blob: e091e5c2cb3a4e16de065a0397232c596a5b00a1 [file] [log] [blame]
/*
* Copyright (c) 2018 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NCHWKernel.h"
#include "arm_compute/core/AccessWindowStatic.h"
#include "arm_compute/core/CL/CLHelpers.h"
#include "arm_compute/core/CL/CLKernelLibrary.h"
#include "arm_compute/core/CL/CLValidate.h"
#include "arm_compute/core/CL/ICLKernel.h"
#include "arm_compute/core/CL/ICLTensor.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
using namespace arm_compute;
using namespace arm_compute::misc::shape_calculator;
namespace
{
Status validate_arguments(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier,
const ActivationLayerInfo &act_info)
{
ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(input);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(act_info.enabled() && ((input->data_type() != DataType::QASYMM8) || ((act_info.activation() != ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU)
&& (act_info.activation() != ActivationLayerInfo::ActivationFunction::BOUNDED_RELU)
&& (act_info.activation() != ActivationLayerInfo::ActivationFunction::RELU)
&& (act_info.activation() != ActivationLayerInfo::ActivationFunction::LOGISTIC))),
"For QASYMM8 only logistic, relu, lower bounded relu and lower-upper bounded relu are supported");
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights);
ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(0) != 3 || weights->dimension(1) != 3);
ARM_COMPUTE_RETURN_ERROR_ON(conv_info.stride().first < 1 || conv_info.stride().first > 3);
const bool is_qasymm = is_data_type_quantized_asymmetric(input->data_type());
if(biases != nullptr)
{
if(is_qasymm)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(biases, 1, DataType::S32);
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(weights, biases);
}
ARM_COMPUTE_RETURN_ERROR_ON((biases->dimension(0) != weights->dimension(2)) && (weights->dimension(2) != 1 || biases->dimension(0) != weights->dimension(3)));
ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 1);
}
if(output->total_size() != 0)
{
const TensorShape output_shape = compute_depthwise_convolution_shape(*input, *weights, conv_info, depth_multiplier);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(output->tensor_shape(), output_shape);
}
return Status{};
}
std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input, ITensorInfo *weights, ITensorInfo *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier,
GPUTarget gpu_target, std::string &kernel_name)
{
// Output auto inizialitation if not yet initialized
const TensorShape output_shape = compute_depthwise_convolution_shape(*input, *weights, conv_info, depth_multiplier);
auto_init_if_empty(*output, input->clone()->set_tensor_shape(output_shape));
const unsigned int conv_stride_x = conv_info.stride().first;
const unsigned int conv_stride_y = conv_info.stride().second;
const bool is_qasymm = is_data_type_quantized_asymmetric(input->data_type());
const bool is_bifrost = get_arch_from_target(gpu_target) == GPUTarget::BIFROST;
// Configure kernel window
unsigned int num_elems_read_per_iteration_x = 0;
unsigned int num_elems_read_per_iteration_y = 0;
unsigned int num_elems_written_per_iteration_x = 0;
unsigned int num_elems_written_per_iteration_y = 0;
if(input->data_type() == DataType::F16)
{
kernel_name = "depthwise_convolution_3x3_f16";
num_elems_written_per_iteration_x = 8 / data_size_from_type(input->data_type());
num_elems_written_per_iteration_y = 1;
num_elems_read_per_iteration_y = 3;
switch(conv_stride_x)
{
case 1:
num_elems_read_per_iteration_x = 8;
break;
case 2:
num_elems_read_per_iteration_x = 9;
break;
case 3:
num_elems_read_per_iteration_x = 16;
break;
default:
num_elems_read_per_iteration_x = 3 + (num_elems_written_per_iteration_x - 1) * conv_stride_x;
break;
}
if(is_bifrost)
{
if(conv_stride_x == 1 && conv_stride_y == 1)
{
kernel_name = "depthwise_convolution_3x3_stridex1_stridey1_bifrost_f16";
num_elems_read_per_iteration_x = 8;
num_elems_written_per_iteration_x = 4;
num_elems_read_per_iteration_y = 6;
num_elems_written_per_iteration_y = 4;
}
else if(conv_stride_x == 2 && conv_stride_y == 2)
{
kernel_name = "depthwise_convolution_3x3_stridex2_stridey2_bifrost_f16";
num_elems_read_per_iteration_x = 10;
num_elems_written_per_iteration_x = 4;
num_elems_read_per_iteration_y = 5;
num_elems_written_per_iteration_y = 2;
}
}
}
