blob: faff59563b9f8f7197962f7f716b164b711a0c2b [file] [log] [blame]
Gian Marco58c57942017-11-28 09:10:03 +00001/*
Georgios Pinitasf72f9362018-01-12 16:29:45 +00002 * Copyright (c) 2017-2018 ARM Limited.
Gian Marco58c57942017-11-28 09:10:03 +00003 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24#ifndef __ARM_COMPUTE_NEASYMM_H__
25#define __ARM_COMPUTE_NEASYMM_H__
26
27#include <arm_neon.h>
28
29namespace arm_compute
30{
Michel Iwaniec5dfeae62017-11-29 10:48:23 +000031using qasymm8x8_t = uint8x8_t; /**< 8 bit quantized asymmetric vector with 8 elements */
32using qasymm8x8x2_t = uint8x8x2_t; /**< 8 bit quantized asymmetric vector with 16 elements */
33using qasymm8x8x3_t = uint8x8x3_t; /**< 8 bit quantized asymmetric vector with 24 elements */
34using qasymm8x8x4_t = uint8x8x4_t; /**< 8 bit quantized asymmetric vector with 32 elements */
35using qasymm8x16_t = uint8x16_t; /**< 8 bit quantized asymmetric vector with 16 elements */
36
Gian Marco58c57942017-11-28 09:10:03 +000037/** Round to the nearest division by a power-of-two using exponent
38 *
39 * @note This function calculates the following expression: (x + 2^n -1 ) / 2^n where n = exponent
40 *
41 * @param[in] x Vector of 4 elements
42 * @param[in] exponent Integer value used to round to nearest division by a power-of-two
43 *
44 * @return the nearest division by a power-of-two using exponent
45 */
46int32x4_t rounding_divide_by_pow2(int32x4_t x, int exponent);
Michel Iwaniec5dfeae62017-11-29 10:48:23 +000047
48/** Perform a multiply-accumulate on all 16 components of a QASYMM8 vector
49 *
50 * vd*vs + vo
51 *
52 * @param[in] vd Input vector value in QASYMM8 format
53 * @param[in] vs Vector multiplier in F32 format. The multiplier value must be duplicated across all four lanes.
54 * @param[in] vo Vector addend in F32 format. The addend value must be duplicated across all four lanes.
55 *
56 * @return A 16-component vector in QASYMM8 format, saturated to fit
57 */
58uint8x16_t vmlaq_qasymm8(qasymm8x16_t vd, float32x4_t vs, float32x4_t vo);
Georgios Pinitasf72f9362018-01-12 16:29:45 +000059
60/** Performs final quantization step on 16 elements
61 *
62 * @tparam is_bounded_relu Specified if a fused bounded relu should be applied
63 *
64 * @param in_s32 Input to be quantized.
65 * @param result_fixedpoint_multiplier Result multiplier parameter
66 * @param result_shift Result shift parameter
67 * @param result_offset_after_shift_s32 Result offset parameter
68 * @param min_u8 Relu lower bound
69 * @param max_u8 Relu upper bound
70 *
71 * @return Quantized values
72 */
73template <bool is_bounded_relu>
74uint8x16_t finalize_quantization(int32x4x4_t &in_s32,
75 int result_fixedpoint_multiplier,
76 int32_t result_shift,
77 int32x4_t result_offset_after_shift_s32,
78 uint8x16_t min_u8,
79 uint8x16_t max_u8)
80{
81 const static int32x4_t zero_s32 = vdupq_n_s32(0);
82
83 // Fixed point multiplication with vector saturating rounding doubling multiply high with scalar
84 in_s32.val[0] = vqrdmulhq_n_s32(in_s32.val[0], result_fixedpoint_multiplier);
85 in_s32.val[1] = vqrdmulhq_n_s32(in_s32.val[1], result_fixedpoint_multiplier);
86 in_s32.val[2] = vqrdmulhq_n_s32(in_s32.val[2], result_fixedpoint_multiplier);
87 in_s32.val[3] = vqrdmulhq_n_s32(in_s32.val[3], result_fixedpoint_multiplier);
88
89 // Round to the nearest division by a power-of-two using result_shift_s32
90 in_s32.val[0] = rounding_divide_by_pow2(in_s32.val[0], result_shift);
91 in_s32.val[1] = rounding_divide_by_pow2(in_s32.val[1], result_shift);
92 in_s32.val[2] = rounding_divide_by_pow2(in_s32.val[2], result_shift);
93 in_s32.val[3] = rounding_divide_by_pow2(in_s32.val[3], result_shift);
94
95 // Add the offset terms
96 in_s32.val[0] = vaddq_s32(in_s32.val[0], result_offset_after_shift_s32);
97 in_s32.val[1] = vaddq_s32(in_s32.val[1], result_offset_after_shift_s32);
98 in_s32.val[2] = vaddq_s32(in_s32.val[2], result_offset_after_shift_s32);
99 in_s32.val[3] = vaddq_s32(in_s32.val[3], result_offset_after_shift_s32);
100
101 // Saturate negative values
102 in_s32.val[0] = vmaxq_s32(in_s32.val[0], zero_s32);
103 in_s32.val[1] = vmaxq_s32(in_s32.val[1], zero_s32);
104 in_s32.val[2] = vmaxq_s32(in_s32.val[2], zero_s32);
105 in_s32.val[3] = vmaxq_s32(in_s32.val[3], zero_s32);
106
107 // Convert S32 to S16
108 const int16x8x2_t in_s16 =
109 {
110 {
111 vcombine_s16(vqmovn_s32(in_s32.val[0]), vqmovn_s32(in_s32.val[1])),
112 vcombine_s16(vqmovn_s32(in_s32.val[2]), vqmovn_s32(in_s32.val[3]))
113 }
114 };
115
116 // Convert S16 to U8
117 uint8x16_t out_u8 = vcombine_u8(vqmovun_s16(in_s16.val[0]), vqmovun_s16(in_s16.val[1]));
118
119 if(is_bounded_relu)
120 {
121 out_u8 = vmaxq_u8(out_u8, min_u8);
122 out_u8 = vminq_u8(out_u8, max_u8);
123 }
124
125 return out_u8;
126}
Gian Marco58c57942017-11-28 09:10:03 +0000127} // namespace arm_compute
128#include "arm_compute/core/NEON/NEAsymm.inl"
Michel Iwaniec5dfeae62017-11-29 10:48:23 +0000129#endif // __ARM_COMPUTE_NEASYMM_H__