ -852,7 +902,7 @@
  * @param[in]     Ni                                   Nx * Ny.
  * @param[in]     exp_const                            Exponent constant
  */
-kernel void fft_radix_2_axis_0(
+__kernel void fft_radix_2_axis_0(
     TENSOR3D_DECLARATION(input)
 #ifndef IN_PLACE
     ,
@@ -881,11 +931,13 @@
 #endif /* IN_PLACE */
 
     // Load two complex input values
-    float2 c0 = vload2(0, (__global float *)input.ptr);
-    float2 c1 = vload2(0, (__global float *)tensor3D_offset(&input, Nx, 0, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c0 = vload2(0, (__global DATA_TYPE *)input.ptr);
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, Nx, 0, 0));
 
     // Compute phi
-    float phi = (float)nx * exp_const;
+    DATA_TYPE phi = (DATA_TYPE)nx * (DATA_TYPE)exp_const;
 
     // Multiply by twiddle factor
     TWIDDLE_FACTOR_MULTIPLICATION(phi, c1);
@@ -894,15 +946,15 @@
     DFT_2(c0, c1);
 
     // Store two complex output values
-    vstore2(c0, 0, (__global float *)output.ptr);
-    vstore2(c1, 0, (__global float *)tensor3D_offset(&output, Nx, 0, 0));
+    vstore2(c0, 0, (__global DATA_TYPE *)output.ptr);
+    vstore2(c1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, Nx, 0, 0));
 }
 
 /** Computes a stage of a radix-2 FFT on axis 1.
  *
  * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
  *
- * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F32
+ * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F16/f32
  * @param[in,out] input_stride_x                       Stride of the source tensor in X dimension (in bytes)
  * @param[in,out] input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
  * @param[in,out] input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
@@ -922,7 +974,7 @@
  * @param[in]     Ni                                   Nx * Ny.
  * @param[in]     exp_const                            Exponent constant
  */
-kernel void fft_radix_2_axis_1(
+__kernel void fft_radix_2_axis_1(
     TENSOR3D_DECLARATION(input)
 #ifndef IN_PLACE
     ,
@@ -951,11 +1003,13 @@
 #endif /* IN_PLACE */
 
     // Load two complex input values
-    float2 c0 = vload2(0, (__global float *)input.ptr);
-    float2 c1 = vload2(0, (__global float *)tensor3D_offset(&input, 0, Nx, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c0 = vload2(0, (__global DATA_TYPE *)input.ptr);
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, Nx, 0));
 
     // Compute phi
-    float phi = (float)nx * exp_const;
+    DATA_TYPE phi = (DATA_TYPE)nx * (DATA_TYPE)exp_const;
 
     // Multiply by twiddle factor
     TWIDDLE_FACTOR_MULTIPLICATION(phi, c1);
@@ -964,15 +1018,15 @@
     DFT_2(c0, c1);
 
     // Store two complex output values
-    vstore2(c0, 0, (__global float *)output.ptr);
-    vstore2(c1, 0, (__global float *)tensor3D_offset(&output, 0, Nx, 0));
+    vstore2(c0, 0, (__global DATA_TYPE *)output.ptr);
+    vstore2(c1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, Nx, 0));
 }
 
 /** Computes a stage of a radix-3 FFT on axis 0.
  *
  * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
  *
- * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F32
+ * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F16/f32
  * @param[in,out] input_stride_x                       Stride of the source tensor in X dimension (in bytes)
  * @param[in,out] input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
  * @param[in,out] input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
@@ -992,7 +1046,7 @@
  * @param[in]     Ni                                   Nx * Ny.
  * @param[in]     exp_const                            Exponent constant
  */
-kernel void fft_radix_3_axis_0(
+__kernel void fft_radix_3_axis_0(
     TENSOR3D_DECLARATION(input)
 #ifndef IN_PLACE
     ,
@@ -1021,12 +1075,15 @@
 #endif /* IN_PLACE */
 
     // Load three complex input values
-    float2 c0 = vload2(0, (__global float *)input.ptr);
-    float2 c1 = vload2(0, (__global float *)tensor3D_offset(&input, Nx, 0, 0));
-    float2 c2 = vload2(0, (__global float *)tensor3D_offset(&input, 2 * Nx, 0, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c0 = vload2(0, (__global DATA_TYPE *)input.ptr);
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, Nx, 0, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 2 * Nx, 0, 0));
 
     // Compute phi
-    float phi = (float)nx * exp_const;
+    DATA_TYPE phi = (DATA_TYPE)nx * (DATA_TYPE)exp_const;
 
     // Multiply by twiddle factor
     TWIDDLE_FACTOR_MULTIPLICATION(phi, c1);
@@ -1036,16 +1093,16 @@
     DFT_3(c0, c1, c2);
 
     // Store three complex output values
-    vstore2(c0, 0, (__global float *)output.ptr);
-    vstore2(c1, 0, (__global float *)tensor3D_offset(&output, Nx, 0, 0));
-    vstore2(c2, 0, (__global float *)tensor3D_offset(&output, 2 * Nx, 0, 0));
+    vstore2(c0, 0, (__global DATA_TYPE *)output.ptr);
+    vstore2(c1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, Nx, 0, 0));
+    vstore2(c2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 2 * Nx, 0, 0));
 }
 
 /** Computes a stage of a radix-3 FFT on axis 1.
  *
  * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
  *
- * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F32
+ * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F16/f32
  * @param[in,out] input_stride_x                       Stride of the source tensor in X dimension (in bytes)
  * @param[in,out] input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
  * @param[in,out] input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
@@ -1065,7 +1122,7 @@
  * @param[in]     Ni                                   Nx * Ny.
  * @param[in]     exp_const                            Exponent constant
  */
-kernel void fft_radix_3_axis_1(
+__kernel void fft_radix_3_axis_1(
     TENSOR3D_DECLARATION(input)
 #ifndef IN_PLACE
     ,
@@ -1094,12 +1151,15 @@
 #endif /* IN_PLACE */
 
     // Load three complex input values
-    float2 c0 = vload2(0, (__global float *)input.ptr);
-    float2 c1 = vload2(0, (__global float *)tensor3D_offset(&input, 0, Nx, 0));
-    float2 c2 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 2 * Nx, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c0 = vload2(0, (__global DATA_TYPE *)input.ptr);
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, Nx, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2 * Nx, 0));
 
     // Compute phi
-    float phi = (float)nx * exp_const;
+    DATA_TYPE phi = (DATA_TYPE)nx * (DATA_TYPE)exp_const;
 
     // Multiply by twiddle factor
     TWIDDLE_FACTOR_MULTIPLICATION(phi, c1);
@@ -1109,16 +1169,16 @@
     DFT_3(c0, c1, c2);
 
     // Store three complex output values
-    vstore2(c0, 0, (__global float *)output.ptr);
-    vstore2(c1, 0, (__global float *)tensor3D_offset(&output, 0, Nx, 0));
-    vstore2(c2, 0, (__global float *)tensor3D_offset(&output, 0, 2 * Nx, 0));
+    vstore2(c0, 0, (__global DATA_TYPE *)output.ptr);
+    vstore2(c1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, Nx, 0));
+    vstore2(c2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 2 * Nx, 0));
 }
 
 /** Computes a stage of a radix-4 FFT on axis 0.
  *
  * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
  *
- * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F32
+ * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F16/f32
  * @param[in,out] input_stride_x                       Stride of the source tensor in X dimension (in bytes)
  * @param[in,out] input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
  * @param[in,out] input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
@@ -1138,7 +1198,7 @@
  * @param[in]     Ni                                   Nx * Ny.
  * @param[in]     exp_const                            Exponent constant
  */
-kernel void fft_radix_4_axis_0(
+__kernel void fft_radix_4_axis_0(
     TENSOR3D_DECLARATION(input)
 #ifndef IN_PLACE
     ,
@@ -1167,13 +1227,17 @@
 #endif /* IN_PLACE */
 
