blob: f4bd4e6cadc59aa5934792f71e31ded7532ff69c [file] [log] [blame]
/*
* Copyright (c) 2017-2023 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "src/cpu/kernels/CpuActivationKernel.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Utils.h"
#include "src/core/CPP/Validate.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/WindowHelpers.h"
#include "src/core/common/Registrars.h"
#include "src/cpu/kernels/activation/list.h"
#include <array>
namespace arm_compute
{
namespace cpu
{
namespace kernels
{
namespace
{
static const std::vector<CpuActivationKernel::ActivationKernel> available_kernels =
{
#ifdef ARM_COMPUTE_ENABLE_SVE
{
"sve2_q8_activation_lut",
[](const ActivationDataTypeISASelectorData & data) { return (data.dt == DataType::QASYMM8 || data.dt == DataType::QASYMM8_SIGNED) && data.cpumodel == CPUModel::A510 && data.isa.sve2; },
REGISTER_QASYMM8_SVE2(arm_compute::cpu::sve2_q8_activation_lut)
},
#endif // ARM_COMPUTE_ENABLE_SVE
#ifdef __aarch64__
{
// Neon LUT implementantion takes precedence
"neon_q8_activation_lut",
[](const ActivationDataTypeISASelectorData & data) { return data.dt == DataType::QASYMM8 || data.dt == DataType::QASYMM8_SIGNED; },
REGISTER_Q8_NEON(arm_compute::cpu::neon_q8_activation_lut)
},
#endif // __aarch64__
{
"sve2_qu8_activation",
[](const ActivationDataTypeISASelectorData & data) { return data.dt == DataType::QASYMM8 && data.isa.sve2 && data.f != ActivationLayerInfo::ActivationFunction::GELU; },
REGISTER_QASYMM8_SVE2(arm_compute::cpu::sve2_qasymm8_activation)
},
{
"sve2_qs8_activation",
[](const ActivationDataTypeISASelectorData & data) { return data.dt == DataType::QASYMM8_SIGNED && data.isa.sve2 && data.f != ActivationLayerInfo::ActivationFunction::GELU; },
REGISTER_QASYMM8_SIGNED_SVE2(arm_compute::cpu::sve2_qasymm8_signed_activation)
},
{
"sve2_qs16_activation",
[](const ActivationDataTypeISASelectorData & data) { return data.dt == DataType::QSYMM16 && data.isa.sve2 && data.f != ActivationLayerInfo::ActivationFunction::GELU; },
REGISTER_QSYMM16_SVE2(arm_compute::cpu::sve2_qsymm16_activation)
},
{
"sve_fp16_activation",
[](const ActivationDataTypeISASelectorData & data) { return data.dt == DataType::F16 && data.isa.sve && data.isa.fp16 && data.f != ActivationLayerInfo::ActivationFunction::GELU; },
REGISTER_FP16_SVE(arm_compute::cpu::sve_fp16_activation)
},
{
"sve_fp32_activation",
[](const ActivationDataTypeISASelectorData & data) { return data.dt == DataType::F32 && data.isa.sve && data.f != ActivationLayerInfo::ActivationFunction::GELU; },
REGISTER_FP32_SVE(arm_compute::cpu::sve_fp32_activation)
},
{
"neon_fp16_activation",
[](const ActivationDataTypeISASelectorData & data) { return data.dt == DataType::F16 && data.isa.fp16; },
REGISTER_FP16_NEON(arm_compute::cpu::neon_fp16_activation)
},
{
"neon_fp32_activation",
[](const ActivationDataTypeISASelectorData & data) { return data.dt == DataType::F32; },
REGISTER_FP32_NEON(arm_compute::cpu::neon_fp32_activation)
},
{
"neon_qu8_activation",
[](const ActivationDataTypeISASelectorData & data) { return data.dt == DataType::QASYMM8; },
REGISTER_QASYMM8_NEON(arm_compute::cpu::neon_qasymm8_activation)
},
{
"neon_qs8_activation",
[](const ActivationDataTypeISASelectorData & data) { return data.dt == DataType::QASYMM8_SIGNED; },
REGISTER_QASYMM8_SIGNED_NEON(arm_compute::cpu::neon_qasymm8_signed_activation)
},
{
"neon_qs16_activation",
[](const ActivationDataTypeISASelectorData & data) { return data.dt == DataType::QSYMM16; },
REGISTER_QSYMM16_NEON(arm_compute::cpu::neon_qsymm16_activation)
},
};
/* Supported activation in the 8-bit integer domain */
static const std::array<ActivationLayerInfo::ActivationFunction, 8> qasymm8_activations =
{
ActivationLayerInfo::ActivationFunction::RELU,
ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU,
ActivationLayerInfo::ActivationFunction::BOUNDED_RELU,
ActivationLayerInfo::ActivationFunction::LOGISTIC,
ActivationLayerInfo::ActivationFunction::TANH,
ActivationLayerInfo::ActivationFunction::HARD_SWISH,
ActivationLayerInfo::ActivationFunction::LEAKY_RELU,
ActivationLayerInfo::ActivationFunction::GELU,
};
/* Supported activation in the 16-bit integer domain */
static const std::array<ActivationLayerInfo::ActivationFunction, 4> qsymm16_activations =