else if(input->data_type() == DataType::F32 && is_bifrost)
{
if(conv_stride_x == 1 && conv_stride_y == 1)
{
kernel_name = "depthwise_convolution_3x3_stridex1_stridey1_bifrost_f32";
num_elems_read_per_iteration_x = 4;
num_elems_read_per_iteration_y = 6;
num_elems_written_per_iteration_x = 2;
num_elems_written_per_iteration_y = 4;
}
else if(conv_stride_x == 2 && conv_stride_y == 2)
{
kernel_name = "depthwise_convolution_3x3_stridex2_stridey2_bifrost_f32";
num_elems_read_per_iteration_x = 6;
num_elems_read_per_iteration_y = 5;
num_elems_written_per_iteration_x = 2;
num_elems_written_per_iteration_y = 2;
}
else
{
kernel_name = "depthwise_convolution_3x3";
num_elems_written_per_iteration_x = 8 / data_size_from_type(input->data_type());
num_elems_written_per_iteration_y = 1;
num_elems_read_per_iteration_x = 3 + (num_elems_written_per_iteration_x - 1) * conv_stride_x;
num_elems_read_per_iteration_y = 3;
}
}
else
{
const bool is_dot8_supported = dot8_supported(CLKernelLibrary::get().get_device());
kernel_name = is_qasymm ? (std::string("depthwise_convolution_3x3_quantized") + (is_dot8_supported ? "_dot8" : "") + "_nchw") : "depthwise_convolution_3x3";
num_elems_written_per_iteration_x = 8 / data_size_from_type(input->data_type());
num_elems_written_per_iteration_y = (is_qasymm && conv_stride_y == 1) ? 2 : 1;
num_elems_read_per_iteration_x = 3 + (num_elems_written_per_iteration_x - 1) * conv_stride_x;
num_elems_read_per_iteration_y = num_elems_written_per_iteration_y + 2;
}
// Create window and update padding
Window win = calculate_max_window(*output, Steps(num_elems_written_per_iteration_x, num_elems_written_per_iteration_y));
AccessWindowRectangle input_access(input, -conv_info.pad_left(), -conv_info.pad_top(),
num_elems_read_per_iteration_x, num_elems_read_per_iteration_y,
conv_stride_x, conv_stride_y);
AccessWindowStatic weights_access(weights, 0, 0, 3, 3);
AccessWindowRectangle output_access(output, 0, 0, num_elems_written_per_iteration_x, num_elems_written_per_iteration_y);
bool window_changed = update_window_and_padding(win, input_access, weights_access, output_access);
output_access.set_valid_region(win, ValidRegion(Coordinates(), output->tensor_shape()));
Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
return std::make_pair(err, win);
}
} // namespace
CLDepthwiseConvolutionLayer3x3NCHWKernel::CLDepthwiseConvolutionLayer3x3NCHWKernel()
: _conv_stride_x(0), _conv_pad_top(0), _conv_pad_left(0)
{
}
BorderSize CLDepthwiseConvolutionLayer3x3NCHWKernel::border_size() const
{
return _border_size;
}
void CLDepthwiseConvolutionLayer3x3NCHWKernel::configure(const ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const PadStrideInfo &conv_info,
unsigned int depth_multiplier,
ActivationLayerInfo act_info)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output);
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), weights->info(), (biases != nullptr) ? biases->info() : nullptr, output->info(), conv_info, depth_multiplier, act_info));
bool is_qasymm = is_data_type_quantized_asymmetric(input->info()->data_type());
_input = input;
_output = output;
_weights = weights;
_biases = biases;
_conv_stride_x = conv_info.stride().first;
_conv_stride_y = conv_info.stride().second;
_conv_pad_left = conv_info.pad_left();
_conv_pad_top = conv_info.pad_top();
_border_size = BorderSize(_conv_pad_top, conv_info.pad_right(), conv_info.pad_bottom(), _conv_pad_left);
// Set build options
CLBuildOptions build_opts;
build_opts.add_option("-DDEPTH_MULTIPLIER=" + support::cpp11::to_string(depth_multiplier));
build_opts.add_option("-DCONV_STRIDE_X=" + support::cpp11::to_string(_conv_stride_x));
build_opts.add_option_if(_biases != nullptr, "-DHAS_BIAS");
if(is_qasymm)
{
float multiplier = _input->info()->quantization_info().scale * _weights->info()->quantization_info().scale / _output->info()->quantization_info().scale;
int output_multiplier = 0;
int output_shift = 0;
quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift);
build_opts.add_option("-DCONV_STRIDE_Y=" + support::cpp11::to_string(_conv_stride_y));
build_opts.add_option("-DINPUT_OFFSET=" + support::cpp11::to_string(-_input->info()->quantization_info().offset));
build_opts.add_option("-DWEIGHTS_OFFSET=" + support::cpp11::to_string(-_weights->info()->quantization_info().offset));
build_opts.add_option("-DOUTPUT_OFFSET=" + support::cpp11::to_string(_output->info()->quantization_info().offset));