     // Load four complex input values
-    float2 c0 = vload2(0, (__global float *)input.ptr);
-    float2 c1 = vload2(0, (__global float *)tensor3D_offset(&input, Nx, 0, 0));
-    float2 c2 = vload2(0, (__global float *)tensor3D_offset(&input, 2 * Nx, 0, 0));
-    float2 c3 = vload2(0, (__global float *)tensor3D_offset(&input, 3 * Nx, 0, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c0 = vload2(0, (__global DATA_TYPE *)input.ptr);
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, Nx, 0, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 2 * Nx, 0, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c3 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 3 * Nx, 0, 0));
 
     // Compute phi
-    float phi = (float)nx * exp_const;
+    DATA_TYPE phi = (DATA_TYPE)nx * (DATA_TYPE)exp_const;
 
     // Multiply by twiddle factor
     TWIDDLE_FACTOR_MULTIPLICATION(phi, c1);
@@ -1184,17 +1248,17 @@
     DFT_4(c0, c1, c2, c3);
 
     // Store four complex output values
-    vstore2(c0, 0, (__global float *)output.ptr);
-    vstore2(c1, 0, (__global float *)tensor3D_offset(&output, Nx, 0, 0));
-    vstore2(c2, 0, (__global float *)tensor3D_offset(&output, 2 * Nx, 0, 0));
-    vstore2(c3, 0, (__global float *)tensor3D_offset(&output, 3 * Nx, 0, 0));
+    vstore2(c0, 0, (__global DATA_TYPE *)output.ptr);
+    vstore2(c1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, Nx, 0, 0));
+    vstore2(c2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 2 * Nx, 0, 0));
+    vstore2(c3, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 3 * Nx, 0, 0));
 }
 
 /** Computes a stage of a radix-4 FFT on axis 1.
  *
  * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
  *
- * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F32
+ * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F16/f32
  * @param[in,out] input_stride_x                       Stride of the source tensor in X dimension (in bytes)
  * @param[in,out] input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
  * @param[in,out] input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
@@ -1214,7 +1278,7 @@
  * @param[in]     Ni                                   Nx * Ny.
  * @param[in]     exp_const                            Exponent constant
  */
-kernel void fft_radix_4_axis_1(
+__kernel void fft_radix_4_axis_1(
     TENSOR3D_DECLARATION(input)
 #ifndef IN_PLACE
     ,
@@ -1243,13 +1307,17 @@
 #endif /* IN_PLACE */
 
     // Load four complex input values
-    float2 c0 = vload2(0, (__global float *)input.ptr);
-    float2 c1 = vload2(0, (__global float *)tensor3D_offset(&input, 0, Nx, 0));
-    float2 c2 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 2 * Nx, 0));
-    float2 c3 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 3 * Nx, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c0 = vload2(0, (__global DATA_TYPE *)input.ptr);
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, Nx, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2 * Nx, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c3 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 3 * Nx, 0));
 
     // Compute phi
-    float phi = (float)nx * exp_const;
+    DATA_TYPE phi = (DATA_TYPE)nx * (DATA_TYPE)exp_const;
 
     // Multiply by twiddle factor
     TWIDDLE_FACTOR_MULTIPLICATION(phi, c1);
@@ -1260,17 +1328,17 @@
     DFT_4(c0, c1, c2, c3);
 
     // Store four complex output values
-    vstore2(c0, 0, (__global float *)output.ptr);
-    vstore2(c1, 0, (__global float *)tensor3D_offset(&output, 0, Nx, 0));
-    vstore2(c2, 0, (__global float *)tensor3D_offset(&output, 0, 2 * Nx, 0));
-    vstore2(c3, 0, (__global float *)tensor3D_offset(&output, 0, 3 * Nx, 0));
+    vstore2(c0, 0, (__global DATA_TYPE *)output.ptr);
+    vstore2(c1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, Nx, 0));
+    vstore2(c2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 2 * Nx, 0));
+    vstore2(c3, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 3 * Nx, 0));
 }
 
 /** Computes a stage of a radix-5 FFT on axis 0.
  *
  * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
  *
- * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F32
+ * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F16/f32
  * @param[in,out] input_stride_x                       Stride of the source tensor in X dimension (in bytes)
  * @param[in,out] input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
  * @param[in,out] input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
@@ -1290,7 +1358,7 @@
  * @param[in]     Ni                                   Nx * Ny.
  * @param[in]     exp_const                            Exponent constant
  */
-kernel void fft_radix_5_axis_0(
+__kernel void fft_radix_5_axis_0(
     TENSOR3D_DECLARATION(input)
 #ifndef IN_PLACE
     ,
@@ -1319,14 +1387,19 @@
 #endif /* IN_PLACE */
 
     // Load five complex input values
-    float2 c0 = vload2(0, (__global float *)input.ptr);
-    float2 c1 = vload2(0, (__global float *)tensor3D_offset(&input, Nx, 0, 0));
-    float2 c2 = vload2(0, (__global float *)tensor3D_offset(&input, 2 * Nx, 0, 0));
-    float2 c3 = vload2(0, (__global float *)tensor3D_offset(&input, 3 * Nx, 0, 0));
-    float2 c4 = vload2(0, (__global float *)tensor3D_offset(&input, 4 * Nx, 0, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c0 = vload2(0, (__global DATA_TYPE *)input.ptr);
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, Nx, 0, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 2 * Nx, 0, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c3 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 3 * Nx, 0, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c4 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 4 * Nx, 0, 0));
 
     // Compute phi
-    float phi = (float)nx * exp_const;
+    DATA_TYPE phi = (DATA_TYPE)nx * (DATA_TYPE)exp_const;
 
     // Multiply by twiddle factor
     TWIDDLE_FACTOR_MULTIPLICATION(phi, c1);
@@ -1338,18 +1411,18 @@
     DFT_5(c0, c1, c2, c3, c4);
 
     // Store five complex output values
-    vstore2(c0, 0, (__global float *)output.ptr);
-    vstore2(c1, 0, (__global float *)tensor3D_offset(&output, Nx, 0, 0));
-    vstore2(c2, 0, (__global float *)tensor3D_offset(&output, 2 * Nx, 0, 0));
-    vstore2(c3, 0, (__global float *)tensor3D_offset(&output, 3 * Nx, 0, 0));
-    vstore2(c4, 0, (__global float *)tensor3D_offset(&output, 4 * Nx, 0, 0));
+    vstore2(c0, 0, (__global DATA_TYPE *)output.ptr);
+    vstore2(c1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, Nx, 0, 0));
+    vstore2(c2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 2 * Nx, 0, 0));
+    vstore2(c3, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 3 * Nx, 0, 0));
+    vstore2(c4, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 4 * Nx, 0, 0));
 }
 
 /** Computes a stage of a radix-5 FFT on axis 1.
  *
  * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
  *
- * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F32
+ * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F16/f32
  * @param[in,out] input_stride_x                       Stride of the source tensor in X dimension (in bytes)
  * @param[in,out] input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
  * @param[in,out] input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
@@ -1369,7 +1442,7 @@
  * @param[in]     Ni                                   Nx * Ny.
  * @param[in]     exp_const                            Exponent constant
  */
-kernel void fft_radix_5_axis_1(
+__kernel void fft_radix_5_axis_1(
     TENSOR3D_DECLARATION(input)
 #ifndef IN_PLACE
     ,
@@ -1398,14 +1471,19 @@
 #endif /* IN_PLACE */
 
