blob: 8189b228c21777a6d71c4b458fb0cb36ae1e2c8d [file] [log] [blame]
/*
* Copyright (c) 2017-2022 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef ARM_COMPUTE_CL /* Needed by Utils.cpp to handle OpenCL exceptions properly */
#error "This example needs to be built with -DARM_COMPUTE_CL"
#endif /* ARM_COMPUTE_CL */
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
#include "arm_compute/runtime/CL/CLScheduler.h"
#include "arm_compute/runtime/CL/functions/CLGEMM.h"
#include "arm_compute/runtime/CL/functions/CLGEMMLowpMatrixMultiplyCore.h"
#include "arm_compute/runtime/CL/functions/CLGEMMLowpOutputStage.h"
#include "src/core/CL/kernels/CLFillBorderKernel.h"
#include "src/gpu/cl/kernels/ClCastKernel.h"
#include "src/gpu/cl/kernels/ClGemmLowpMatrixMultiplyNativeKernel.h"
#include "src/gpu/cl/kernels/ClGemmLowpMatrixMultiplyReshapedOnlyRhsKernel.h"
#include "src/gpu/cl/kernels/ClGemmLowpOffsetContributionKernel.h"
#include "src/gpu/cl/kernels/ClGemmLowpOffsetContributionOutputStageKernel.h"
#include "src/gpu/cl/kernels/ClGemmLowpReductionKernel.h"
#include "src/gpu/cl/kernels/ClGemmMatrixMultiplyReshapedKernel.h"
#include "src/gpu/cl/kernels/ClGemmMatrixMultiplyReshapedOnlyRhsKernel.h"
#include "src/gpu/cl/kernels/ClGemmReshapeLhsMatrixKernel.h"
#include "src/gpu/cl/kernels/ClGemmReshapeRhsMatrixKernel.h"
#include "src/gpu/cl/kernels/ClIm2ColKernel.h"
#include "src/gpu/cl/kernels/ClWeightsReshapeKernel.h"
#include "tests/AssetsLibrary.h"
#include "tests/CL/CLAccessor.h"
#include "tests/Globals.h"
#include "tests/IAccessor.h"
#include "tests/SimpleTensor.h"
#include "tests/validation/Validation.h"
#include "tests/validation/reference/GEMM.h"
#include "tests/validation/reference/GEMMLowp.h"
#include "utils/TypePrinter.h"
#include "utils/Utils.h"
#include "utils/command_line/CommandLineOptions.h"
#include "utils/command_line/CommandLineParser.h"
#include "ValidateExample.h"
#include <cstdlib>
using namespace arm_compute;
using namespace utils;
using namespace arm_compute::test;
using namespace arm_compute::test::validation;
constexpr float abs_tolerance_f32(0.0001f); /**< F32 Absolute tolerance value for comparing reference's output against implementation's output for
* floating point data types in case using relative tolerance fails because of small values */
RelativeTolerance<float> tolerance_f32(0.001f); /**< F32 Tolerance value for comparing reference's output against implementation's output for floating point data types */
RelativeTolerance<half_float::half> tolerance_f16(half(0.2)); /**< F16 Tolerance value for comparing reference's output against implementation's output for floating point data types */
constexpr float tolerance_num_f16 = 0.02f; /**< F16 Tolerance number */
namespace
{
class GEMMCommandLineOptions final
{
public:
explicit GEMMCommandLineOptions(CommandLineParser &parser) noexcept
: help(parser.add_option<ToggleOption>("help")),
add_bias(parser.add_option<ToggleOption>("add_bias")),
M(parser.add_option<SimpleOption<int>>("m", 7)),
N(parser.add_option<SimpleOption<int>>("n", 3)),
K(parser.add_option<SimpleOption<int>>("k", 5)),
B(parser.add_option<SimpleOption<int>>("b", 1)),
alpha(parser.add_option<SimpleOption<float>>("alpha", 1.f)),
beta(parser.add_option<SimpleOption<float>>("beta", 0.f)),
offset_src0(parser.add_option<SimpleOption<int>>("offset_i0", 10)),
offset_src1(parser.add_option<SimpleOption<int>>("offset_i1", 10)),
