blob: 183bb8db5caae509604ed20a0c41a2b33300e512 [file] [log] [blame]
/*
* Copyright (c) 2016-2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "src/core/NEON/kernels/NEThresholdKernel.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/Validate.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/WindowHelpers.h"
#include "src/core/NEON/wrapper/wrapper.h"
namespace arm_compute
{
namespace
{
Status validate_arguments(const ITensorInfo *input, const ITensorInfo *output, const ThresholdKernelInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::U8);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::U8);
// Checks performed when output is configured
if((output != nullptr) && (output->total_size() != 0))
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
}
return Status{};
}
std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input, ITensorInfo *output)
{
// Configure kernel window
Window win = calculate_max_window(*input, Steps());
// Output auto inizialitation if not yet initialized
auto_init_if_empty(*output, *input->clone());
// NEThresholdKernel doesn't need padding so update_window_and_padding() can be skipped
Coordinates coord;
coord.set_num_dimensions(output->num_dimensions());
output->set_valid_region(ValidRegion(coord, output->tensor_shape()));
return std::make_pair(Status{}, win);
}
} // namespace
NEThresholdKernel::NEThresholdKernel()
: _func(nullptr), _input(nullptr), _output(nullptr), _info()
{
}
void NEThresholdKernel::configure(const ITensor *input, ITensor *output, const ThresholdKernelInfo &info)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
ARM_COMPUTE_ERROR_THROW_ON(validate(input->info(), output->info(), info));
_input = input;
_output = output;
_info = info;
switch(_info.type)
{
case ThresholdType::BINARY:
_func = &NEThresholdKernel::run_binary;
break;
case ThresholdType::RANGE:
_func = &NEThresholdKernel::run_range;
break;
default:
ARM_COMPUTE_ERROR("Thresholding type not recognized");
break;
}
// Configure kernel window
auto win_config = validate_and_configure_window(input->info(), output->info());
ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
ICPPKernel::configure(win_config.second);
}
Status NEThresholdKernel::validate(const ITensorInfo *input, const ITensorInfo *output, const ThresholdKernelInfo &info)
{
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, output, info));
ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(), output->clone().get()).first);
return Status{};
}
inline void NEThresholdKernel::run_binary(const Window &window)
{
/** NEON vector tag type. */
using Type = uint8_t;
using ExactTagType = typename wrapper::traits::neon_bitvector_tag_t<Type, wrapper::traits::BitWidth::W128>;
const int window_step_x = 16 / sizeof(Type);
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
Window win_collapsed = window.collapse_if_possible(window, Window::DimZ);
win_collapsed.set(Window::DimX, Window::Dimension(0, 1, 1));
const uint8_t threshold = _info.threshold;
const uint8_t true_value = _info.true_value;
const uint8_t false_value = _info.false_value;
const auto vthreshold = wrapper::vdup_n(threshold, ExactTagType{});
const auto vtrue_value = wrapper::vdup_n(true_value, ExactTagType{});
const auto vfalse_value = wrapper::vdup_n(false_value, ExactTagType{});
Iterator input(_input, win_collapsed);
Iterator output(_output, win_collapsed);
execute_window_loop(win_collapsed, [&](const Coordinates &)
{
const auto input_ptr = reinterpret_cast<const Type *>(input.ptr());
const auto output_ptr = reinterpret_cast<Type *>(output.ptr());
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const auto vdata = wrapper::vloadq(input_ptr + x);
const auto vmask = wrapper::vcgt(vdata, vthreshold);
wrapper::vstore(output_ptr + x, wrapper::vbsl(vmask, vtrue_value, vfalse_value));
}
for(; x < window_end_x; ++x)
{
const Type data = *(reinterpret_cast<const Type *>(input_ptr + x));
*(output_ptr + x) = (data > threshold) ? true_value : false_value;
}
},
input, output);
}
inline void NEThresholdKernel::run_range(const Window &window)
{
/** NEON vector tag type. */
using Type = uint8_t;
using ExactTagType = typename wrapper::traits::neon_bitvector_tag_t<Type, wrapper::traits::BitWidth::W128>;
const int window_step_x = 16 / sizeof(Type);
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
Window win_collapsed = window.collapse_if_possible(window, Window::DimZ);
win_collapsed.set(Window::DimX, Window::Dimension(0, 1, 1));
const uint8_t lower_threshold = _info.threshold;
const uint8_t upper_threshold = _info.upper;
const uint8_t true_value = _info.true_value;
const uint8_t false_value = _info.false_value;
const auto vlower_threshold = wrapper::vdup_n(lower_threshold, ExactTagType{});
const auto vupper_threshold = wrapper::vdup_n(upper_threshold, ExactTagType{});
const auto vtrue_value = wrapper::vdup_n(true_value, ExactTagType{});
const auto vfalse_value = wrapper::vdup_n(false_value, ExactTagType{});
Iterator input(_input, win_collapsed);
Iterator output(_output, win_collapsed);
execute_window_loop(win_collapsed, [&](const Coordinates &)
{
const auto input_ptr = reinterpret_cast<const Type *>(input.ptr());
const auto output_ptr = reinterpret_cast<Type *>(output.ptr());
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const auto vdata = wrapper::vloadq(input_ptr + x);
auto vmask = wrapper::vcle(vdata, vupper_threshold);
vmask = wrapper::vand(wrapper::vcge(vdata, vlower_threshold), vmask);
wrapper::vstore(output_ptr + x, wrapper::vbsl(vmask, vtrue_value, vfalse_value));
}
for(; x < window_end_x; ++x)
{
const Type data = *(reinterpret_cast<const Type *>(input_ptr + x));
*(output_ptr + x) = (data <= upper_threshold && data >= lower_threshold) ? true_value : false_value;
}
},
input, output);
}
void NEThresholdKernel::run(const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
ARM_COMPUTE_ERROR_ON(_func == nullptr);
(this->*_func)(window);
}
} // namespace arm_compute