     // Load five complex input values
-    float2 c0 = vload2(0, (__global float *)input.ptr);
-    float2 c1 = vload2(0, (__global float *)tensor3D_offset(&input, 0, Nx, 0));
-    float2 c2 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 2 * Nx, 0));
-    float2 c3 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 3 * Nx, 0));
-    float2 c4 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 4 * Nx, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c0 = vload2(0, (__global DATA_TYPE *)input.ptr);
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, Nx, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2 * Nx, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c3 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 3 * Nx, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c4 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 4 * Nx, 0));
 
     // Compute phi
-    float phi = (float)nx * exp_const;
+    DATA_TYPE phi = (DATA_TYPE)nx * (DATA_TYPE)exp_const;
 
     // Multiply by twiddle factor
     TWIDDLE_FACTOR_MULTIPLICATION(phi, c1);
@@ -1417,18 +1495,18 @@
     DFT_5(c0, c1, c2, c3, c4);
 
     // Store five complex output values
-    vstore2(c0, 0, (__global float *)output.ptr);
-    vstore2(c1, 0, (__global float *)tensor3D_offset(&output, 0, Nx, 0));
-    vstore2(c2, 0, (__global float *)tensor3D_offset(&output, 0, 2 * Nx, 0));
-    vstore2(c3, 0, (__global float *)tensor3D_offset(&output, 0, 3 * Nx, 0));
-    vstore2(c4, 0, (__global float *)tensor3D_offset(&output, 0, 4 * Nx, 0));
+    vstore2(c0, 0, (__global DATA_TYPE *)output.ptr);
+    vstore2(c1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, Nx, 0));
+    vstore2(c2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 2 * Nx, 0));
+    vstore2(c3, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 3 * Nx, 0));
+    vstore2(c4, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 4 * Nx, 0));
 }
 
 /** Computes a stage of a radix-7 FFT on axis 0.
  *
  * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
  *
- * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F32
+ * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F16/f32
  * @param[in,out] input_stride_x                       Stride of the source tensor in X dimension (in bytes)
  * @param[in,out] input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
  * @param[in,out] input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
@@ -1448,7 +1526,7 @@
  * @param[in]     Ni                                   Nx * Ny.
  * @param[in]     exp_const                            Exponent constant
  */
-kernel void fft_radix_7_axis_0(
+__kernel void fft_radix_7_axis_0(
     TENSOR3D_DECLARATION(input)
 #ifndef IN_PLACE
     ,
@@ -1477,16 +1555,23 @@
 #endif /* IN_PLACE */
 
     // Load seven complex input values
-    float2 c0 = vload2(0, (__global float *)input.ptr);
-    float2 c1 = vload2(0, (__global float *)tensor3D_offset(&input, Nx, 0, 0));
-    float2 c2 = vload2(0, (__global float *)tensor3D_offset(&input, 2 * Nx, 0, 0));
-    float2 c3 = vload2(0, (__global float *)tensor3D_offset(&input, 3 * Nx, 0, 0));
-    float2 c4 = vload2(0, (__global float *)tensor3D_offset(&input, 4 * Nx, 0, 0));
-    float2 c5 = vload2(0, (__global float *)tensor3D_offset(&input, 5 * Nx, 0, 0));
-    float2 c6 = vload2(0, (__global float *)tensor3D_offset(&input, 6 * Nx, 0, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c0 = vload2(0, (__global DATA_TYPE *)input.ptr);
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, Nx, 0, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 2 * Nx, 0, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c3 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 3 * Nx, 0, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c4 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 4 * Nx, 0, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c5 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 5 * Nx, 0, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c6 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 6 * Nx, 0, 0));
 
     // Compute phi
-    float phi = (float)nx * exp_const;
+    DATA_TYPE phi = (DATA_TYPE)nx * (DATA_TYPE)exp_const;
 
     // Multiply by twiddle factor
     TWIDDLE_FACTOR_MULTIPLICATION(phi, c1);
@@ -1500,20 +1585,20 @@
     DFT_7(c0, c1, c2, c3, c4, c5, c6);
 
     // Store seven complex output values
-    vstore2(c0, 0, (__global float *)output.ptr);
-    vstore2(c1, 0, (__global float *)tensor3D_offset(&output, Nx, 0, 0));
-    vstore2(c2, 0, (__global float *)tensor3D_offset(&output, 2 * Nx, 0, 0));
-    vstore2(c3, 0, (__global float *)tensor3D_offset(&output, 3 * Nx, 0, 0));
-    vstore2(c4, 0, (__global float *)tensor3D_offset(&output, 4 * Nx, 0, 0));
-    vstore2(c5, 0, (__global float *)tensor3D_offset(&output, 5 * Nx, 0, 0));
-    vstore2(c6, 0, (__global float *)tensor3D_offset(&output, 6 * Nx, 0, 0));
+    vstore2(c0, 0, (__global DATA_TYPE *)output.ptr);
+    vstore2(c1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, Nx, 0, 0));
+    vstore2(c2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 2 * Nx, 0, 0));
+    vstore2(c3, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 3 * Nx, 0, 0));
+    vstore2(c4, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 4 * Nx, 0, 0));
+    vstore2(c5, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 5 * Nx, 0, 0));
+    vstore2(c6, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 6 * Nx, 0, 0));
 }
 
 /** Computes a stage of a radix-7 FFT on axis 1.
  *
  * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
  *
- * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F32
+ * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F16/f32
  * @param[in,out] input_stride_x                       Stride of the source tensor in X dimension (in bytes)
  * @param[in,out] input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
  * @param[in,out] input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
@@ -1533,7 +1618,7 @@
  * @param[in]     Ni                                   Nx * Ny.
  * @param[in]     exp_const                            Exponent constant
  */
-kernel void fft_radix_7_axis_1(
+__kernel void fft_radix_7_axis_1(
     TENSOR3D_DECLARATION(input)
 #ifndef IN_PLACE
     ,
@@ -1562,16 +1647,23 @@
 #endif /* IN_PLACE */
 
     // Load seven complex input values
-    float2 c0 = vload2(0, (__global float *)input.ptr);
-    float2 c1 = vload2(0, (__global float *)tensor3D_offset(&input, 0, Nx, 0));
-    float2 c2 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 2 * Nx, 0));
-    float2 c3 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 3 * Nx, 0));
-    float2 c4 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 4 * Nx, 0));
-    float2 c5 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 5 * Nx, 0));
-    float2 c6 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 6 * Nx, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c0 = vload2(0, (__global DATA_TYPE *)input.ptr);
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, Nx, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2 * Nx, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c3 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 3 * Nx, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c4 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 4 * Nx, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c5 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 5 * Nx, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c6 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 6 * Nx, 0));
 
     // Compute phi
-    float phi = (float)nx * exp_const;
+    DATA_TYPE phi = (DATA_TYPE)nx * (DATA_TYPE)exp_const;
 
     // Multiply by twiddle factor
     TWIDDLE_FACTOR_MULTIPLICATION(phi, c1);
@@ -1585,20 +1677,20 @@
     DFT_7(c0, c1, c2, c3, c4, c5, c6);
 
     // Store seven complex output values
-    vstore2(c0, 0, (__global float *)output.ptr);
-    vstore2(c1, 0, (__global float *)tensor3D_offset(&output, 0, Nx, 0));
-    vstore2(c2, 0, (__global float *)tensor3D_offset(&output, 0, 2 * Nx, 0));
-    vstore2(c3, 0, (__global float *)tensor3D_offset(&output, 0, 3 * Nx, 0));
-    vstore2(c4, 0, (__global float *)tensor3D_offset(&output, 0, 4 * Nx, 0));
-    vstore2(c5, 0, (__global float *)tensor3D_offset(&output, 0, 5 * Nx, 0));
-    vstore2(c6, 0, (__global float *)tensor3D_offset(&output, 0, 6 * Nx, 0));
+    vstore2(c0, 0, (__global DATA_TYPE *)output.ptr);
+    vstore2(c1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, Nx, 0));
+    vstore2(c2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 2 * Nx, 0));
+    vstore2(c3, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 3 * Nx, 0));
+    vstore2(c4, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 4 * Nx, 0));
+    vstore2(c5, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 5 * Nx, 0));
+    vstore2(c6, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 6 * Nx, 0));
 }
 