offset_dst(parser.add_option<SimpleOption<int>>("offset_o", 10)),
scale_src0(parser.add_option<SimpleOption<float>>("scale_i0", 1.f / 255)),
scale_src1(parser.add_option<SimpleOption<float>>("scale_i1", 1.f / 255)),
scale_dst(parser.add_option<SimpleOption<float>>("scale_o", 1.f / 255)),
data_type()
{
// Setup data type
const std::set<arm_compute::DataType> supported_data_types
{
DataType::F16,
DataType::F32,
DataType::QASYMM8,
};
data_type = parser.add_option<EnumOption<DataType>>("type", supported_data_types, DataType::F32);
// Setup help strings
help->set_help("Show this help message");
add_bias->set_help("Add bias to the GEMM. Used when running in QASYMM8");
M->set_help("M value");
N->set_help("N value");
K->set_help("K value");
B->set_help("B value - number of batches");
alpha->set_help("Alpha value");
beta->set_help("Beta value");
offset_src0->set_help("Offset of first input. Used when running in QASYMM8");
offset_src1->set_help("Offset of second input. Used when running in QASYMM8");
offset_dst->set_help("Offset of output. Used when running in QASYMM8");
scale_src0->set_help("Scale of first input. Used when running in QASYMM8");
scale_src1->set_help("Scale of second input. Used when running in QASYMM8");
scale_dst->set_help("Scale of output. Used when running in QASYMM8");
data_type->set_help("Data type to use");
}
/** Prevent instances of this class from being copied (As this class contains pointers) */
GEMMCommandLineOptions(const GEMMCommandLineOptions &) = delete;
/** Prevent instances of this class from being copied (As this class contains pointers) */
GEMMCommandLineOptions &operator=(const GEMMCommandLineOptions &) = delete;
/** Allow instances of this class to be moved */
GEMMCommandLineOptions(GEMMCommandLineOptions &&) noexcept(true) = default;
/** Allow instances of this class to be moved */
GEMMCommandLineOptions &operator=(GEMMCommandLineOptions &&) noexcept(true) = default;
/** Default destructor */
~GEMMCommandLineOptions() = default;
public:
ToggleOption *help;
ToggleOption *add_bias;
SimpleOption<int> *M;
SimpleOption<int> *N;
SimpleOption<int> *K;
SimpleOption<int> *B;
SimpleOption<float> *alpha;
SimpleOption<float> *beta;
SimpleOption<int> *offset_src0;
SimpleOption<int> *offset_src1;
SimpleOption<int> *offset_dst;
SimpleOption<float> *scale_src0;
SimpleOption<float> *scale_src1;
SimpleOption<float> *scale_dst;
EnumOption<arm_compute::DataType> *data_type;
};
} // namespace
class CLGEMMValidateExample : public ValidateExample
{
public:
bool do_setup(int argc, char **argv) override
{
CLScheduler::get().default_init();
// Parse options
CommandLineParser parser;
GEMMCommandLineOptions gemm_options(parser);
parser.parse(argc, argv);
// Print help
const bool print_help = gemm_options.help->is_set() ? gemm_options.help->value() : false;
if(print_help)
{
parser.print_help(argv[0]);
return false;
}
// Consume parameters
consume_params(gemm_options);
print_parameters_internal();
const bool is_quantized = is_data_type_quantized(data_type);
// Calculate re-quantization parameters
if(is_quantized)
{
float multiplier = scale_src0 * scale_src1 / scale_dst;
quantization::calculate_quantized_multiplier(multiplier, &dst_multiplier, &dst_shift);
}
// Initialize GEMM inputs/outputs
src0.allocator()->init(TensorInfo(TensorShape(K, M, B), 1, data_type));
src1.allocator()->init(TensorInfo(TensorShape(N, K, B), 1, data_type));
