blob: 25ba1c83910f420191189a1d719a67b0b9665bed [file] [log] [blame]
giuros0114c4e0f2019-03-26 17:44:40 +00001/*
2 * Copyright (c) 2019 ARM Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24#include "arm_compute/runtime/NEON/functions/NEFFT1D.h"
25
26#include "arm_compute/core/ITensor.h"
27#include "arm_compute/core/Validate.h"
28#include "arm_compute/core/utils/helpers/fft.h"
29#include "arm_compute/runtime/NEON/NEScheduler.h"
30
31namespace arm_compute
32{
33NEFFT1D::NEFFT1D(std::shared_ptr<IMemoryManager> memory_manager)
giuros0105fb4482019-03-26 17:44:40 +000034 : _memory_group(std::move(memory_manager)), _digit_reverse_kernel(), _fft_kernels(), _scale_kernel(), _digit_reversed_input(), _digit_reverse_indices(), _num_ffts(0), _axis(0), _run_scale(false)
giuros0114c4e0f2019-03-26 17:44:40 +000035{
36}
37
38void NEFFT1D::configure(const ITensor *input, ITensor *output, const FFT1DInfo &config)
39{
giuros01154bc1c2019-03-26 17:44:40 +000040 ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
41 ARM_COMPUTE_ERROR_THROW_ON(NEFFT1D::validate(input->info(), output->info(), config));
42
giuros0114c4e0f2019-03-26 17:44:40 +000043 // Decompose size to radix factors
44 const auto supported_radix = NEFFTRadixStageKernel::supported_radix();
45 const unsigned int N = input->info()->tensor_shape()[config.axis];
46 const auto decomposed_vector = arm_compute::helpers::fft::decompose_stages(N, supported_radix);
47 ARM_COMPUTE_ERROR_ON(decomposed_vector.empty());
48
giuros0105fb4482019-03-26 17:44:40 +000049 // Flags
giuros01154bc1c2019-03-26 17:44:40 +000050 _run_scale = config.direction == FFTDirection::Inverse;
51
giuros0105fb4482019-03-26 17:44:40 +000052 const bool is_c2r = input->info()->num_channels() == 2 && output->info()->num_channels() == 1;
53
giuros0114c4e0f2019-03-26 17:44:40 +000054 // Configure digit reverse
giuros01154bc1c2019-03-26 17:44:40 +000055 FFTDigitReverseKernelInfo digit_reverse_config;
56 digit_reverse_config.axis = config.axis;
57 digit_reverse_config.conjugate = config.direction == FFTDirection::Inverse;
giuros0114c4e0f2019-03-26 17:44:40 +000058 TensorInfo digit_reverse_indices_info(TensorShape(input->info()->tensor_shape()[config.axis]), 1, DataType::U32);
59 _digit_reverse_indices.allocator()->init(digit_reverse_indices_info);
60 _memory_group.manage(&_digit_reversed_input);
giuros01154bc1c2019-03-26 17:44:40 +000061 _digit_reverse_kernel.configure(input, &_digit_reversed_input, &_digit_reverse_indices, digit_reverse_config);
giuros0114c4e0f2019-03-26 17:44:40 +000062
63 // Create and configure FFT kernels
64 unsigned int Nx = 1;
giuros01154bc1c2019-03-26 17:44:40 +000065 _num_ffts = decomposed_vector.size();
giuros0105fb4482019-03-26 17:44:40 +000066 _fft_kernels.resize(_num_ffts);
giuros01154bc1c2019-03-26 17:44:40 +000067 _axis = config.axis;
68
giuros0105fb4482019-03-26 17:44:40 +000069 for(unsigned int i = 0; i < _num_ffts; ++i)
giuros0114c4e0f2019-03-26 17:44:40 +000070 {
71 const unsigned int radix_for_stage = decomposed_vector.at(i);
72
giuros0105fb4482019-03-26 17:44:40 +000073 FFTRadixStageKernelInfo fft_kernel_info;
74 fft_kernel_info.axis = config.axis;
75 fft_kernel_info.radix = radix_for_stage;
76 fft_kernel_info.Nx = Nx;
77 fft_kernel_info.is_first_stage = (i == 0);