 /** Computes a stage of a radix-8 FFT on axis 0.
  *
  * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
  *
- * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F32
+ * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F16/f32
  * @param[in,out] input_stride_x                       Stride of the source tensor in X dimension (in bytes)
  * @param[in,out] input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
  * @param[in,out] input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
@@ -1618,7 +1710,7 @@
  * @param[in]     Ni                                   Nx * Ny.
  * @param[in]     exp_const                            Exponent constant
  */
-kernel void fft_radix_8_axis_0(
+__kernel void fft_radix_8_axis_0(
     TENSOR3D_DECLARATION(input)
 #ifndef IN_PLACE
     ,
@@ -1647,17 +1739,25 @@
 #endif /* IN_PLACE */
 
     // Load eight complex input values
-    float2 c0 = vload2(0, (__global float *)input.ptr);
-    float2 c1 = vload2(0, (__global float *)tensor3D_offset(&input, Nx, 0, 0));
-    float2 c2 = vload2(0, (__global float *)tensor3D_offset(&input, 2 * Nx, 0, 0));
-    float2 c3 = vload2(0, (__global float *)tensor3D_offset(&input, 3 * Nx, 0, 0));
-    float2 c4 = vload2(0, (__global float *)tensor3D_offset(&input, 4 * Nx, 0, 0));
-    float2 c5 = vload2(0, (__global float *)tensor3D_offset(&input, 5 * Nx, 0, 0));
-    float2 c6 = vload2(0, (__global float *)tensor3D_offset(&input, 6 * Nx, 0, 0));
-    float2 c7 = vload2(0, (__global float *)tensor3D_offset(&input, 7 * Nx, 0, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c0 = vload2(0, (__global DATA_TYPE *)input.ptr);
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, Nx, 0, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 2 * Nx, 0, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c3 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 3 * Nx, 0, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c4 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 4 * Nx, 0, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c5 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 5 * Nx, 0, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c6 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 6 * Nx, 0, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c7 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 7 * Nx, 0, 0));
 
     // Compute phi
-    float phi = (float)nx * exp_const;
+    DATA_TYPE phi = (DATA_TYPE)nx * (DATA_TYPE)exp_const;
 
     // Multiply by twiddle factor
     TWIDDLE_FACTOR_MULTIPLICATION(phi, c1);
@@ -1672,21 +1772,21 @@
     DFT_8(c0, c1, c2, c3, c4, c5, c6, c7);
 
     // Store eight complex output values
-    vstore2(c0, 0, (__global float *)output.ptr);
-    vstore2(c1, 0, (__global float *)tensor3D_offset(&output, Nx, 0, 0));
-    vstore2(c2, 0, (__global float *)tensor3D_offset(&output, 2 * Nx, 0, 0));
-    vstore2(c3, 0, (__global float *)tensor3D_offset(&output, 3 * Nx, 0, 0));
-    vstore2(c4, 0, (__global float *)tensor3D_offset(&output, 4 * Nx, 0, 0));
-    vstore2(c5, 0, (__global float *)tensor3D_offset(&output, 5 * Nx, 0, 0));
-    vstore2(c6, 0, (__global float *)tensor3D_offset(&output, 6 * Nx, 0, 0));
-    vstore2(c7, 0, (__global float *)tensor3D_offset(&output, 7 * Nx, 0, 0));
+    vstore2(c0, 0, (__global DATA_TYPE *)output.ptr);
+    vstore2(c1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, Nx, 0, 0));
+    vstore2(c2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 2 * Nx, 0, 0));
+    vstore2(c3, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 3 * Nx, 0, 0));
+    vstore2(c4, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 4 * Nx, 0, 0));
+    vstore2(c5, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 5 * Nx, 0, 0));
+    vstore2(c6, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 6 * Nx, 0, 0));
+    vstore2(c7, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 7 * Nx, 0, 0));
 }
 
 /** Computes a stage of a radix-8 FFT on axis 1.
  *
  * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
  *
- * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F32
+ * @param[in,out] input_ptr                            Pointer to the source tensor. Supported data types: F16/f32
  * @param[in,out] input_stride_x                       Stride of the source tensor in X dimension (in bytes)
  * @param[in,out] input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
  * @param[in,out] input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
@@ -1706,7 +1806,7 @@
  * @param[in]     Ni                                   Nx * Ny.
  * @param[in]     exp_const                            Exponent constant
  */
-kernel void fft_radix_8_axis_1(
+__kernel void fft_radix_8_axis_1(
     TENSOR3D_DECLARATION(input)
 #ifndef IN_PLACE
     ,
@@ -1735,17 +1835,25 @@
 #endif /* IN_PLACE */
 
     // Load eight complex input values
-    float2 c0 = vload2(0, (__global float *)input.ptr);
-    float2 c1 = vload2(0, (__global float *)tensor3D_offset(&input, 0, Nx, 0));
-    float2 c2 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 2 * Nx, 0));
-    float2 c3 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 3 * Nx, 0));
-    float2 c4 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 4 * Nx, 0));
-    float2 c5 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 5 * Nx, 0));
-    float2 c6 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 6 * Nx, 0));
-    float2 c7 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 7 * Nx, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c0 = vload2(0, (__global DATA_TYPE *)input.ptr);
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, Nx, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2 * Nx, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c3 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 3 * Nx, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c4 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 4 * Nx, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c5 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 5 * Nx, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c6 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 6 * Nx, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    c7 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 7 * Nx, 0));
 
     // Compute phi
-    float phi = (float)nx * exp_const;
+    DATA_TYPE phi = (DATA_TYPE)nx * (DATA_TYPE)exp_const;
 
     // Multiply by twiddle factor
     TWIDDLE_FACTOR_MULTIPLICATION(phi, c1);
@@ -1760,12 +1868,13 @@
     DFT_8(c0, c1, c2, c3, c4, c5, c6, c7);
 
     // Store eight complex output values
-    vstore2(c0, 0, (__global float *)output.ptr);
-    vstore2(c1, 0, (__global float *)tensor3D_offset(&output, 0, Nx, 0));
-    vstore2(c2, 0, (__global float *)tensor3D_offset(&output, 0, 2 * Nx, 0));
-    vstore2(c3, 0, (__global float *)tensor3D_offset(&output, 0, 3 * Nx, 0));
-    vstore2(c4, 0, (__global float *)tensor3D_offset(&output, 0, 4 * Nx, 0));
-    vstore2(c5, 0, (__global float *)tensor3D_offset(&output, 0, 5 * Nx, 0));
-    vstore2(c6, 0, (__global float *)tensor3D_offset(&output, 0, 6 * Nx, 0));
-    vstore2(c7, 0, (__global float *)tensor3D_offset(&output, 0, 7 * Nx, 0));
-}
\ No newline at end of file
+    vstore2(c0, 0, (__global DATA_TYPE *)output.ptr);
+    vstore2(c1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, Nx, 0));
+    vstore2(c2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 2 * Nx, 0));
+    vstore2(c3, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 3 * Nx, 0));
+    vstore2(c4, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 4 * Nx, 0));
+    vstore2(c5, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 5 * Nx, 0));
+    vstore2(c6, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 6 * Nx, 0));
+    vstore2(c7, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 7 * Nx, 0));
+}
+#endif // defined(DATA_TYPE)
\ No newline at end of file
diff --git a/src/core/CL/cl_kernels/fft_digit_reverse.cl b/src/core/CL/cl_kernels/fft_digit_reverse.cl
index 200ab91..de56621 100644
--- a/src/core/CL/cl_kernels/fft_digit_reverse.cl
+++ b/src/core/CL/cl_kernels/fft_digit_reverse.cl
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2019 Arm Limited.
+ * Copyright (c) 2019-2020 Arm Limited.
  *
  * SPDX-License-Identifier: MIT
  *
@@ -23,10 +23,10 @@
  */
 #include "helpers.h"
 