src2.allocator()->init(TensorInfo(TensorShape(N, M, B), 1, data_type));
init_sgemm_output(dst, src0, src1, data_type);
// Configure function
if(is_quantized)
{
src0.info()->set_quantization_info(QuantizationInfo(scale_src0, offset_src0));
src1.info()->set_quantization_info(QuantizationInfo(scale_src1, offset_src1));
dst.info()->set_quantization_info(QuantizationInfo(scale_dst, offset_dst));
biases.allocator()->init(TensorInfo(TensorShape(N), 1, DataType::S32));
init_sgemm_output(tmp_dst, src0, src1, DataType::S32);
// Configure GEMMlowp matrix multiply function
mm_gemmlowp.configure(&src0, &src1, nullptr, &tmp_dst);
// Configure GEMMlowp output stage
GEMMLowpOutputStageInfo gemm_info{};
gemm_info.gemmlowp_multiplier = dst_multiplier;
gemm_info.gemmlowp_shift = dst_shift;
gemm_info.gemmlowp_offset = offset_dst;
mm_gemmlowp_output_stage.configure(&tmp_dst, add_bias ? &biases : nullptr, &dst, gemm_info);
tmp_dst.allocator()->allocate();
biases.allocator()->allocate();
fill(CLAccessor(biases), 3);
}
else
{
// Configure matrix multiply function
mm_gemm.configure(&src0, &src1, &src2, &dst, alpha, beta);
}
// Allocate all the tensors
src0.allocator()->allocate();
src1.allocator()->allocate();
dst.allocator()->allocate();
src2.allocator()->allocate();
fill(CLAccessor(src0), 0);
fill(CLAccessor(src1), 1);
fill(CLAccessor(src2), 2);
return true;
}
void print_parameters_internal()
{
std::cout << "Datatype : " << string_from_data_type(data_type) << "\n";
std::cout << "M : " << support::cpp11::to_string(M) << "\n";
std::cout << "N : " << support::cpp11::to_string(N) << "\n";
std::cout << "K : " << support::cpp11::to_string(K) << "\n";
std::cout << "B : " << support::cpp11::to_string(B) << "\n";
if(data_type == DataType::QASYMM8)
{
std::cout << "Scale_Src0 : " << support::cpp11::to_string(scale_src0) << "\n";
std::cout << "Offset_Src0 : " << support::cpp11::to_string(offset_src0) << "\n";
std::cout << "Scale_Scr1 : " << support::cpp11::to_string(scale_src1) << "\n";
std::cout << "Offset_Src1 : " << support::cpp11::to_string(offset_src1) << "\n";
std::cout << "Scale_Dst : " << support::cpp11::to_string(scale_dst) << "\n";
std::cout << "Offset_Dst : " << support::cpp11::to_string(offset_dst) << "\n";
std::cout << "Bias : " << support::cpp11::to_string(add_bias) << "\n";
}
else
{
std::cout << "Alpha : " << support::cpp11::to_string(alpha) << "\n";
std::cout << "Beta : " << support::cpp11::to_string(beta) << "\n";
}
}
void do_validate() override
{
switch(data_type)
{
case DataType::F16:
{
SimpleTensor<half> ref_src0 = { TensorShape(K, M, B), data_type, 1 };
SimpleTensor<half> ref_src1 = { TensorShape(N, K, B), data_type, 1 };
SimpleTensor<half> ref_src2 = { TensorShape(N, M, B), data_type, 1 };
fill(ref_src0, 0);
fill(ref_src1, 1);
fill(ref_src2, 2);
SimpleTensor<half> ref_dst = reference::gemm<half>(ref_src0, ref_src1, ref_src2, alpha, beta);
validate(CLAccessor(dst), ref_dst, tolerance_f16, tolerance_num_f16);
break;
}
case DataType::F32:
{
SimpleTensor<float> ref_src0 = { TensorShape(K, M, B), data_type, 1 };
SimpleTensor<float> ref_src1 = { TensorShape(N, K, B), data_type, 1 };
SimpleTensor<float> ref_src2 = { TensorShape(N, M, B), data_type, 1 };
fill(ref_src0, 0);
fill(ref_src1, 1);
fill(ref_src2, 2);
SimpleTensor<float> ref_dst = reference::gemm<float>(ref_src0, ref_src1, ref_src2, alpha, beta);
