blob: edd074ba0838ac4ac872c625bfecbe50e9ebcc57 [file] [log] [blame]
Georgios Pinitasc0d1c862018-03-23 15:13:15 +00001/*
2 * Copyright (c) 2018 ARM Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24#include "arm_compute/runtime/CL/tuners/BifrostTuner.h"
25
26#include "arm_compute/core/CL/CLHelpers.h"
27#include "arm_compute/core/CL/CLKernels.h"
28#include "arm_compute/core/utils/misc/Cast.h"
29
30namespace arm_compute
31{
32namespace tuners
33{
34namespace
35{
36/** Tunes a @ref CLDirectConvolutionLayerKernel for a bifrost target
37 *
38 * @param[in] k Kernels to tune
39 */
40void tune_direct_convolution_kernel(CLDirectConvolutionLayerKernel &k)
41{
42 cl::NDRange lws_hint = k.lws_hint();
43
44 const GPUTarget gpu_target = k.get_target();
45 const DataType dt = k._input->info()->data_type();
46 const TensorShape weights_shape = k._weights->info()->tensor_shape();
47 const TensorShape inputs_shape = k._input->info()->tensor_shape();
48 const size_t kernel_size = weights_shape.x();
49 const unsigned int stride_x = k._conv_stride_x;
50 const unsigned int stride_y = k._conv_stride_y;
51
52 if(gpu_target_is_in(gpu_target, GPUTarget::G71, GPUTarget::G72) && (kernel_size <= 5) && (stride_x == 1) && (stride_y == 1) && (dt == DataType::F32))
53 {
54 // Through extensive experimentation with over 30 representative tensor
55 // shapes, we found a small number of local work size configurations
56 // that result in nearly optimal execution times. Selecting the right
57 // lws for a given shape, however, required a complex decision tree,
58 // until we constructed a simple feature as described below.
59 //
60 // We started from the number of multiply-accumulate operations for a
61 // convolution layer, which is equal to the product of the input
62 // dimensions 0..2 and the weights dimensions 0..2. Unfortunately,
63 // this resulted in ties between distinct shapes that required distinct
64 // lws configurations. Replacing the width of the input with the kernel
65 // size, however, resulted in nearly optimal predictions. We use underscores
66 // in variable names to indicate when they are intentionally misleading.
67 const size_t product_of_weights_dimensions = weights_shape[0] * weights_shape[1] * weights_shape[2];
68 const size_t product_of_input_dimensions_ = inputs_shape[0] * inputs_shape[1] * inputs_shape[2];
69 const float mega_ops_ = 1e-6 * product_of_weights_dimensions * product_of_input_dimensions_;
70
71 switch(kernel_size)
72 {
73 case 1:
74 {
75 if(mega_ops_ < 1.f)
76 {
77 lws_hint = cl::NDRange(1, 1, 8);
78 }
79 else if(mega_ops_ < 7.f)
80 {
81 lws_hint = cl::NDRange(1, 1, 4);
82 }
83 else
84 {
85 lws_hint = cl::NDRange(1, 1, 2);
86 }
87 break;
88 }
89 case 3:
90 {
91 if(mega_ops_ < 1.f)
92 {
93 lws_hint = cl::NDRange(1, 1, 8);
94 }
95 else if(mega_ops_ < 13.f)
96 {
97 lws_hint = cl::NDRange(2, 1, 4);
98 }
99 else if(mega_ops_ < 50.f)
100 {
101 lws_hint = cl::NDRange(3, 1, 4);
102 }
103 else
104 {
105 lws_hint = cl::NDRange(2, 1, 6);
106 }
107 break;
108 }
109 case 5:
110 {
111 if(mega_ops_ < 2.f || mega_ops_ > 80.f)
112 {
113 lws_hint = cl::NDRange(2, 1, 4);
114 }
115 else
116 {
117 lws_hint = cl::NDRange(2, 1, 8);
118 }
119 break;
120 }
121 default:
122 break;
123 }
124 k.set_lws_hint(lws_hint);
125 }
126}
Georgios Pinitas17812ba2018-06-04 19:27:13 +0100127
128void tune_col2im_kernel(CLCol2ImKernel &k)
129{
130 cl::NDRange lws_hint = k.lws_hint();
131 const GPUTarget gpu_target = k.get_target();
132
133 // Configure the local work size for Bifrost with a value obtained
134 // via exhaustive autotuning over 30 representative tensor shapes.