-#if defined(VEC_SIZE)
+#if defined(VEC_SIZE) && defined(DATA_TYPE)
 /** Computes the digit reverse stage on axis X
  *
- * @param[in]  src_ptr                           Pointer to the source tensor. Supported data types: F32
+ * @param[in]  src_ptr                           Pointer to the source tensor. Supported data types: F16/F32
  * @param[in]  src_stride_x                      Stride of the source tensor in X dimension (in bytes)
  * @param[in]  src_step_x                        src_stride_x * number of elements along X processed per workitem(in bytes)
  * @param[in]  src_stride_y                      Stride of the source tensor in Y dimension (in bytes)
@@ -61,33 +61,36 @@
 
     // Load data
 #if VEC_SIZE == 1
-    float data = *((__global float *)tensor3D_offset(&src, iidx, get_global_id(1), get_global_id(2)));
+    DATA_TYPE data = *((__global DATA_TYPE *)tensor3D_offset(&src, iidx, get_global_id(1), get_global_id(2)));
 #elif VEC_SIZE == 2
-    float2 data = vload2(0, (__global float *)tensor3D_offset(&src, iidx, get_global_id(1), get_global_id(2)));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&src, iidx, get_global_id(1), get_global_id(2)));
 #else // VEC_SIZE == 1
 #error "vec_size of 1 and 2 are supported"
 #endif // VEC_SIZE == 1
 
     // Create result
 #if VEC_SIZE == 1
-    float2 res = { data, 0 };
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    res = { data, 0 };
 #elif VEC_SIZE == 2
-    float2 res  = data;
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    res = data;
 #else // VEC_SIZE == 1
 #error "vec_size of 1 and 2 are supported"
 #endif // VEC_SIZE == 1
 
     // Store result
 #if defined(CONJ)
-    vstore2((float2)(res.s0, -res.s1), 0, (__global float *)dst.ptr);
+    vstore2((VEC_DATA_TYPE(DATA_TYPE, 2))(res.s0, -res.s1), 0, (__global DATA_TYPE *)dst.ptr);
 #else  // defined(CONJ)
-    vstore2(res, 0, (__global float *)dst.ptr);
+    vstore2(res, 0, (__global DATA_TYPE *)dst.ptr);
 #endif // defined(CONJ)
 }
 
 /** Computes the digit reverse stage on axis Y
  *
- * @param[in]  src_ptr                           Pointer to the source tensor. Supported data types: F32
+ * @param[in]  src_ptr                           Pointer to the source tensor. Supported data types: F16/F32
  * @param[in]  src_stride_x                      Stride of the source tensor in X dimension (in bytes)
  * @param[in]  src_step_x                        src_stride_x * number of elements along X processed per workitem(in bytes)
  * @param[in]  src_stride_y                      Stride of the source tensor in Y dimension (in bytes)
@@ -122,27 +125,30 @@
 
     // Load data
 #if VEC_SIZE == 1
-    float data = *((__global float *)tensor3D_offset(&src, get_global_id(0), iidx, get_global_id(2)));
+    DATA_TYPE data = *((__global DATA_TYPE *)tensor3D_offset(&src, get_global_id(0), iidx, get_global_id(2)));
 #elif VEC_SIZE == 2
-    float2 data = vload2(0, (__global float *)tensor3D_offset(&src, get_global_id(0), iidx, get_global_id(2)));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&src, get_global_id(0), iidx, get_global_id(2)));
 #else // VEC_SIZE == 1
 #error "vec_size of 1 and 2 are supported"
 #endif // VEC_SIZE == 1
 
     // Create result
 #if VEC_SIZE == 1
-    float2 res = { data, 0 };
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    res = { data, 0 };
 #elif VEC_SIZE == 2
-    float2 res  = data;
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    res = data;
 #else // VEC_SIZE == 1
 #error "vec_size of 1 and 2 are supported"
 #endif // VEC_SIZE == 1
 
     // Store result
 #if defined(CONJ)
-    vstore2((float2)(res.s0, -res.s1), 0, (__global float *)dst.ptr);
+    vstore2((VEC_DATA_TYPE(DATA_TYPE, 2))(res.s0, -res.s1), 0, (__global DATA_TYPE *)dst.ptr);
 #else  // defined(CONJ)
-    vstore2(res, 0, (__global float *)dst.ptr);
+    vstore2(res, 0, (__global DATA_TYPE *)dst.ptr);
 #endif // defined(CONJ)
 }
-#endif // defined(VEC_SIZE)
\ No newline at end of file
+#endif // defined(VEC_SIZE) && defined(DATA_TYPE)
\ No newline at end of file
diff --git a/src/core/CL/cl_kernels/fft_scale.cl b/src/core/CL/cl_kernels/fft_scale.cl
index 270fb78..57e25ef 100644
--- a/src/core/CL/cl_kernels/fft_scale.cl
+++ b/src/core/CL/cl_kernels/fft_scale.cl
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2019 Arm Limited.
+ * Copyright (c) 2019-2020 Arm Limited.
  *
  * SPDX-License-Identifier: MIT
  *
@@ -23,9 +23,10 @@
  */
 #include "helpers.h"
 
+#if defined(VEC_SIZE) && defined(DATA_TYPE)
 /** Computes the fft scale stage
  *
- * @param[in]  src_ptr                           Pointer to the source tensor. Supported data types: F32
+ * @param[in]  src_ptr                           Pointer to the source tensor. Supported data types: F16/F32
  * @param[in]  src_stride_x                      Stride of the source tensor in X dimension (in bytes)
  * @param[in]  src_step_x                        src_stride_x * number of elements along X processed per workitem(in bytes)
  * @param[in]  src_stride_y                      Stride of the source tensor in Y dimension (in bytes)
@@ -62,17 +63,19 @@
 
     // Store result
 #if VEC_SIZE == 1
-    *((__global float *)dst.ptr) = (*(__global float *)src.ptr) / scale;
+    *((__global DATA_TYPE *)dst.ptr) = (*(__global DATA_TYPE *)src.ptr) / (DATA_TYPE)scale;
 #elif VEC_SIZE == 2
     // Load data
-    float2 data = vload2(0, (__global float *)src.ptr);
-    data /= scale;
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data = vload2(0, (__global DATA_TYPE *)src.ptr);
+    data /= (DATA_TYPE)scale;
 #if defined(CONJ)
-    vstore2((float2)(data.s0, -data.s1), 0, (__global float *)dst.ptr);
+    vstore2((VEC_DATA_TYPE(DATA_TYPE, 2))(data.s0, -data.s1), 0, (__global DATA_TYPE *)dst.ptr);
 #else  // defined(CONJ)
-    vstore2(data, 0, (__global float *)dst.ptr);
+    vstore2(data, 0, (__global DATA_TYPE *)dst.ptr);
 #endif // defined(CONJ)
 #else  // VEC_SIZE == 1
 #error "vec_size of 1 and 2 are supported"
 #endif // VEC_SIZE == 1
-}
\ No newline at end of file
+}
+#endif // defined(VEC_SIZE) && defined(DATA_TYPE)
\ No newline at end of file
diff --git a/src/core/CL/cl_kernels/pixelwise_mul_float.cl b/src/core/CL/cl_kernels/pixelwise_mul_float.cl
index 4fa1551..845e1c9 100644
--- a/src/core/CL/cl_kernels/pixelwise_mul_float.cl
+++ b/src/core/CL/cl_kernels/pixelwise_mul_float.cl
@@ -105,9 +105,11 @@
 }
 #endif /* defined(DATA_TYPE_IN1) && defined(DATA_TYPE_IN2) && defined(ACC_DATA_TYPE) && defined(DATA_TYPE_OUT) */
 