giuros01154bc1c2019-03-26 17:44:40 +000078 _fft_kernels[i].configure(&_digit_reversed_input, ((i == (_num_ffts - 1)) && !is_c2r) ? output : nullptr, fft_kernel_info);
79
giuros0114c4e0f2019-03-26 17:44:40 +000080 Nx *= radix_for_stage;
81 }
82
giuros01154bc1c2019-03-26 17:44:40 +000083 // Configure scale kernel
84 if(_run_scale)
85 {
86 FFTScaleKernelInfo scale_config;
87 scale_config.scale = static_cast<float>(N);
88 scale_config.conjugate = config.direction == FFTDirection::Inverse;
89 is_c2r ? _scale_kernel.configure(&_digit_reversed_input, output, scale_config) : _scale_kernel.configure(output, nullptr, scale_config);
90 }
91
giuros0114c4e0f2019-03-26 17:44:40 +000092 // Allocate tensors
93 _digit_reversed_input.allocator()->allocate();
94 _digit_reverse_indices.allocator()->allocate();
95
96 // Init digit reverse indices
97 const auto digit_reverse_cpu = arm_compute::helpers::fft::digit_reverse_indices(N, decomposed_vector);
98 std::copy_n(digit_reverse_cpu.data(), N, reinterpret_cast<unsigned int *>(_digit_reverse_indices.buffer()));
99}
100
101Status NEFFT1D::validate(const ITensorInfo *input, const ITensorInfo *output, const FFT1DInfo &config)
102{
103 ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output);
giuros01154bc1c2019-03-26 17:44:40 +0000104 ARM_COMPUTE_RETURN_ERROR_ON(input->data_type() != DataType::F32);
105 ARM_COMPUTE_RETURN_ERROR_ON(input->num_channels() > 2);
106 ARM_COMPUTE_RETURN_ERROR_ON(std::set<unsigned int>({ 0, 1 }).count(config.axis) == 0);
giuros0114c4e0f2019-03-26 17:44:40 +0000107
108 // Check if FFT is decomposable
109 const auto supported_radix = NEFFTRadixStageKernel::supported_radix();
110 const unsigned int N = input->tensor_shape()[config.axis];
111 const auto decomposed_vector = arm_compute::helpers::fft::decompose_stages(N, supported_radix);
112 ARM_COMPUTE_RETURN_ERROR_ON(decomposed_vector.empty());
113
114 // Checks performed when output is configured
115 if((output != nullptr) && (output->total_size() != 0))
116 {
giuros01154bc1c2019-03-26 17:44:40 +0000117 // All combinations are supported except real input with real output (i.e., both input channels set to 1)
118 ARM_COMPUTE_RETURN_ERROR_ON(output->num_channels() == 1 && input->num_channels() == 1);
119 ARM_COMPUTE_RETURN_ERROR_ON(output->num_channels() > 2);
giuros0114c4e0f2019-03-26 17:44:40 +0000120 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output);
121 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
122 }
123
124 return Status{};
125}
126
127void NEFFT1D::run()
128{
129 MemoryGroupResourceScope scope_mg(_memory_group);
130
giuros01154bc1c2019-03-26 17:44:40 +0000131 NEScheduler::get().schedule(&_digit_reverse_kernel, (_axis == 0 ? Window::DimY : Window::DimZ));
giuros0114c4e0f2019-03-26 17:44:40 +0000132
giuros0105fb4482019-03-26 17:44:40 +0000133 for(unsigned int i = 0; i < _num_ffts; ++i)
giuros0114c4e0f2019-03-26 17:44:40 +0000134 {
giuros0105fb4482019-03-26 17:44:40 +0000135 NEScheduler::get().schedule(&_fft_kernels[i], (_axis == 0 ? Window::DimY : Window::DimX));
136 }
137
138 // Run output scaling
139 if(_run_scale)
140 {
141 NEScheduler::get().schedule(&_scale_kernel, Window::DimY);
giuros0114c4e0f2019-03-26 17:44:40 +0000142 }
143}
144} // namespace arm_compute