135 if(gpu_target_is_in(gpu_target, GPUTarget::G71, GPUTarget::G72, GPUTarget::G51, GPUTarget::G51BIG, GPUTarget::G51LIT, GPUTarget::TNOX))
136 {
137 if((k._convolved_dims.first == 7) || (k._convolved_dims.first == 14))
138 {
139 lws_hint = cl::NDRange(1, 7, 1);
140 }
141 else
142 {
143 lws_hint = cl::NDRange(1, 8, 1);
144 }
145 }
146
147 k.set_lws_hint(lws_hint);
148}
149
150void tune_im2col_kernel(CLIm2ColKernel &k)
151{
152 cl::NDRange lws_hint = k.lws_hint();
153 const GPUTarget gpu_target = k.get_target();
154
155 // Local work size optimized for the 11x11 AlexNet convolution on Bifrost.
156 if(gpu_target_is_in(gpu_target, GPUTarget::G71, GPUTarget::G72, GPUTarget::G51, GPUTarget::G51BIG, GPUTarget::G51LIT, GPUTarget::TNOX) && k._kernel_dims.width == 11)
157 {
158 const bool is_square_kernel = (k._kernel_dims.width == k._kernel_dims.height);
159 if(!is_square_kernel && k._kernel_dims.width > 1 && !k._conv_info.has_padding())
160 {
161 lws_hint = cl::NDRange(1, 1, 1);
162 }
163 }
164 k.set_lws_hint(lws_hint);
165}
166
167void tune_depthwise_im2col_kernel(CLDepthwiseIm2ColKernel &k)
168{
169 cl::NDRange lws_hint = k.lws_hint();
170 const GPUTarget gpu_target = k.get_target();
171
172 // Configure the local work size for Bifrost with a value obtained
173 // via exhaustive autotuning for the MobileNets tensor shapes.
174 if(gpu_target_is_in(gpu_target, GPUTarget::G71, GPUTarget::G72, GPUTarget::G51, GPUTarget::G51BIG, GPUTarget::G51LIT, GPUTarget::TNOX))
175 {
176 lws_hint = cl::NDRange(1, 2, 1);
177 }
178
179 k.set_lws_hint(lws_hint);
180}
181
182void tune_gemv_kernel(CLGEMMMatrixVectorMultiplyKernel &k)
183{
184 cl::NDRange lws_hint = k.lws_hint();
185 const GPUTarget gpu_target = k.get_target();
186
187 // Configure the local work size for Bifrost with a value obtained
188 // via exhaustive autotuning for the MobileNets tensor shapes.
189 if(gpu_target_is_in(gpu_target, GPUTarget::G71, GPUTarget::G72, GPUTarget::G51, GPUTarget::G51BIG, GPUTarget::G51LIT, GPUTarget::TNOX))
190 {
191 lws_hint = cl::NDRange(1, 1, 1);
192 }
193
194 k.set_lws_hint(lws_hint);
195}
196
197void tune_gemm_kernel(CLGEMMMatrixMultiplyKernel &k)
198{
199 cl::NDRange lws_hint = k.lws_hint();
200 const GPUTarget gpu_target = k.get_target();
201
202 // Configure LWS hint
203 switch(gpu_target)
204 {
205 case GPUTarget::G71:
206 case GPUTarget::G72:
207 case GPUTarget::G51:
208 case GPUTarget::G51BIG:
209 case GPUTarget::G51LIT:
210 case GPUTarget::TNOX:
211 if(k._input1->info()->dimension(1) == 24)
212 {
213 // LWS optimized for the 11x11 AlexNet convolution on Bifrost.