+#if defined(DATA_TYPE)
+
 /** Performs a pixelwise multiplication of complex float values
  *
- * @param[in]  in1_ptr                           Pointer to the source image. Supported data types: F32
+ * @param[in]  in1_ptr                           Pointer to the source image. Supported data types: F16/F32
  * @param[in]  in1_stride_x                      Stride of the source image in X dimension (in bytes)
  * @param[in]  in1_step_x                        in1_stride_x * number of elements along X processed per workitem(in bytes)
  * @param[in]  in1_stride_y                      Stride of the source image in Y dimension (in bytes)
@@ -143,16 +145,21 @@
     Tensor3D out = CONVERT_TO_TENSOR3D_STRUCT(out);
 
     // Load data
-    float2 vin1 = vload2(0, (__global float *)in1.ptr);
-    float2 vin2 = vload2(0, (__global float *)in2.ptr);
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    vin1 = vload2(0, (__global DATA_TYPE *)in1.ptr);
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    vin2 = vload2(0, (__global DATA_TYPE *)in2.ptr);
 
     // Perform complex multiplication
-    float2 res = { vin1.x *vin2.x - vin1.y * vin2.y, vin1.x *vin2.y + vin2.x * vin1.y };
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    res = { vin1.x *vin2.x - vin1.y * vin2.y, vin1.x *vin2.y + vin2.x * vin1.y };
 
 #if defined(ACTIVATION_TYPE)
-    vstore2(ACTIVATION(ACTIVATION_TYPE, float, VEC_SIZE, res, A_VAL, B_VAL), 0, (__global float *)out.ptr);
+    vstore2(ACTIVATION(ACTIVATION_TYPE, DATA_TYPE, VEC_SIZE, res, A_VAL, B_VAL), 0, (__global DATA_TYPE *)out.ptr);
 #else  // defined(ACTIVATION_TYPE)
     // Store result
-    vstore2(res, 0, (__global float *)out.ptr);
+    vstore2(res, 0, (__global DATA_TYPE *)out.ptr);
 #endif // defined(ACTIVATION_TYPE)
 }
+
+#endif // defined(DATA_TYPE)
\ No newline at end of file
diff --git a/src/core/CL/kernels/CLFFTDigitReverseKernel.cpp b/src/core/CL/kernels/CLFFTDigitReverseKernel.cpp
index 922e50a..448f5a9 100644
--- a/src/core/CL/kernels/CLFFTDigitReverseKernel.cpp
+++ b/src/core/CL/kernels/CLFFTDigitReverseKernel.cpp
@@ -38,7 +38,7 @@
 Status validate_arguments(const ITensorInfo *input, const ITensorInfo *output, const ITensorInfo *idx, const FFTDigitReverseKernelInfo &config)
 {
     ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(input);
-    ARM_COMPUTE_RETURN_ERROR_ON(input->data_type() != DataType::F32);
+    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_NOT_IN(input, DataType::F16, DataType::F32);
     ARM_COMPUTE_RETURN_ERROR_ON(input->num_channels() != 1 && input->num_channels() != 2);
     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(idx, 1, DataType::U32);
     ARM_COMPUTE_RETURN_ERROR_ON(std::set<unsigned int>({ 0, 1 }).count(config.axis) == 0);
@@ -90,6 +90,7 @@
     // Create kernel
     CLBuildOptions build_opts;
     build_opts.add_option("-DVEC_SIZE=" + support::cpp11::to_string(input->info()->num_channels()));
+    build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(input->info()->data_type()));
     build_opts.add_option_if(config.conjugate, "-DCONJ");
     std::string kernel_name = "fft_digit_reverse_axis_" + support::cpp11::to_string(config.axis);
     _kernel                 = create_kernel(compile_context, kernel_name, build_opts.options());
diff --git a/src/core/CL/kernels/CLFFTDigitReverseKernel.h b/src/core/CL/kernels/CLFFTDigitReverseKernel.h
index 2e2f1bd..e5583a4 100644
--- a/src/core/CL/kernels/CLFFTDigitReverseKernel.h
+++ b/src/core/CL/kernels/CLFFTDigitReverseKernel.h
@@ -51,7 +51,7 @@
     ~CLFFTDigitReverseKernel() = default;
     /** Set the input and output tensors.
      *
-     * @param[in]  input  Source tensor. Data types supported: F32.
+     * @param[in]  input  Source tensor. Data types supported: F16/F32.
      * @param[out] output Destination tensor. Data type supported: same as @p input
      * @param[in]  idx    Digit reverse index tensor. Data type supported: U32
      * @param[in]  config Kernel configuration.
@@ -60,7 +60,7 @@
     /** Set the input and output tensors.
      *
      * @param[in]  compile_context The compile context to be used.
-     * @param[in]  input           Source tensor. Data types supported: F32.
+     * @param[in]  input           Source tensor. Data types supported: F16/F32.
      * @param[out] output          Destination tensor. Data type supported: same as @p input
      * @param[in]  idx             Digit reverse index tensor. Data type supported: U32
      * @param[in]  config          Kernel configuration.
@@ -68,7 +68,7 @@
     void configure(const CLCompileContext &compile_context, const ICLTensor *input, ICLTensor *output, const ICLTensor *idx, const FFTDigitReverseKernelInfo &config);
     /** Static function to check if given info will lead to a valid configuration of @ref CLFFTDigitReverseKernel
      *
-     * @param[in] input  Source tensor info. Data types supported: F32.
+     * @param[in] input  Source tensor info. Data types supported: F16/F32.
      * @param[in] output Destination tensor info. Data type supported: same as @p input
      * @param[in] idx    Digit reverse index tensor info. Data type supported: U32
      * @param[in] config Kernel configuration.
diff --git a/src/core/CL/kernels/CLFFTRadixStageKernel.cpp b/src/core/CL/kernels/CLFFTRadixStageKernel.cpp
index 0f06640..68ccb5e 100644
--- a/src/core/CL/kernels/CLFFTRadixStageKernel.cpp
+++ b/src/core/CL/kernels/CLFFTRadixStageKernel.cpp
@@ -42,7 +42,7 @@
 Status validate_arguments(const ITensorInfo *input, const ITensorInfo *output, const FFTRadixStageKernelInfo &config)
 {
     ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(input);
-    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 2, DataType::F32);
+    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 2, DataType::F16, DataType::F32);
     ARM_COMPUTE_RETURN_ERROR_ON(CLFFTRadixStageKernel::supported_radix().count(config.radix) == 0);
     ARM_COMPUTE_RETURN_ERROR_ON(std::set<unsigned int>({ 0, 1 }).count(config.axis) == 0);
     ARM_COMPUTE_RETURN_ERROR_ON(input->tensor_shape()[config.axis] % config.radix);
@@ -99,6 +99,7 @@
 
     // Create build options
     CLBuildOptions build_opts;
+    build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(input->info()->data_type()));
     build_opts.add_option_if(_run_in_place, "-DIN_PLACE");
 