{
ActivationLayerInfo::ActivationFunction::LOGISTIC,
ActivationLayerInfo::ActivationFunction::TANH,
ActivationLayerInfo::ActivationFunction::HARD_SWISH,
ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU
};
Status validate_arguments(const ITensorInfo *src, const ITensorInfo *dst, const ActivationLayerInfo &activation_info)
{
ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(src);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::QASYMM8_SIGNED, DataType::QASYMM8, DataType::QSYMM16, DataType::F16, DataType::F32);
const auto *uk = CpuActivationKernel::get_implementation(ActivationDataTypeISASelectorData{ src->data_type(), CPUInfo::get().get_cpu_model(), CPUInfo::get().get_isa(), activation_info.activation() });
ARM_COMPUTE_RETURN_ERROR_ON(uk == nullptr || uk->ukernel == nullptr);
const DataType data_type = src->data_type();
const QuantizationInfo &oq_info = (dst != nullptr) ? dst->quantization_info() : src->quantization_info();
const ActivationLayerInfo::ActivationFunction f_act = activation_info.activation();
ARM_COMPUTE_RETURN_ERROR_ON_MSG(is_data_type_quantized_asymmetric(data_type) && (std::find(std::begin(qasymm8_activations), std::end(qasymm8_activations), f_act) == std::end(qasymm8_activations)),
"For QASYMM8 only hard swish, leaky relu, tanh, logistic, relu and lower/upper bounded relu are supported");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(is_data_type_quantized_symmetric(data_type) && (std::find(std::begin(qsymm16_activations), std::end(qsymm16_activations), f_act) == std::end(qsymm16_activations)),
"For QSYMM16 only tanh and logistic are supported");
ARM_COMPUTE_RETURN_ERROR_ON((data_type == DataType::QASYMM8 || data_type == DataType::QASYMM16) && (f_act == ActivationLayerInfo::ActivationFunction::TANH)
&& (oq_info != QuantizationInfo(1.f / 128.f, 128)));
ARM_COMPUTE_RETURN_ERROR_ON((data_type == DataType::QASYMM8 || data_type == DataType::QASYMM16) && (f_act == ActivationLayerInfo::ActivationFunction::LOGISTIC)
&& (oq_info != QuantizationInfo(1.f / 256.f, 0)));
ARM_COMPUTE_RETURN_ERROR_ON(data_type == DataType::QASYMM8_SIGNED && (f_act == ActivationLayerInfo::ActivationFunction::TANH) && (oq_info != QuantizationInfo(1.f / 128.f, 0)));
ARM_COMPUTE_RETURN_ERROR_ON(data_type == DataType::QASYMM8_SIGNED && (f_act == ActivationLayerInfo::ActivationFunction::LOGISTIC) && (oq_info != QuantizationInfo(1.f / 256.f, -128)));
ARM_COMPUTE_RETURN_ERROR_ON(is_data_type_quantized_symmetric(data_type) && (f_act == ActivationLayerInfo::ActivationFunction::TANH) && (oq_info != QuantizationInfo(1.f / 32768.f, 0)));
ARM_COMPUTE_RETURN_ERROR_ON(is_data_type_quantized_symmetric(data_type) && (f_act == ActivationLayerInfo::ActivationFunction::LOGISTIC) && (oq_info != QuantizationInfo(1.f / 32768.f, 0)));
// Checks performed when dst is configured
if((dst != nullptr) && (dst->total_size() != 0))
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(src, dst);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, dst);
}
return Status{};
}
std::pair<Status, Window> validate_and_configure_window(const ITensorInfo *src, ITensorInfo *dst)
{
// Configure kernel window
Window win = calculate_max_window(*src, Steps());
if(dst != nullptr)
{
// dst auto inizialitation if not yet initialized
auto_init_if_empty(*dst, *src->clone());
}
return std::make_pair(Status{}, win);
}
#ifdef __aarch64__
void init_lut(ActivationLayerInfo::ActivationFunction act_func, DataType data_type,
const UniformQuantizationInfo &qi_in, const UniformQuantizationInfo &qi_out,
ActivationLayerInfo::LookupTable256 &lut, float a, float b)
{
for(size_t i = 0; i < lut.size(); ++i)
{
float tmp_f = (data_type == DataType::QASYMM8) ? dequantize_qasymm8(i, qi_in) : dequantize_qasymm8_signed(i, qi_in);
switch(act_func)
{
case ActivationLayerInfo::ActivationFunction::HARD_SWISH:
tmp_f = tmp_f * ((std::min(std::max((tmp_f + 3), 0.0f), 6.0f)) * 0.166666667f);
break;
case ActivationLayerInfo::ActivationFunction::LEAKY_RELU:
tmp_f = tmp_f > 0 ? tmp_f : tmp_f * a;
break;
case ActivationLayerInfo::ActivationFunction::LOGISTIC:
tmp_f = 1.f / (1.f + std::exp(-tmp_f));
break;
case ActivationLayerInfo::ActivationFunction::ABS:
tmp_f = std::abs(tmp_f);
break;
case ActivationLayerInfo::ActivationFunction::LINEAR:
tmp_f = a * tmp_f + b;
break;
case ActivationLayerInfo::ActivationFunction::RELU:
tmp_f = std::max<>(0.f, tmp_f);
break;
case ActivationLayerInfo::ActivationFunction::BOUNDED_RELU:
tmp_f = std::min<>(a, std::max(0.f, tmp_f));
break;
case ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU:
tmp_f = std::min<>(a, std::max<>(b, tmp_f));
break;
case ActivationLayerInfo::ActivationFunction::SOFT_RELU:
tmp_f = (tmp_f > 12.f) ? tmp_f : std::log(1.f + std::exp(tmp_f));
break;
case ActivationLayerInfo::ActivationFunction::ELU:
tmp_f = (tmp_f >= 0) ? tmp_f : a * (std::exp(tmp_f) - 1);
break;
case ActivationLayerInfo::ActivationFunction::SQRT:
tmp_f = std::sqrt(tmp_f);
break;
case ActivationLayerInfo::ActivationFunction::SQUARE:
tmp_f = tmp_f * tmp_f;
break;
case ActivationLayerInfo::ActivationFunction::TANH:
tmp_f = a * std::tanh(b * tmp_f);
break;
case ActivationLayerInfo::ActivationFunction::IDENTITY:
break;
case ActivationLayerInfo::ActivationFunction::SWISH:
tmp_f = tmp_f / (1.f + std::exp(-a * tmp_f));
break;
case ActivationLayerInfo::ActivationFunction::GELU:
tmp_f = tmp_f * (0.5f * (1.0f + erff(tmp_f / 1.41421356237f)));
break;
default:
ARM_COMPUTE_ERROR("Not supported");
tmp_f = 0;
break;
}
lut[i] = (data_type == DataType::QASYMM8) ? quantize_qasymm8(tmp_f, qi_out) : quantize_qasymm8_signed(tmp_f, qi_out);
}
}
#endif // __aarch64__
} // namespace
void CpuActivationKernel::configure(const ITensorInfo *src, ITensorInfo *dst, ActivationLayerInfo activation_info)
{
ARM_COMPUTE_UNUSED(dst);
ARM_COMPUTE_ERROR_ON_NULLPTR(src);
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src, dst, activation_info));
const auto uk = CpuActivationKernel::get_implementation(ActivationDataTypeISASelectorData{ src->data_type(), CPUInfo::get().get_cpu_model(), CPUInfo::get().get_isa(), activation_info.activation() });
if(dst != nullptr)
{
// dst auto inizialitation if not yet initialized
auto_init_if_empty(*dst, *src->clone());
}
ARM_COMPUTE_ERROR_ON_NULLPTR(uk);
_run_method = uk->ukernel;
_name = std::string("CpuActivationKernel").append("/").append(uk->name);
#ifdef __aarch64__
if(src->data_type() == DataType::QASYMM8 || src->data_type() == DataType::QASYMM8_SIGNED)
{
ActivationLayerInfo::LookupTable256 tmp_lut;
init_lut(activation_info.activation(), src->data_type(), src->quantization_info().uniform(), (dst) ? dst->quantization_info().uniform() : src->quantization_info().uniform(),
tmp_lut, activation_info.a(), activation_info.b());
activation_info.setLookupTable256(tmp_lut);
}
#endif // __aarch64__
_act_info = activation_info;
Window win;
// Use squashed window
std::tie(win, _split_dimension) = calculate_squashed_or_max_window(*src);
ICPPKernel::configure(win);
}
Status CpuActivationKernel::validate(const ITensorInfo *src, const ITensorInfo *dst, const ActivationLayerInfo &act_info)
{
ARM_COMPUTE_UNUSED(act_info);
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(src, dst, act_info));
ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(src->clone().get(), (dst != nullptr) ? dst->clone().get() : nullptr).first);
return Status{};
}
size_t CpuActivationKernel::get_mws(const CPUInfo &platform, size_t thread_count) const
{
ARM_COMPUTE_UNUSED(thread_count);
ARM_COMPUTE_UNUSED(platform);
if(_split_dimension == Window::DimX)
{
// Don't split the work load too small if the tensor has been reinterpreted as 1D.
// This number is loosely chosen as threading overhead in each platform varies wildly.
return 1536;
}
return default_mws;
}
void CpuActivationKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
{
// Early exit on disabled activation
if(!_act_info.enabled())
{
return;
}
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IKernel::window(), window);
ARM_COMPUTE_ERROR_ON(tensors.empty());
ARM_COMPUTE_ERROR_ON(_run_method == nullptr);
const ITensor *src = tensors.get_const_tensor(TensorType::ACL_SRC);
ITensor *dst = tensors.get_tensor(TensorType::ACL_DST);
_run_method(src, dst, _act_info, window);
}
const char *CpuActivationKernel::name() const
{
return _name.c_str();
}
const std::vector<CpuActivationKernel::ActivationKernel> &CpuActivationKernel::get_available_kernels()
{
return available_kernels;
}
} // namespace kernels
} // namespace cpu
} // namespace arm_compute