build_opts.add_option("-DK_OFFSET=" + support::cpp11::to_string(9 * input->info()->quantization_info().offset * weights->info()->quantization_info().offset));
build_opts.add_option("-DOUTPUT_MULTIPLIER=" + support::cpp11::to_string(output_multiplier));
build_opts.add_option("-DOUTPUT_SHIFT=" + support::cpp11::to_string(output_shift));
if(act_info.enabled())
{
const int a_val = input->info()->quantization_info().quantize(act_info.a(), RoundingPolicy::TO_NEAREST_UP);
const int b_val = input->info()->quantization_info().quantize(act_info.b(), RoundingPolicy::TO_NEAREST_UP);
const int o1 = input->info()->quantization_info().offset;
build_opts.add_option("-DFUSED_ACTIVATION=" + lower_string(string_from_activation_func(act_info.activation())));
build_opts.add_option("-DA_VAL=" + support::cpp11::to_string(a_val));
build_opts.add_option("-DB_VAL=" + support::cpp11::to_string(b_val));
build_opts.add_option("-DCONST_0=" + support::cpp11::to_string(o1));
if(output != nullptr)
{
const float s1 = input->info()->quantization_info().scale;
const float s2 = output->info()->quantization_info().scale;
const int o2 = output->info()->quantization_info().offset;
if(o1 != o2 || s1 != s2)
{
build_opts.add_option("-DS1_VAL=" + float_to_string_with_full_precision(s1));
build_opts.add_option("-DS2_VAL=" + float_to_string_with_full_precision(s2));
build_opts.add_option("-DO1_VAL=" + support::cpp11::to_string(o1));
build_opts.add_option("-DO2_VAL=" + support::cpp11::to_string(o2));
}
}
}
}
// Configure kernel window
std::string kernel_name;
const GPUTarget gpu_target = get_target();
auto win_config = validate_and_configure_window(input->info(), weights->info(), output->info(), conv_info, depth_multiplier, gpu_target, kernel_name);
ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
ICLKernel::configure(win_config.second);
_kernel = static_cast<cl::Kernel>(CLKernelLibrary::get().create_kernel(kernel_name, build_opts.options()));
// Set config_id for enabling LWS tuning
_config_id = kernel_name;
_config_id += "_";
_config_id += lower_string(string_from_data_type(input->info()->data_type()));
_config_id += "_";
_config_id += support::cpp11::to_string(input->info()->dimension(0));
_config_id += "_";
_config_id += support::cpp11::to_string(input->info()->dimension(1));
_config_id += "_";
_config_id += support::cpp11::to_string(input->info()->dimension(2));
_config_id += "_";
_config_id += support::cpp11::to_string(output->info()->dimension(0));
_config_id += "_";
_config_id += support::cpp11::to_string(output->info()->dimension(1));
}
Status CLDepthwiseConvolutionLayer3x3NCHWKernel::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info,
unsigned int depth_multiplier,
ActivationLayerInfo act_info, GPUTarget gpu_target)
{
std::string kernel_name;
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, weights, biases, output, conv_info, depth_multiplier, act_info));
ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(), weights->clone().get(), output->clone().get(), conv_info, depth_multiplier, gpu_target, kernel_name).first);
return Status{};
}
void CLDepthwiseConvolutionLayer3x3NCHWKernel::run(const Window &window, cl::CommandQueue &queue)
{
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IKernel::window(), window);
// Create input window and adjust
Window win_in = window;
win_in.adjust(Window::DimX, -_conv_pad_left, true);
win_in.adjust(Window::DimY, -_conv_pad_top, true);
win_in.set_dimension_step(Window::DimX, window.x().step() * _conv_stride_x);
win_in.set_dimension_step(Window::DimY, window.y().step() * _conv_stride_y);
Window slice_in = win_in.first_slice_window_3D();
Window slice_out = window.first_slice_window_3D();
Window slice_weights = window.first_slice_window_3D();
slice_weights.set_dimension_step(Window::DimX, 0);
slice_weights.set_dimension_step(Window::DimY, 0);
// Set biases
if(_biases != nullptr)
{
unsigned int idx = 3 * num_arguments_per_3D_tensor();
Window slice_biases;
slice_biases.use_tensor_dimensions(_biases->info()->tensor_shape());
add_1D_tensor_argument(idx, _biases, slice_biases);
}
do
{
unsigned int idx = 0;
add_3D_tensor_argument(idx, _input, slice_in);
add_3D_tensor_argument(idx, _output, slice_out);
add_3D_tensor_argument(idx, _weights, slice_weights);
enqueue(queue, *this, slice_out, _lws_hint);
}
while(window.slide_window_slice_3D(slice_out) && win_in.slide_window_slice_3D(slice_in));
}