     // Create kernel
diff --git a/src/core/CL/kernels/CLFFTRadixStageKernel.h b/src/core/CL/kernels/CLFFTRadixStageKernel.h
index c3cc510..9bb310d 100644
--- a/src/core/CL/kernels/CLFFTRadixStageKernel.h
+++ b/src/core/CL/kernels/CLFFTRadixStageKernel.h
@@ -55,7 +55,7 @@
      *
      * @note If the output tensor is nullptr, the FFT will be performed in-place
      *
-     * @param[in,out] input  Source tensor. Data types supported: F32.
+     * @param[in,out] input  Source tensor. Data types supported: F16/F32.
      * @param[out]    output Destination tensor. Can be nullptr. Data type supported: same as @p input
      * @param[in]     config FFT descriptor metadata.
      */
@@ -65,14 +65,14 @@
      * @note If the output tensor is nullptr, the FFT will be performed in-place
      *
      * @param[in]     compile_context The compile context to be used.
-     * @param[in,out] input           Source tensor. Data types supported: F32.
+     * @param[in,out] input           Source tensor. Data types supported: F16/F32.
      * @param[out]    output          Destination tensor. Can be nullptr. Data type supported: same as @p input
      * @param[in]     config          FFT descriptor metadata.
      */
     void configure(const CLCompileContext &compile_context, ICLTensor *input, ICLTensor *output, const FFTRadixStageKernelInfo &config);
     /** Static function to check if given info will lead to a valid configuration of @ref CLFFTRadixStageKernel
      *
-     * @param[in] input  Source tensor info. Data types supported: F32.
+     * @param[in] input  Source tensor info. Data types supported: F16/F32.
      * @param[in] output Destination tensor info. Can be nullptr. Data type supported: same as @p input
      * @param[in] config FFT descriptor metadata.
      *
diff --git a/src/core/CL/kernels/CLFFTScaleKernel.cpp b/src/core/CL/kernels/CLFFTScaleKernel.cpp
index 4dbe8d2..f82aeca 100644
--- a/src/core/CL/kernels/CLFFTScaleKernel.cpp
+++ b/src/core/CL/kernels/CLFFTScaleKernel.cpp
@@ -38,7 +38,7 @@
 Status validate_arguments(const ITensorInfo *input, const ITensorInfo *output)
 {
     ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(input);
-    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 2, DataType::F32);
+    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 2, DataType::F16, DataType::F32);
 
     // Checks performed when output is configured
     if((output != nullptr) && (output->total_size() != 0))
@@ -94,6 +94,7 @@
     CLBuildOptions build_opts;
     build_opts.add_option_if(_run_in_place, "-DIN_PLACE");
     build_opts.add_option("-DVEC_SIZE=" + support::cpp11::to_string(output != nullptr ? output->info()->num_channels() : input->info()->num_channels()));
+    build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(input->info()->data_type()));
     build_opts.add_option_if(config.conjugate, "-DCONJ");
     std::string kernel_name = "fft_scale_conj";
     _kernel                 = create_kernel(compile_context, kernel_name, build_opts.options());
diff --git a/src/core/CL/kernels/CLFFTScaleKernel.h b/src/core/CL/kernels/CLFFTScaleKernel.h
index cb007e5..cc518be 100644
--- a/src/core/CL/kernels/CLFFTScaleKernel.h
+++ b/src/core/CL/kernels/CLFFTScaleKernel.h
@@ -51,7 +51,7 @@
     ~CLFFTScaleKernel() = default;
     /** Set the input and output tensors.
      *
-     * @param[in,out] input  Source tensor. Data types supported: F32.
+     * @param[in,out] input  Source tensor. Data types supported: F16/F32.
      * @param[out]    output Destination tensor. Data type supported: same as @p input
      * @param[in]     config Kernel configuration
      */
@@ -59,14 +59,14 @@
     /** Set the input and output tensors.
      *
      * @param[in]     compile_context The compile context to be used.
-     * @param[in,out] input           Source tensor. Data types supported: F32.
+     * @param[in,out] input           Source tensor. Data types supported: F16/F32.
      * @param[out]    output          Destination tensor. Data type supported: same as @p input
      * @param[in]     config          Kernel configuration
      */
     void configure(const CLCompileContext &compile_context, ICLTensor *input, ICLTensor *output, const FFTScaleKernelInfo &config);
     /** Static function to check if given info will lead to a valid configuration of @ref CLFFTScaleKernel
      *
-     * @param[in] input  Source tensor info. Data types supported: F32.
+     * @param[in] input  Source tensor info. Data types supported: F16/F32.
      * @param[in] output Destination tensor info. Data type supported: same as @p input
      * @param[in] config Kernel configuration
      *
diff --git a/src/core/CL/kernels/CLPixelWiseMultiplicationKernel.cpp b/src/core/CL/kernels/CLPixelWiseMultiplicationKernel.cpp
index a6255f8..c68c526 100644
--- a/src/core/CL/kernels/CLPixelWiseMultiplicationKernel.cpp
+++ b/src/core/CL/kernels/CLPixelWiseMultiplicationKernel.cpp
@@ -329,8 +329,9 @@
 
 Status validate_arguments_complex(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, const ActivationLayerInfo &act_info)
 {
-    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input1, 2, DataType::F32);
-    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input2, 2, DataType::F32);
+    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input1, 2, DataType::F16, DataType::F32);
+    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input2, 2, DataType::F16, DataType::F32);
+    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input1, input2);
 
     const TensorShape &out_shape = TensorShape::broadcast_shape(input1->tensor_shape(), input2->tensor_shape());
 
@@ -340,7 +341,8 @@
     // Validate in case of configured output
     if(output->total_size() > 0)
     {
-        ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 2, DataType::F32);
+        ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 2, DataType::F16, DataType::F32);
+        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input1, output);
         ARM_COMPUTE_RETURN_ERROR_ON_MSG(detail::have_different_dimensions(out_shape, output->tensor_shape(), 0), "Wrong shape for output");
     }
 
@@ -400,6 +402,7 @@
     _output = output;
 