214 lws_hint = cl::NDRange(2, 2);
215 }
216 else if(k._output->info()->dimension(1) == 196)
217 {
218 lws_hint = cl::NDRange(1, 7);
219 }
220 else
221 {
222 lws_hint = cl::NDRange(8, 8);
223 }
224 break;
225 default:
226 lws_hint = cl::NullRange;
227 }
228
229 k.set_lws_hint(lws_hint);
230}
231
232void tune_pooling_kernel(CLPoolingLayerKernel &k)
233{
234 cl::NDRange lws_hint = k.lws_hint();
235 const GPUTarget gpu_target = k.get_target();
236
237 // Configure the local work size (hint) from the first two dimensions of the global work size.
238 // On Bifrost, this works for up to 35x35xC filters, for which the pooling_layer_3_optimized
239 // kernel is launched with gws=(9, 33, C). In any case, the hint will be ignored if it is
240 // invalid (e.g. exceeds the maximum workgroup size that the kernel can be launched with).
241 if(k._input->info()->data_layout() == DataLayout::NCHW)
242 {
243 if(gpu_target_is_in(gpu_target, GPUTarget::G71, GPUTarget::G72, GPUTarget::G51, GPUTarget::G51BIG, GPUTarget::G51LIT, GPUTarget::TNOX))
244 {
245 cl::NDRange gws = ICLKernel::gws_from_window(k.window());
246 lws_hint = cl::NDRange(gws[0], gws[1], 1);
247 }
248 }
249
250 k.set_lws_hint(lws_hint);
251}
Georgios Pinitasc0d1c862018-03-23 15:13:15 +0000252} // namespace
253
254void BifrostTuner::tune_kernel_static(ICLKernel &kernel)
255{
Georgios Pinitasc0d1c862018-03-23 15:13:15 +0000256 if(dynamic_cast<CLDirectConvolutionLayerKernel *>(&kernel) != nullptr)
257 {
258 tune_direct_convolution_kernel(*utils::cast::polymorphic_downcast<CLDirectConvolutionLayerKernel *>(&kernel));
259 }
Georgios Pinitas17812ba2018-06-04 19:27:13 +0100260 else if(dynamic_cast<CLCol2ImKernel *>(&kernel) != nullptr)
261 {
262 tune_col2im_kernel(*utils::cast::polymorphic_downcast<CLCol2ImKernel *>(&kernel));
263 }
264 else if(dynamic_cast<CLIm2ColKernel *>(&kernel) != nullptr)
265 {
266 tune_im2col_kernel(*utils::cast::polymorphic_downcast<CLIm2ColKernel *>(&kernel));
267 }
268 else if(dynamic_cast<CLDepthwiseIm2ColKernel *>(&kernel) != nullptr)
269 {
270 tune_depthwise_im2col_kernel(*utils::cast::polymorphic_downcast<CLDepthwiseIm2ColKernel *>(&kernel));
271 }
272 else if(dynamic_cast<CLGEMMMatrixVectorMultiplyKernel *>(&kernel) != nullptr)
273 {
274 tune_gemv_kernel(*utils::cast::polymorphic_downcast<CLGEMMMatrixVectorMultiplyKernel *>(&kernel));
275 }
276 else if(dynamic_cast<CLGEMMMatrixMultiplyKernel *>(&kernel) != nullptr)
277 {
278 tune_gemm_kernel(*utils::cast::polymorphic_downcast<CLGEMMMatrixMultiplyKernel *>(&kernel));
279 }
280 else if(dynamic_cast<CLPoolingLayerKernel *>(&kernel) != nullptr)
281 {
282 tune_pooling_kernel(*utils::cast::polymorphic_downcast<CLPoolingLayerKernel *>(&kernel));
283 }
Georgios Pinitasc0d1c862018-03-23 15:13:15 +0000284}
285
286void BifrostTuner::tune_kernel_dynamic(ICLKernel &kernel)
287{
288 ARM_COMPUTE_UNUSED(kernel);
289}
290} // namespace tuners
291} // namespace arm_compute