validate(CLAccessor(dst), ref_dst, tolerance_f32, 0.f, abs_tolerance_f32);
break;
}
case DataType::QASYMM8:
{
SimpleTensor<uint8_t> ref_src0{ TensorShape(K, M, B), data_type, 1 };
SimpleTensor<uint8_t> ref_src1{ TensorShape(N, K, B), data_type, 1 };
SimpleTensor<uint8_t> ref_dst;
// Fill reference
fill(ref_src0, 0);
fill(ref_src1, 1);
SimpleTensor<int32_t> ref_tmp_dst = reference::gemmlowp_matrix_multiply_core<int32_t, uint8_t>(ref_src0, ref_src1, TensorShape(N, M, B), offset_src0, offset_src1);
const std::vector<int32_t> dst_multiplier_vec = { dst_multiplier };
const std::vector<int32_t> dst_shift_vec = { dst_shift };
if(add_bias)
{
SimpleTensor<int32_t> biases{ TensorShape(N), DataType::S32, 1 };
// Fill bias
fill(biases, 3);
ref_dst = reference::gemmlowp_quantize_down_scale_by_fixedpoint<int32_t, uint8_t>(ref_tmp_dst, biases, dst_multiplier_vec, dst_shift_vec, offset_dst);
}
else
{
ref_dst = reference::gemmlowp_quantize_down_scale_by_fixedpoint<int32_t, uint8_t>(ref_tmp_dst, dst_multiplier_vec, dst_shift_vec, offset_dst);
}
validate(CLAccessor(dst), ref_dst);
break;
}
default:
break;
}
}
void do_run() override
{
// Execute the function
if(data_type == DataType::QASYMM8)
{
// Run gemmlowp
mm_gemmlowp.run();
// Run output stage
mm_gemmlowp_output_stage.run();
}
else
{
// Run gemm
mm_gemm.run();
}
// Make sure all the OpenCL jobs are done executing:
CLScheduler::get().sync();
}
private:
template <typename U>
void fill(U &&tensor, int i)
{
switch(tensor.data_type())
{
case DataType::F16:
{
arm_compute::utils::uniform_real_distribution_16bit<half> distribution{ -1.0f, 1.0f };
library->fill(tensor, distribution, i);
break;
}
case DataType::F32:
{
std::uniform_real_distribution<float> distribution(-1.0f, 1.0f);
library->fill(tensor, distribution, i);
break;
}
case DataType::S32:
case DataType::QASYMM8:
{
std::uniform_int_distribution<> distribution(-6000, 6000);
library->fill(tensor, distribution, i);
break;
}
default:
library->fill_tensor_uniform(tensor, i);
}
}
void consume_params(const GEMMCommandLineOptions &opts)
{
ARM_COMPUTE_ERROR_ON(opts.M->value() <= 0);
ARM_COMPUTE_ERROR_ON(opts.N->value() <= 0);
ARM_COMPUTE_ERROR_ON(opts.K->value() <= 0);
ARM_COMPUTE_ERROR_ON(opts.B->value() <= 0);
M = opts.M->value();
N = opts.N->value();
K = opts.K->value();
B = opts.B->value();
alpha = opts.alpha->value();
beta = opts.beta->value();
offset_src0 = opts.offset_src0->value();
offset_src1 = opts.offset_src1->value();
offset_dst = opts.offset_dst->value();
scale_src0 = opts.scale_src0->value();
scale_src1 = opts.scale_src1->value();
scale_dst = opts.scale_dst->value();
add_bias = opts.add_bias->is_set() ? opts.add_bias->value() : true;
data_type = opts.data_type->value();
}
CLTensor src0{}, src1{}, src2{}, dst{};
CLTensor tmp_dst{}, biases{};
CLGEMM mm_gemm{};
CLGEMMLowpMatrixMultiplyCore mm_gemmlowp{};
CLGEMMLowpOutputStage mm_gemmlowp_output_stage{};
size_t M{ 7 }, N{ 3 }, K{ 5 }, B{ 1 };
DataType data_type{ DataType::F32 };
float alpha{ 1.0 }, beta{ 0.0 };
int offset_src0{ 10 }, offset_src1{ 10 }, offset_dst{ 10 };
float scale_src0{ 1.0f / 255 }, scale_src1{ 1.0f / 255 }, scale_dst{ 1.0f / 255 };
int32_t dst_multiplier{ 0 }, dst_shift{ 0 };
bool add_bias{ true };
};
/** Main program for gemm test
*
* @param[in] argc Number of arguments
* @param[in] argv Arguments
*
*/
int main(int argc, char **argv)
{
return utils::run_example<CLGEMMValidateExample>(argc, argv);
}