     CLBuildOptions build_opts;
+    build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(_output->data_type()));
     if(act_info.enabled())
     {
         build_opts.add_option("-DACTIVATION_TYPE=" + lower_string(string_from_activation_func(act_info.activation())));
diff --git a/src/core/CL/kernels/CLPixelWiseMultiplicationKernel.h b/src/core/CL/kernels/CLPixelWiseMultiplicationKernel.h
index 0cc4005..74102fd 100644
--- a/src/core/CL/kernels/CLPixelWiseMultiplicationKernel.h
+++ b/src/core/CL/kernels/CLPixelWiseMultiplicationKernel.h
@@ -157,7 +157,7 @@
     CLComplexPixelWiseMultiplicationKernel &operator=(CLComplexPixelWiseMultiplicationKernel &&) = default;
     /** Initialise the kernel's input, output and border mode.
      *
-     * @param[in]  input1   An input tensor info. Data types supported: F32. Number of channels supported: 2.
+     * @param[in]  input1   An input tensor info. Data types supported: F16/F32. Number of channels supported: 2.
      * @param[in]  input2   An input tensor info. Data types supported: same as @p input1. Number of channels supported: same as @p input1.
      * @param[out] output   The output tensor info. Data types supported: same as @p input1. Number of channels supported: same as @p input1.
      * @param[in]  act_info (Optional) Activation layer information in case of a fused activation.
diff --git a/src/core/CL/kernels/CLReductionOperationKernel.cpp b/src/core/CL/kernels/CLReductionOperationKernel.cpp
index 9d49a21..2697a0d 100644
--- a/src/core/CL/kernels/CLReductionOperationKernel.cpp
+++ b/src/core/CL/kernels/CLReductionOperationKernel.cpp
@@ -55,7 +55,7 @@
     }
     else
     {
-        ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 2, DataType::F32);
+        ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 2, DataType::F16, DataType::F32);
     }
     ARM_COMPUTE_RETURN_ERROR_ON_MSG(op == ReductionOperation::SUM_SQUARE && input->data_type() == DataType::QASYMM8, "Not supported reduction operation for QASYMM8");
     ARM_COMPUTE_RETURN_ERROR_ON_MSG(axis >= TensorShape::num_max_dimensions, "Reduction axis greater than max number of dimensions");
diff --git a/src/runtime/CL/functions/CLConvolutionLayer.cpp b/src/runtime/CL/functions/CLConvolutionLayer.cpp
index edd9298..5bfbc7c 100644
--- a/src/runtime/CL/functions/CLConvolutionLayer.cpp
+++ b/src/runtime/CL/functions/CLConvolutionLayer.cpp
@@ -88,7 +88,7 @@
         case ConvolutionMethod::FFT:
         {
             auto f = std::make_unique<CLFFTConvolutionLayer>(_memory_manager);
-            f->configure(compile_context, input, weights, biases, output, conv_info, act_info);
+            f->configure(compile_context, input, weights, biases, output, conv_info, act_info, enable_fast_math);
             _function = std::move(f);
             break;
         }
@@ -131,7 +131,7 @@
         case ConvolutionMethod::FFT:
         {
             // Validate FFT-based convolution layer
-            ARM_COMPUTE_RETURN_ON_ERROR(CLFFTConvolutionLayer::validate(input, weights, nullptr, output, conv_info, act_info));
+            ARM_COMPUTE_RETURN_ON_ERROR(CLFFTConvolutionLayer::validate(input, weights, nullptr, output, conv_info, act_info, enable_fast_math));
             break;
         }
         default:
@@ -204,7 +204,7 @@
         {
             return ConvolutionMethod::DIRECT;
         }
-        if((weights->dimension(idx_h) > 7) && (input->dimension(idx_c) > output->dimension(idx_c)) && (CLFFTConvolutionLayer::validate(input, weights, nullptr, output, conv_info, act_info)))
+        if((weights->dimension(idx_h) > 7) && (input->dimension(idx_c) > output->dimension(idx_c)) && (CLFFTConvolutionLayer::validate(input, weights, nullptr, output, conv_info, act_info, enable_fast_math)))
         {
             return ConvolutionMethod::FFT;
         }
diff --git a/src/runtime/CL/functions/CLFFT1D.cpp b/src/runtime/CL/functions/CLFFT1D.cpp
index c434b4e..cf136dc 100644
--- a/src/runtime/CL/functions/CLFFT1D.cpp
+++ b/src/runtime/CL/functions/CLFFT1D.cpp
@@ -118,7 +118,7 @@
 Status CLFFT1D::validate(const ITensorInfo *input, const ITensorInfo *output, const FFT1DInfo &config)
 {
     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output);
-    ARM_COMPUTE_RETURN_ERROR_ON(input->data_type() != DataType::F32);
+    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_NOT_IN(input, DataType::F16, DataType::F32);
     ARM_COMPUTE_RETURN_ERROR_ON(input->num_channels() != 1 && input->num_channels() != 2);
     ARM_COMPUTE_RETURN_ERROR_ON(std::set<unsigned int>({ 0, 1 }).count(config.axis) == 0);
 
diff --git a/src/runtime/CL/functions/CLFFT2D.cpp b/src/runtime/CL/functions/CLFFT2D.cpp
index 1d444bb..e0497ca 100644
--- a/src/runtime/CL/functions/CLFFT2D.cpp
+++ b/src/runtime/CL/functions/CLFFT2D.cpp
@@ -67,6 +67,7 @@
 Status CLFFT2D::validate(const ITensorInfo *input, const ITensorInfo *output, const FFT2DInfo &config)
 {
     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output);
+    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_NOT_IN(input, DataType::F16, DataType::F32);
 
     // Create intermediate tensor info
     TensorInfo first_pass_tensor(input->clone()->set_is_resizable(true).reset_padding().set_num_channels(2));
diff --git a/src/runtime/CL/functions/CLFFTConvolutionLayer.cpp b/src/runtime/CL/functions/CLFFTConvolutionLayer.cpp
index 97b64b2..45e74df 100644
--- a/src/runtime/CL/functions/CLFFTConvolutionLayer.cpp
+++ b/src/runtime/CL/functions/CLFFTConvolutionLayer.cpp
@@ -104,14 +104,17 @@
 }
 
 void CLFFTConvolutionLayer::configure(ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const PadStrideInfo &conv_info,
-                                      const ActivationLayerInfo &act_info)
+                                      const ActivationLayerInfo &act_info, bool enable_fast_math)
 {
-    configure(CLKernelLibrary::get().get_compile_context(), input, weights, biases, output, conv_info, act_info);
+    configure(CLKernelLibrary::get().get_compile_context(), input, weights, biases, output, conv_info, act_info, enable_fast_math);
 }
 
 void CLFFTConvolutionLayer::configure(const CLCompileContext &compile_context, ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const PadStrideInfo &conv_info,
-                                      const ActivationLayerInfo &act_info)
+                                      const ActivationLayerInfo &act_info, bool enable_fast_math)
 {
+    ARM_COMPUTE_UNUSED(enable_fast_math);
+    ARM_COMPUTE_ERROR_THROW_ON(CLFFTConvolutionLayer::validate(input->info(), weights->info(), biases != nullptr ? biases->info() : nullptr, output->info(), conv_info, act_info, enable_fast_math));
+
     _original_weights = weights;
     _original_bias    = biases;
 
@@ -265,9 +268,10 @@
 }
 
 Status CLFFTConvolutionLayer::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info,
-                                       const ActivationLayerInfo &act_info)
+                                       const ActivationLayerInfo &act_info, bool enable_fast_math)
 {
-    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F32);
+    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F16, DataType::F32);
+    ARM_COMPUTE_RETURN_ERROR_ON((input->data_type() == DataType::F16) && !enable_fast_math);
     ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights);
 
     // Get indices for the width and height
@@ -287,9 +291,8 @@
     // Validate biases
     if(biases != nullptr)
     {
-        const size_t idx_channels = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::CHANNEL);
         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, biases);
-        ARM_COMPUTE_RETURN_ERROR_ON(input->tensor_shape()[idx_channels] != biases->tensor_shape().x());
+        ARM_COMPUTE_RETURN_ERROR_ON(weights->tensor_shape()[3] != biases->tensor_shape().x());
     }
 
     // Checks performed when output is configured
diff --git a/src/runtime/NEON/functions/NEFFTConvolutionLayer.cpp b/src/runtime/NEON/functions/NEFFTConvolutionLayer.cpp
index bb6b5ed..60a747d 100644
--- a/src/runtime/NEON/functions/NEFFTConvolutionLayer.cpp
+++ b/src/runtime/NEON/functions/NEFFTConvolutionLayer.cpp
@@ -103,8 +103,10 @@
 NEFFTConvolutionLayer::~NEFFTConvolutionLayer() = default;
 
 void NEFFTConvolutionLayer::configure(ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, const PadStrideInfo &conv_info,
-                                      const ActivationLayerInfo &act_info)
+                                      const ActivationLayerInfo &act_info, bool enable_fast_math)
 {
+    ARM_COMPUTE_UNUSED(enable_fast_math);
+
     _original_weights = weights;
     _original_bias    = biases;
 
@@ -258,8 +260,10 @@
 }
 
 Status NEFFTConvolutionLayer::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info,
-                                       const ActivationLayerInfo &act_info)
+                                       const ActivationLayerInfo &act_info, bool enable_fast_math)
 {
+    ARM_COMPUTE_UNUSED(enable_fast_math);
+
     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F32);
     ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights);