IVGCVSW-4447 Add Hal 1_3 Support

* Add new 1.3 files HalPolicy, ArmnnDriver, ArmnnDriverImpl
* Add new .rc file for 1.3 service
* Add ArmnnPreparedModel_1_3 and implement new functions
* Update Android.mk with 1.3 driver and service
* Refactor ifdef to include ARMNN_ANDROID_NN_V1_3
* Create Utils getMainModel for new 1.3 Model Main Subgraph
* Use android Utils to convertToV1_X in ArmnnPrepapredModel_1_3
* Refactor HAL 1.2 convert functions into ConversionUtils_1_2.hpp
* Replace ArmnnBurstExecutorWithCache with call to ExecutionBurstServer

Signed-off-by: Kevin May <kevin.may@arm.com>
Change-Id: I514069e9e1b16bcd1c4abfb5d563d25ac22d02e3
diff --git a/1.2/HalPolicy.cpp b/1.2/HalPolicy.cpp
index ca92318..9e547fa 100644
--- a/1.2/HalPolicy.cpp
+++ b/1.2/HalPolicy.cpp
@@ -4,17 +4,6 @@
 //
 
 #include "HalPolicy.hpp"
-#include "Utils.hpp"
-
-#include <armnn/TypesUtils.hpp>
-
-#include <armnnUtils/DataLayoutIndexed.hpp>
-#include <armnnUtils/TensorUtils.hpp>
-
-#include <Half.hpp>
-
-#include <cmath>
-#include <string>
 
 namespace armnn_driver
 {
@@ -26,58 +15,6 @@
 namespace
 {
 
-bool IsQSymmDequantizeForWeights(const HalPolicy::Operation& operation, const HalPolicy::Model& model)
-{
-    const HalPolicy::Operand* operand = GetInputOperand<hal_1_2::HalPolicy>(operation, 0, model);
-    if (!operand)
-    {
-        return false;
-    }
-
-    if(!IsQSymm8(*operand))
-    {
-        // Only QSymm8 weights are dequantized on the fly by the driver
-        return false;
-    }
-
-    if (!IsOperandConstant<hal_1_2::HalPolicy>(*operand))
-    {
-        // Non-const input is not accepted for weights
-        return false;
-    }
-
-    // Iterate through all the operations and find the operation feeding from the Dequantize output
-    const size_t outputIndex = operation.outputs[0];
-    for (uint32_t operationIdx = 0; operationIdx < model.operations.size(); ++operationIdx)
-    {
-        const auto& operationIt = model.operations[operationIdx];
-        switch (operationIt.type)
-        {
-            case HalPolicy::OperationType::FULLY_CONNECTED:
-                if (outputIndex == operationIt.inputs[1]) // Weights are bound to slot 1
-                {
-                    // If the output is going into the FC weights return true
-                    return true;
-                }
-                break;
-            case HalPolicy::OperationType::LSTM:
-                for (size_t k = 0; k < operationIt.inputs.size(); ++k)
-                {
-                    if (outputIndex == operationIt.inputs[k])
-                    {
-                        // If the output is going into the LSTM weights return true
-                        return true;
-                    }
-                }
-                break;
-            default:
-                break;
-        }
-    }
-
-    return false;
-}
-
 } // anonymous namespace
 
 bool HalPolicy::ConvertOperation(const Operation& operation, const Model& model, ConversionData& data)
@@ -237,57 +174,7 @@
                                   ComparisonOperation comparisonOperation)
 {
     ALOGV("hal_1_2::HalPolicy::ConvertComparison()");
-    ALOGV("comparisonOperation = %s", GetComparisonOperationAsCString(comparisonOperation));
-
-    LayerInputHandle input0 = ConvertToLayerInputHandle<hal_1_2::HalPolicy>(operation, 0, model, data);
-    LayerInputHandle input1 = ConvertToLayerInputHandle<hal_1_2::HalPolicy>(operation, 1, model, data);
-
-    if (!(input0.IsValid() && input1.IsValid()))
-    {
-        return Fail("%s: Operation has invalid inputs", __func__);
-    }
-
-    const Operand* output = GetOutputOperand<hal_1_2::HalPolicy>(operation, 0, model);
-    if (!output)
-    {
-        return Fail("%s: Could not read output 0", __func__);
-    }
-
-    const TensorInfo& inputInfo0 = input0.GetTensorInfo();
-    const TensorInfo& inputInfo1 = input1.GetTensorInfo();
-    const TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
-
-    if (IsDynamicTensor(outputInfo))
-    {
-        return Fail("%s: Dynamic output tensors are not supported", __func__);
-    }
-
-    ComparisonDescriptor descriptor(comparisonOperation);
-
-    bool isSupported = false;
-    FORWARD_LAYER_SUPPORT_FUNC(__func__,
-                               IsComparisonSupported,
-                               data.m_Backends,
-                               isSupported,
-                               inputInfo0,
-                               inputInfo1,
-                               outputInfo,
-                               descriptor);
-
-    if (!isSupported)
-    {
-        return false;
-    }
-
-    IConnectableLayer* layer = data.m_Network->AddComparisonLayer(descriptor);
-    assert(layer != nullptr);
-    bool isReshapeSupported = BroadcastTensor(input0, input1, layer, data);
-    if (!isReshapeSupported)
-    {
-        return false;
-    }
-
-    return SetupAndTrackLayerOutputSlot<hal_1_2::HalPolicy>(operation, 0, *layer, model, data);
+    return ::ConvertComparison_1_2<hal_1_2::HalPolicy>(operation, model, data, comparisonOperation);
 }
 
 bool HalPolicy::ConvertConcatenation(const Operation& operation, const Model& model, ConversionData& data)
@@ -299,153 +186,7 @@
 bool HalPolicy::ConvertConv2d(const Operation& operation, const Model& model, ConversionData& data)
 {
     ALOGV("hal_1_2::HalPolicy::ConvertConv2d()");
-
-    LayerInputHandle input = ConvertToLayerInputHandle<hal_1_2::HalPolicy>(operation, 0, model, data);
-    if (!input.IsValid())
-    {
-        return Fail("%s: Operation has invalid inputs", __func__);
-    }
-
-    const Operand* output = GetOutputOperand<hal_1_2::HalPolicy>(operation, 0, model);
-    if (!output)
-    {
-        return Fail("%s: Could not read output 0", __func__);
-    }
-
-    const TensorInfo& inputInfo  = input.GetTensorInfo();
-    const TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
-
-    if (IsDynamicTensor(outputInfo))
-    {
-        return Fail("%s: Dynamic output tensors are not supported", __func__);
-    }
-
-    Convolution2dDescriptor desc;
-    desc.m_DataLayout = DataLayout::NHWC;
-
-    // Determine whether padding is implicit or explicit
-    bool implicitPadding = operation.inputs.size() == 7 ||
-                           (operation.inputs.size() >= 8 &&
-                            GetInputOperand<hal_1_2::HalPolicy>(operation, 7, model)->type == OperandType::BOOL);
-
-    if (implicitPadding)
-    {
-        desc.m_DataLayout = OptionalDataLayout<hal_1_2::HalPolicy>(operation, 7, model, data);
-    }
-    else if (operation.inputs.size() >= 10)
-    {
-        desc.m_DataLayout = OptionalDataLayout<hal_1_2::HalPolicy>(operation, 10, model, data);
-    }
-
-    const PermutationVector OHWIToOIHW = {0, 2, 3, 1};
-
-    // ArmNN does not currently support non-fixed weights or bias
-    // The NNAPI filter is always OHWI [depth_out, filter_height, filter_width, depth_in] but ArmNN expects the
-    // filter's height and width indices to match the input's height and width indices so we permute it to OIHW if
-    // the DataLayout is NCHW
-    const ConstTensorPin weightsPin = (desc.m_DataLayout == DataLayout::NCHW) ?
-            ConvertOperationInputToConstTensorPin<hal_1_2::HalPolicy>(operation, 1, model, data, OHWIToOIHW) :
-            ConvertOperationInputToConstTensorPin<hal_1_2::HalPolicy>(operation, 1, model, data);
-    const ConstTensorPin biasPin    =
-            ConvertOperationInputToConstTensorPin<hal_1_2::HalPolicy>(operation, 2, model, data);
-
-    if (!weightsPin.IsValid())
-    {
-        return Fail("%s: Operation has invalid weights", __func__);
-    }
-
-    if (!biasPin.IsValid())
-    {
-        return Fail("%s: Operation has invalid biases", __func__);
-    }
-
-    ConstTensor weights = weightsPin.GetConstTensor();
-    ConstTensor bias = biasPin.GetConstTensor();
-    SanitizeBiasQuantizationScale(bias.GetInfo(), weights.GetInfo(), inputInfo);
-
-    ActivationFn activation;
-
-    if (implicitPadding)
-    {
-        android::nn::PaddingScheme paddingScheme;
-        if (!GetInputPaddingScheme<hal_1_2::HalPolicy>(operation, 3, paddingScheme, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 4, OperandType::INT32, desc.m_StrideX, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 5, OperandType::INT32, desc.m_StrideY, model, data) ||
-            !GetInputActivationFunction<hal_1_2::HalPolicy>(operation, 6, activation, model, data) ||
-            !GetOptionalConvolutionDilationParams<hal_1_2::HalPolicy>(operation, 8, desc, model, data))
-        {
-            return Fail("%s: Operation has invalid inputs (implicit padding)", __func__);
-        }
-
-        armnnUtils::DataLayoutIndexed dataLayoutIndexed(desc.m_DataLayout);
-        unsigned int widthIndex = dataLayoutIndexed.GetWidthIndex();
-        unsigned int heightIndex = dataLayoutIndexed.GetHeightIndex();
-        const uint32_t kernelX = weights.GetShape()[widthIndex];
-        const uint32_t kernelY = weights.GetShape()[heightIndex];
-        const uint32_t inputX  = inputInfo.GetShape()[widthIndex];
-        const uint32_t inputY  = inputInfo.GetShape()[heightIndex];
-
-        CalcPadding(inputX, kernelX, desc.m_StrideX, desc.m_DilationX, desc.m_PadLeft, desc.m_PadRight, paddingScheme);
-        CalcPadding(inputY, kernelY, desc.m_StrideY, desc.m_DilationY, desc.m_PadTop, desc.m_PadBottom, paddingScheme);
-
-    }
-    else if (operation.inputs.size() >= 10)
-    {
-        // explicit padding
-        if (!GetInputScalar<hal_1_2::HalPolicy>(operation, 3, OperandType::INT32, desc.m_PadLeft, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 4, OperandType::INT32, desc.m_PadRight, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 5, OperandType::INT32, desc.m_PadTop, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 6, OperandType::INT32, desc.m_PadBottom, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 7, OperandType::INT32, desc.m_StrideX, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 8, OperandType::INT32, desc.m_StrideY, model, data) ||
-            !GetInputActivationFunction<hal_1_2::HalPolicy>(operation, 9, activation, model, data) ||
-            !GetOptionalConvolutionDilationParams<hal_1_2::HalPolicy>(operation, 11, desc, model, data))
-        {
-            return Fail("%s: Operation has invalid inputs (explicit padding)", __func__);
-        }
-    }
-    else
-    {
-        return Fail("%s: Unsupported number of operation inputs", __func__);
-    }
-
-    desc.m_BiasEnabled = true;
-    Optional<TensorInfo> biases(bias.GetInfo());
-
-    bool isSupported = false;
-    FORWARD_LAYER_SUPPORT_FUNC(__func__,
-                               IsConvolution2dSupported,
-                               data.m_Backends,
-                               isSupported,
-                               inputInfo,
-                               outputInfo,
-                               desc,
-                               weights.GetInfo(),
-                               biases);
-
-    if (!isSupported)
-    {
-        return false;
-    }
-
-    IConnectableLayer* startLayer =
-            data.m_Network->AddConvolution2dLayer(desc, weights, Optional<ConstTensor>(bias));
-
-    if (!startLayer)
-    {
-        return Fail("%s: AddConvolution2dLayer failed", __func__);
-    }
-
-    IConnectableLayer* endLayer = ProcessActivation(outputInfo, activation, startLayer, data);
-
-    if (!endLayer)
-    {
-        return Fail("%s: ProcessActivation failed", __func__);
-    }
-
-    input.Connect(startLayer->GetInputSlot(0));
-
-    return SetupAndTrackLayerOutputSlot<hal_1_2::HalPolicy>(operation, 0, *endLayer, model, data);
+    return ::ConvertConv2d_1_2<hal_1_2::HalPolicy>(operation, model, data);
 }
 
 bool HalPolicy::ConvertDepthToSpace(const Operation& operation, const Model& model, ConversionData& data)
@@ -457,187 +198,13 @@
 bool HalPolicy::ConvertDepthwiseConv2d(const Operation& operation, const Model& model, ConversionData& data)
 {
     ALOGV("hal_1_2::HalPolicy::ConvertDepthwiseConv2d()");
-
-    LayerInputHandle input = ConvertToLayerInputHandle<hal_1_2::HalPolicy>(operation, 0, model, data);
-
-    if (!input.IsValid())
-    {
-        return Fail("%s: Operation has invalid inputs", __func__);
-    }
-
-    const Operand* output = GetOutputOperand<hal_1_2::HalPolicy>(operation, 0, model);
-
-    if (!output)
-    {
-        return Fail("%s: Could not read output 0", __func__);
-    }
-
-    const TensorInfo& inputInfo  = input.GetTensorInfo();
-    const TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
-
-    if (IsDynamicTensor(outputInfo))
-    {
-        return Fail("%s: Dynamic output tensors are not supported", __func__);
-    }
-
-    // ArmNN does not currently support non-fixed weights or bias
-    // Find the shape of the weights tensor. In AndroidNN this will be [ 1, H, W, I * M ]
-    const Operand* weightsOperand = GetInputOperand<hal_1_2::HalPolicy>(operation, 1, model);
-
-    if (weightsOperand == nullptr)
-    {
-        return Fail("%s: Operand is invalid", __func__);
-    }
-    if ( weightsOperand->dimensions[0] != 1)
-    {
-        return Fail("%s: Invalid weights; for depthwise convolution, dimension 0 must be 1 but it is %i",
-                    __func__, weightsOperand->dimensions[0] );
-    }
-
-    DepthwiseConvolution2dDescriptor desc;
-    desc.m_DataLayout = DataLayout::NHWC;
-
-    // Determine whether padding is implicit or explicit
-    bool implicitPadding = operation.inputs.size() == 8 ||
-        (operation.inputs.size() >= 9 &&
-        GetInputOperand<hal_1_2::HalPolicy>(operation, 8, model)->type == OperandType::BOOL);
-
-    // Look ahead to find the optional DataLayout, if present
-    const uint32_t dataLayoutFlagIndex = implicitPadding ? 8 : 11;
-    desc.m_DataLayout = OptionalDataLayout<hal_1_2::HalPolicy>(operation, dataLayoutFlagIndex, model, data);
-
-    armnnUtils::DataLayoutIndexed dataLayoutIndexed(desc.m_DataLayout);
-    unsigned int channelsIndex = dataLayoutIndexed.GetChannelsIndex();
-    unsigned int widthIndex = dataLayoutIndexed.GetWidthIndex();
-    unsigned int heightIndex = dataLayoutIndexed.GetHeightIndex();
-
-    // Reinterpret weight data as [ H, W, I, M ]
-    TensorShape weightsShape({ weightsOperand->dimensions[1],
-                                      weightsOperand->dimensions[2],
-                                      inputInfo.GetShape()[channelsIndex],
-                                      weightsOperand->dimensions[3] / inputInfo.GetShape()[channelsIndex] });
-
-    // Swizzle weight data [ H, W, I, M ] -> [ M, I, H, W ]
-    const PermutationVector HWIMToMIHW = { 2U, 3U, 1U, 0U };
-
-    const ConstTensorPin weightsPin =
-        ConvertOperationInputToConstTensorPin<hal_1_2::HalPolicy>(operation,
-                                                                  1,
-                                                                  model,
-                                                                  data,
-                                                                  HWIMToMIHW,
-                                                                  &weightsShape);
-
-    // Bias is a 1D tensor
-    const ConstTensorPin biasPin =
-        ConvertOperationInputToConstTensorPin<hal_1_2::HalPolicy>(operation, 2, model, data);
-
-    if (!weightsPin.IsValid())
-    {
-        return Fail("%s: Operation has invalid weights", __func__);
-    }
-
-    if (!biasPin.IsValid())
-    {
-        return Fail("%s: Operation has invalid biases", __func__);
-    }
-
-    ConstTensor weights = weightsPin.GetConstTensor();
-    ConstTensor bias = biasPin.GetConstTensor();
-    SanitizeBiasQuantizationScale(bias.GetInfo(), weights.GetInfo(), inputInfo);
-
-    ActivationFn activation;
-
-    if (implicitPadding)
-    {
-        android::nn::PaddingScheme paddingScheme;
-        if (!GetInputPaddingScheme<hal_1_2::HalPolicy>(operation, 3, paddingScheme, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 4, OperandType::INT32, desc.m_StrideX, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 5, OperandType::INT32, desc.m_StrideY, model, data) ||
-            !GetInputActivationFunction<hal_1_2::HalPolicy>(operation, 7, activation, model, data) ||
-            !GetOptionalConvolutionDilationParams<hal_1_2::HalPolicy>(operation, 9, desc, model, data))
-        {
-            return Fail("%s: Operation has invalid inputs (implicit padding)", __func__);
-        }
-
-        const uint32_t kernelX = weights.GetShape()[3];
-        const uint32_t kernelY = weights.GetShape()[2];
-        const uint32_t inputX  = inputInfo.GetShape()[widthIndex];
-        const uint32_t inputY  = inputInfo.GetShape()[heightIndex];
-
-        CalcPadding(inputX, kernelX, desc.m_StrideX, desc.m_DilationX, desc.m_PadLeft, desc.m_PadRight, paddingScheme);
-        CalcPadding(inputY, kernelY, desc.m_StrideY, desc.m_DilationY, desc.m_PadTop, desc.m_PadBottom, paddingScheme);
-    }
-    else if (operation.inputs.size() >= 11)
-    {
-        // explicit padding
-        if (!GetInputScalar<hal_1_2::HalPolicy>(operation, 3, OperandType::INT32, desc.m_PadLeft, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 4, OperandType::INT32, desc.m_PadRight, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 5, OperandType::INT32, desc.m_PadTop, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 6, OperandType::INT32, desc.m_PadBottom, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 7, OperandType::INT32, desc.m_StrideX, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 8, OperandType::INT32, desc.m_StrideY, model, data) ||
-            !GetInputActivationFunction<hal_1_2::HalPolicy>(operation,  10, activation, model, data) ||
-            !GetOptionalConvolutionDilationParams<hal_1_2::HalPolicy>(operation, 12, desc, model, data))
-        {
-            return Fail("%s: Operation has invalid inputs (explicit padding)", __func__);
-        }
-    }
-    else
-    {
-        return Fail("%s: Unsupported number of operation inputs", __func__);
-    }
-
-    desc.m_BiasEnabled = true;
-    Optional<TensorInfo> biases(bias.GetInfo());
-
-    bool isSupported = false;
-    FORWARD_LAYER_SUPPORT_FUNC(__func__,
-                               IsDepthwiseConvolutionSupported,
-                               data.m_Backends,
-                               isSupported,
-                               inputInfo,
-                               outputInfo,
-                               desc,
-                               weights.GetInfo(),
-                               biases);
-
-    if (!isSupported)
-    {
-        return false;
-    }
-
-    IConnectableLayer* startLayer =
-        data.m_Network->AddDepthwiseConvolution2dLayer(desc, weights, Optional<ConstTensor>(bias));
-
-    if (!startLayer)
-    {
-        return Fail("%s: AddDepthwiseConvolution2dLayer failed", __func__);
-    }
-
-    IConnectableLayer* endLayer = ProcessActivation(outputInfo, activation, startLayer, data);
-    if (!endLayer)
-    {
-        return Fail("%s: ProcessActivation failed", __func__);
-    }
-
-    input.Connect(startLayer->GetInputSlot(0));
-
-    return SetupAndTrackLayerOutputSlot<hal_1_2::HalPolicy>(operation, 0, *endLayer, model, data);
+    return ::ConvertDepthwiseConv2d_1_2<hal_1_2::HalPolicy>(operation, model, data);
 }
 
 bool HalPolicy::ConvertDequantize(const Operation& operation, const Model& model, ConversionData& data)
 {
     ALOGV("hal_1_2::HalPolicy::ConvertDequantize()");
-
-    if (IsQSymmDequantizeForWeights(operation, model))
-    {
-        // NOTE: QSymm8 weights are dequantized internally by the driver,
-        // therefore this type of Dequantize is implicitly supported
-        return true;
-    }
-
-    return ::ConvertDequantize<hal_1_2::HalPolicy>(operation, model, data);
+    return ::ConvertDequantize_1_2<hal_1_2::HalPolicy>(operation, model, data);
 }
 
 bool HalPolicy::ConvertDiv(const Operation& operation, const Model& model, ConversionData& data)
@@ -652,120 +219,13 @@
                                         UnaryOperation unaryOperation)
 {
     ALOGV("hal_1_2::HalPolicy::ConvertElementwiseUnary()");
-    ALOGV("unaryOperation = %s", GetUnaryOperationAsCString(unaryOperation));
-
-    LayerInputHandle input = ConvertToLayerInputHandle<hal_1_2::HalPolicy>(operation, 0, model, data);
-
-    if (!input.IsValid())
-    {
-        return Fail("%s: Operation has invalid input", __func__);
-    }
-
-    const Operand* output = GetOutputOperand<hal_1_2::HalPolicy>(operation, 0, model);
-    if (!output)
-    {
-        return Fail("%s: Could not read output 0", __func__);
-    }
-
-    const TensorInfo& inputInfo = input.GetTensorInfo();
-    const TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
-
-    if (IsDynamicTensor(outputInfo))
-    {
-        return Fail("%s: Dynamic output tensors are not supported", __func__);
-    }
-
-    ElementwiseUnaryDescriptor descriptor(unaryOperation);
-
-    bool isSupported = false;
-    FORWARD_LAYER_SUPPORT_FUNC(__func__,
-                               IsElementwiseUnarySupported,
-                               data.m_Backends,
-                               isSupported,
-                               inputInfo,
-                               outputInfo,
-                               descriptor);
-
-    if (!isSupported)
-    {
-        return false;
-    }
-
-    IConnectableLayer* layer = data.m_Network->AddElementwiseUnaryLayer(descriptor);
-    assert(layer != nullptr);
-
-    input.Connect(layer->GetInputSlot(0));
-
-    return SetupAndTrackLayerOutputSlot<hal_1_2::HalPolicy>(operation, 0, *layer, model, data);
+    return ::ConvertElementwiseUnary<hal_1_2::HalPolicy>(operation, model, data, unaryOperation);
 }
 
 bool HalPolicy::ConvertExpandDims(const Operation& operation, const Model& model, ConversionData& data)
 {
     ALOGV("hal_1_2::HalPolicy::ConvertExpandDims()");
-
-    LayerInputHandle input = ConvertToLayerInputHandle<HalPolicy>(operation, 0, model, data);
-
-    if (!input.IsValid())
-    {
-        return Fail("%s: Operation has invalid input", __func__);
-    }
-
-    const Operand* output = GetOutputOperand<HalPolicy>(operation, 0, model);
-    if (!output)
-    {
-        return Fail("%s: Operation has invalid output", __func__);
-    }
-
-    const TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
-    if (IsDynamicTensor(outputInfo))
-    {
-        return Fail("%s: Dynamic output tensors are not supported", __func__);
-    }
-
-    int32_t axis;
-    if (!GetInputScalar<HalPolicy>(operation, 1, OperandType::INT32, axis, model, data))
-    {
-        return Fail("%s: failed to get axis input value", __func__);
-    }
-
-    TensorShape targetShape;
-
-    try
-    {
-        targetShape = armnnUtils::ExpandDims(input.GetTensorInfo().GetShape(), axis);
-    }
-    catch (const std::exception &e)
-    {
-        return Fail("%s: %s", __func__, e.what());
-    }
-
-    if (targetShape != outputInfo.GetShape())
-    {
-        return Fail("%s: Shape of the output operand does not match the resolved expanded shape", __func__);
-    }
-
-    ReshapeDescriptor reshapeDescriptor;
-    reshapeDescriptor.m_TargetShape = targetShape;
-
-    bool isSupported = false;
-    FORWARD_LAYER_SUPPORT_FUNC(__func__,
-                               IsReshapeSupported,
-                               data.m_Backends,
-                               isSupported,
-                               input.GetTensorInfo(),
-                               outputInfo,
-                               reshapeDescriptor);
-
-    if (!isSupported)
-    {
-        return false;
-    }
-
-    IConnectableLayer* layer = data.m_Network->AddReshapeLayer(reshapeDescriptor);
-    assert(layer != nullptr);
-    input.Connect(layer->GetInputSlot(0));
-
-    return SetupAndTrackLayerOutputSlot<HalPolicy>(operation, 0, *layer, model, data);
+    return ::ConvertExpandDims<hal_1_2::HalPolicy>(operation, model, data);
 }
 
 bool HalPolicy::ConvertFloor(const Operation& operation, const Model& model, ConversionData& data)
@@ -783,416 +243,13 @@
 bool HalPolicy::ConvertGroupedConv2d(const Operation& operation, const Model& model, ConversionData& data)
 {
     ALOGV("hal_1_2::HalPolicy::ConvertGroupedConv2d()");
-
-    //
-    // Parse data
-    //
-    LayerInputHandle input = ConvertToLayerInputHandle<hal_1_2::HalPolicy>(operation, 0, model, data);
-    if (!input.IsValid())
-    {
-        return Fail("%s: Operation has invalid inputs", __func__);
-    }
-    const TensorInfo& inputInfo  = input.GetTensorInfo();
-
-    const Operand* output = GetOutputOperand<hal_1_2::HalPolicy>(operation, 0, model);
-    if (!output)
-    {
-        return Fail("%s: Could not read output 0", __func__);
-    }
-    const TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
-    if (IsDynamicTensor(outputInfo))
-    {
-        return Fail("%s: Dynamic output tensors are not supported", __func__);
-    }
-
-    // Look ahead to determine data layout
-    DataLayout dataLayout = DataLayout::NHWC;
-    if (operation.inputs.size() == 12)
-    {
-        dataLayout = OptionalDataLayout<hal_1_2::HalPolicy>(operation, 11, model, data);
-    }
-    else
-    {
-        dataLayout = OptionalDataLayout<hal_1_2::HalPolicy>(operation, 8, model, data);
-    }
-
-    // NOTE:
-    // NNAPI weights are always OHWI, i.e. [depth_out, filter_height, filter_width, depth_group],
-    // but Arm NN expects the filter's height and width indices to match the input's height and
-    // width indices so when the DataLayout is NCHW, we need to permute the weights to OIHW
-    const PermutationVector ohwiToOihw = { 0u, 2u, 3u, 1u };
-    const ConstTensorPin weightsPin = (dataLayout == DataLayout::NCHW) ?
-            ConvertOperationInputToConstTensorPin<hal_1_2::HalPolicy>(operation, 1, model, data, ohwiToOihw) :
-            ConvertOperationInputToConstTensorPin<hal_1_2::HalPolicy>(operation, 1, model, data);
-    const ConstTensorPin biasesPin  =
-            ConvertOperationInputToConstTensorPin<hal_1_2::HalPolicy>(operation, 2, model, data);
-    if (!weightsPin.IsValid() || !biasesPin.IsValid())
-    {
-        return Fail("%s: Operation has invalid inputs", __func__);
-    }
-
-    ConstTensor weights = weightsPin.GetConstTensor();
-    ConstTensor biases  = biasesPin.GetConstTensor();
-    SanitizeBiasQuantizationScale(biases.GetInfo(), weights.GetInfo(), inputInfo);
-
-    const TensorShape& inputShape   = inputInfo.GetShape();
-    const TensorShape& outputShape  = outputInfo.GetShape();
-    const TensorShape& weightsShape = weights.GetShape();
-    const TensorShape& biasesShape  = biases.GetShape();
-
-    armnnUtils::DataLayoutIndexed dataLayoutIndexed(dataLayout);
-    const unsigned int channelsIndex = dataLayoutIndexed.GetChannelsIndex();
-    const unsigned int heightIndex   = dataLayoutIndexed.GetHeightIndex();
-    const unsigned int widthIndex    = dataLayoutIndexed.GetWidthIndex();
-
-    Convolution2dDescriptor desc;
-    desc.m_DataLayout  = dataLayout;
-    desc.m_BiasEnabled = true;
-
-    int numGroups;
-    ActivationFn activation;
-
-    if (operation.inputs.size() == 12)
-    {
-        if (!GetInputScalar<hal_1_2::HalPolicy>(operation, 3, OperandType::INT32, desc.m_PadLeft, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 4, OperandType::INT32, desc.m_PadRight, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 5, OperandType::INT32, desc.m_PadTop, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 6, OperandType::INT32, desc.m_PadBottom, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 7, OperandType::INT32, desc.m_StrideX, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 8, OperandType::INT32, desc.m_StrideY, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 9, OperandType::INT32, numGroups, model, data) ||
-            !GetInputActivationFunction<hal_1_2::HalPolicy>(operation, 10, activation, model, data))
-        {
-            return Fail("%s: Operation has invalid inputs (explicit padding)", __func__);
-        }
-
-    }
-    else if (operation.inputs.size() == 9)
-    {
-        android::nn::PaddingScheme paddingScheme;
-        if (!GetInputPaddingScheme<hal_1_2::HalPolicy>(operation, 3, paddingScheme, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 4, OperandType::INT32, desc.m_StrideX, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 5, OperandType::INT32, desc.m_StrideY, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 6, OperandType::INT32, numGroups, model, data) ||
-            !GetInputActivationFunction<hal_1_2::HalPolicy>(operation, 7, activation, model, data))
-        {
-            return Fail("%s: Operation has invalid inputs (implicit padding)", __func__);
-        }
-
-        const uint32_t inputX = inputInfo.GetShape()[widthIndex];
-        const uint32_t inputY = inputInfo.GetShape()[heightIndex];
-
-        const uint32_t kernelX = weightsShape[widthIndex];
-        const uint32_t kernelY = weightsShape[heightIndex];
-
-        CalcPadding(inputX, kernelX, desc.m_StrideX, desc.m_PadLeft, desc.m_PadRight, paddingScheme);
-        CalcPadding(inputY, kernelY, desc.m_StrideY, desc.m_PadTop, desc.m_PadBottom, paddingScheme);
-    }
-    else
-    {
-        return Fail("%s: Unsupported number of operation inputs", __func__);
-    }
-
-    const unsigned int outputChannels = outputShape[channelsIndex];
-
-    const unsigned int channelsPerGroup  = weightsShape[channelsIndex];
-    const unsigned int channelMultiplier = outputChannels / numGroups;
-
-    //
-    // Validate all relevant inputs
-    //
-    if (numGroups <= 0)
-    {
-        return Fail("%s: Number of groups must be greater than 0. Got: %d", __func__, numGroups);
-    }
-
-    if (outputChannels % numGroups != 0u)
-    {
-        return Fail("%s: Output channels must be divisible by the number of groups", __func__);
-    }
-
-    //
-    // Set up Splitter layer
-    //
-    unsigned int splitterDimSizes[4] = { inputShape[0], inputShape[1], inputShape[2], inputShape[3] };
-    splitterDimSizes[channelsIndex] /= numGroups; // split in depth
-
-    TensorInfo splitterOutputInfo(4,
-                                  splitterDimSizes,
-                                  inputInfo.GetDataType(),
-                                  inputInfo.GetQuantizationScale(),
-                                  inputInfo.GetQuantizationOffset());
-
-    std::vector<std::reference_wrapper<TensorInfo>> splitterOutputInfos(numGroups, std::ref(splitterOutputInfo));
-
-    ViewsDescriptor splitterDesc(numGroups);
-    for (unsigned int group = 0u; group < numGroups; ++group)
-    {
-        splitterDesc.SetViewOriginCoord(group, channelsIndex, splitterDimSizes[channelsIndex] * group);
-        for (unsigned int dimIdx = 0u; dimIdx < 4u; dimIdx++)
-        {
-            splitterDesc.SetViewSize(group, dimIdx, splitterDimSizes[dimIdx]);
-        }
-    }
-
-    bool isSupported = false;
-    FORWARD_LAYER_SUPPORT_FUNC(__func__,
-                               IsSplitterSupported,
-                               data.m_Backends,
-                               isSupported,
-                               inputInfo,
-                               splitterOutputInfos,
-                               splitterDesc);
-    if (!isSupported)
-    {
-        return false;
-    }
-
-    IConnectableLayer* splitterLayer = data.m_Network->AddSplitterLayer(splitterDesc);
-    if (!splitterLayer)
-    {
-        return Fail("%s: Failed to add SplitterLayer", __func__);
-    }
-
-    input.Connect(splitterLayer->GetInputSlot(0));
-    for (unsigned int group = 0u; group < splitterLayer->GetNumOutputSlots(); ++group)
-    {
-        splitterLayer->GetOutputSlot(group).SetTensorInfo(splitterOutputInfo);
-    }
-
-    //
-    // Set up Convolution2d layers for each group
-    //
-
-    // Set up group tensor shapes
-    TensorShape groupInputShape(inputShape);
-    groupInputShape[channelsIndex] = channelsPerGroup;
-
-    TensorShape groupOutputShape(outputShape);
-    groupOutputShape[channelsIndex] = 1;
-
-    TensorShape groupWeightsShape(weightsShape);
-    groupWeightsShape[0] /= channelMultiplier * numGroups;
-
-    TensorShape groupBiasesShape({ 1 });
-
-    // Set up group tensor infos
-    TensorInfo groupInputInfo(inputInfo);
-    groupInputInfo.SetShape(groupInputShape);
-
-    const TensorInfo& weightsInfo = weights.GetInfo();
-    TensorInfo groupWeightsInfo(weightsInfo);
-    groupWeightsInfo.SetShape(groupWeightsShape);
-
-    const TensorInfo& biasesInfo = biases.GetInfo();
-    TensorInfo groupBiasesInfo(biasesInfo);
-    groupBiasesInfo.SetShape(groupBiasesShape);
-
-    TensorInfo groupOutputInfo(outputInfo);
-    groupOutputInfo.SetShape(groupOutputShape);
-
-    const unsigned int weightsDataTypeSize = GetDataTypeSize(groupWeightsInfo.GetDataType());
-    const unsigned int biasesDataTypeSize  = GetDataTypeSize(groupBiasesInfo.GetDataType());
-
-    std::vector<IConnectableLayer*> convLayers(numGroups * channelMultiplier, nullptr);
-    for (unsigned int group = 0u; group < numGroups; ++group)
-    {
-        for (unsigned int m = 0u; m < channelMultiplier; ++m)
-        {
-            auto index = group * channelMultiplier + m;
-
-            const unsigned int weightsDataOffset = groupWeightsShape.GetNumElements() * index * weightsDataTypeSize;
-            const unsigned int biasesDataOffset = groupBiasesShape.GetNumElements() * index * biasesDataTypeSize;
-
-            if (weightsInfo.HasPerAxisQuantization())
-            {
-                // Extract per-axis quantization scales for group weights
-                const std::vector<float>& weightsQuantScales = weightsInfo.GetQuantizationScales();
-                groupWeightsInfo.SetQuantizationScales(
-                    std::vector<float>(weightsQuantScales.begin() + index,
-                                       weightsQuantScales.begin() + index + groupWeightsShape[0]));
-
-                // Extract per-axis quantization scales for group biases
-                const std::vector<float>& biasesQuantScales  = biasesInfo.GetQuantizationScales();
-                groupBiasesInfo.SetQuantizationScales(
-                    std::vector<float>(biasesQuantScales.begin() + index,
-                                       biasesQuantScales.begin() + index + groupWeightsShape[0]));
-            }
-
-            // Extract weights and biases data for current group convolution
-            ConstTensor groupWeights(groupWeightsInfo,
-                                     static_cast<const void *>(reinterpret_cast<const char *>(weights.GetMemoryArea()) +
-                                                               weightsDataOffset));
-            ConstTensor groupBiases(groupBiasesInfo,
-                                    static_cast<const void *>(reinterpret_cast<const char *>(biases.GetMemoryArea()) +
-                                                              biasesDataOffset));
-
-            isSupported = false;
-            FORWARD_LAYER_SUPPORT_FUNC(__func__,
-                                       IsConvolution2dSupported,
-                                       data.m_Backends,
-                                       isSupported,
-                                       groupInputInfo,
-                                       groupOutputInfo,
-                                       desc,
-                                       groupWeightsInfo,
-                                       Optional<TensorInfo>(groupBiasesInfo));
-            if (!isSupported)
-            {
-                return false;
-            }
-
-            IConnectableLayer *convLayer =
-                    data.m_Network->AddConvolution2dLayer(desc, groupWeights, Optional<ConstTensor>(groupBiases));
-            if (!convLayer)
-            {
-                return Fail("%s: AddConvolution2dLayer failed", __func__);
-            }
-
-            splitterLayer->GetOutputSlot(group).Connect(convLayer->GetInputSlot(0));
-            convLayer->GetOutputSlot(0).SetTensorInfo(groupOutputInfo);
-
-            convLayers[index] = convLayer;
-        }
-    }
-
-    //
-    // Set up Concat layer
-    //
-    ConcatDescriptor concatDescriptor(outputInfo.GetShape()[channelsIndex]);
-    for (unsigned int group = 0u; group < numGroups; ++group)
-    {
-        for (unsigned int m = 0u; m < channelMultiplier; ++m)
-        {
-            auto index = group * channelMultiplier + m;
-            concatDescriptor.SetViewOriginCoord(index, channelsIndex, index);
-            concatDescriptor.SetConcatAxis(channelsIndex);
-        }
-    }
-
-    isSupported = false;
-    FORWARD_LAYER_SUPPORT_FUNC(__func__,
-                               IsConcatSupported,
-                               data.m_Backends,
-                               isSupported,
-                               std::vector<const TensorInfo*>(numGroups * channelMultiplier, &groupOutputInfo),
-                               outputInfo,
-                               concatDescriptor);
-    if (!isSupported)
-    {
-       return false;
-    }
-
-    IConnectableLayer* concatLayer = data.m_Network->AddConcatLayer(concatDescriptor);
-    if (!concatLayer)
-    {
-        return Fail("%s: AddConcatLayer failed", __func__);
-    }
-
-    for (unsigned int group = 0u; group < numGroups; ++group)
-    {
-        for (unsigned int m = 0u; m < channelMultiplier; ++m)
-        {
-            auto index = group * channelMultiplier + m;
-            convLayers[index]->GetOutputSlot(0).Connect(concatLayer->GetInputSlot(index));
-        }
-    }
-    concatLayer->GetOutputSlot(0).SetTensorInfo(outputInfo);
-
-    //
-    // Set up Activation layer (if it is set)
-    //
-    IConnectableLayer* endLayer = ProcessActivation(outputInfo, activation, concatLayer, data);
-    if (!endLayer)
-    {
-        return Fail("%s: ProcessActivation failed", __func__);
-    }
-
-    return SetupAndTrackLayerOutputSlot<HalPolicy>(operation, 0, *endLayer, model, data);
+    return ::ConvertGroupedConv2d<hal_1_2::HalPolicy>(operation, model, data);
 }
 
 bool HalPolicy::ConvertInstanceNormalization(const Operation& operation, const Model& model, ConversionData& data)
 {
     ALOGV("hal_1_2::HalPolicy::ConvertInstanceNormalization()");
-
-    LayerInputHandle input = ConvertToLayerInputHandle<hal_1_2::HalPolicy>(operation, 0, model, data);
-    if (!input.IsValid())
-    {
-        return Fail("%s: Operation has an invalid input 0", __func__);
-    }
-
-    const Operand* output = GetOutputOperand<HalPolicy>(operation, 0, model);
-    if (!output)
-    {
-        return Fail("%s: Operation has an invalid output", __func__);
-    }
-
-    const TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
-    if (IsDynamicTensor(outputInfo))
-    {
-        return Fail("%s: Dynamic output tensors are not supported", __func__);
-    }
-
-    // Determine data type of input tensor
-    OperandType inputType;
-    if (!GetOperandType<hal_1_2::HalPolicy>(operation, 0, model, inputType))
-    {
-        return Fail("%s: Operation has invalid inputs", __func__);
-    }
-
-    InstanceNormalizationDescriptor desc;
-
-    // Read gamma, beta & epsilon
-    if (inputType == OperandType::TENSOR_FLOAT16)
-    {
-        Half fp16Gamma;
-        Half fp16Beta;
-        Half fp16Epsilon;
-
-        if (!GetInputScalar<hal_1_2::HalPolicy>(operation, 1, OperandType::FLOAT16, fp16Gamma, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 2, OperandType::FLOAT16, fp16Beta, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 3, OperandType::FLOAT16, fp16Epsilon, model, data))
-        {
-            return Fail("%s: Operation has invalid inputs (FLOAT16)", __func__);
-        }
-
-        desc.m_Gamma = static_cast<float>(fp16Gamma);
-        desc.m_Beta  = static_cast<float>(fp16Beta);
-        desc.m_Eps   = static_cast<float>(fp16Epsilon);
-    }
-    else if (inputType == OperandType::TENSOR_FLOAT32)
-    {
-        if (!GetInputScalar<hal_1_2::HalPolicy>(operation, 1, OperandType::FLOAT32, desc.m_Gamma, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 2, OperandType::FLOAT32, desc.m_Beta, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 3, OperandType::FLOAT32, desc.m_Eps, model, data))
-        {
-            return Fail("%s: Operation has invalid inputs (FLOAT32)", __func__);
-        }
-    }
-    else
-    {
-        return Fail("%s: Unsupported input tensor type: %d", __func__, inputType);
-    }
-
-    desc.m_DataLayout = OptionalDataLayout<hal_1_2::HalPolicy>(operation, 4, model, data);
-
-    bool isSupported = false;
-    FORWARD_LAYER_SUPPORT_FUNC(__func__,
-                               IsInstanceNormalizationSupported,
-                               data.m_Backends,
-                               isSupported,
-                               input.GetTensorInfo(),
-                               outputInfo,
-                               desc);
-    if (!isSupported)
-    {
-       return false;
-    }
-
-    IConnectableLayer* layer = data.m_Network->AddInstanceNormalizationLayer(desc);
-    input.Connect(layer->GetInputSlot(0));
-
-    return SetupAndTrackLayerOutputSlot<hal_1_2::HalPolicy>(operation, 0, *layer, model, data);
+    return ::ConvertInstanceNormalization<hal_1_2::HalPolicy>(operation, model, data);
 }
 
 bool HalPolicy::ConvertL2Normalization(const Operation& operation, const Model& model, ConversionData& data)
@@ -1224,85 +281,7 @@
 bool HalPolicy::ConvertLogSoftmax(const Operation& operation, const Model& model, ConversionData& data)
 {
     ALOGV("hal_1_2::HalPolicy::ConvertLogSoftmax()");
-
-    LayerInputHandle input = ConvertToLayerInputHandle<hal_1_2::HalPolicy>(operation, 0, model, data);
-    if (!input.IsValid())
-    {
-        return Fail("%s: Failed to read input 0", __func__);
-    }
-
-    const Operand* output = GetOutputOperand<hal_1_2::HalPolicy>(operation, 0, model);
-    if (!output)
-    {
-        return Fail("%s: Failed to read output", __func__);
-    }
-
-    const TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
-    if (IsDynamicTensor(outputInfo))
-    {
-        return Fail("%s: Dynamic output tensors are not supported", __func__);
-    }
-
-    // Determine data type of input tensor
-    OperandType inputType;
-    if (!GetOperandType<hal_1_2::HalPolicy>(operation, 0, model, inputType))
-    {
-        return Fail("%s: Operation has invalid inputs", __func__);
-    }
-
-    LogSoftmaxDescriptor descriptor;
-
-    // Read beta
-    if (inputType == OperandType::TENSOR_FLOAT16)
-    {
-        Half fp16Beta;
-        if (!GetInputScalar<hal_1_2::HalPolicy>(operation, 1, OperandType::FLOAT16, fp16Beta, model, data))
-        {
-            return Fail("%s: Failed to read input 1 (FLOAT16)", __func__);
-        }
-
-        descriptor.m_Beta  = static_cast<float>(fp16Beta);
-    }
-    else if (inputType == OperandType::TENSOR_FLOAT32)
-    {
-        if (!GetInputScalar<hal_1_2::HalPolicy>(operation, 1, OperandType::FLOAT32, descriptor.m_Beta, model, data))
-        {
-            return Fail("%s: Failed to read input 1 (FLOAT32)", __func__);
-        }
-    }
-    else
-    {
-        return Fail("%s: Unsupported input tensor type: %d", __func__, inputType);
-    }
-
-    // Read axis
-    if (!GetInputInt32<hal_1_2::HalPolicy>(operation, 2, descriptor.m_Axis, model, data))
-    {
-        return Fail("%s: Failed to read input 2", __func__);
-    }
-
-    bool isSupported = false;
-    FORWARD_LAYER_SUPPORT_FUNC(__func__,
-                               IsLogSoftmaxSupported,
-                               data.m_Backends,
-                               isSupported,
-                               input.GetTensorInfo(),
-                               outputInfo,
-                               descriptor);
-    if (!isSupported)
-    {
-        return false;
-    }
-
-    IConnectableLayer* layer = data.m_Network->AddLogSoftmaxLayer(descriptor);
-    if (!layer)
-    {
-        return Fail("%s: AddLogSoftmaxLayer() returned nullptr", __func__);
-    }
-
-    input.Connect(layer->GetInputSlot(0));
-
-    return SetupAndTrackLayerOutputSlot<HalPolicy>(operation, 0, *layer, model, data);
+    return ::ConvertLogSoftmax<hal_1_2::HalPolicy>(operation, model, data);
 }
 
 bool HalPolicy::ConvertMaxPool2d(const Operation& operation, const Model& model, ConversionData& data)
@@ -1314,50 +293,7 @@
 bool HalPolicy::ConvertMaximum(const Operation& operation, const Model& model, ConversionData& data)
 {
     ALOGV("hal_1_2::HalPolicy::ConvertMaximum()");
-
-    LayerInputHandle input0 = ConvertToLayerInputHandle<hal_1_2::HalPolicy>(operation, 0, model, data);
-    LayerInputHandle input1 = ConvertToLayerInputHandle<hal_1_2::HalPolicy>(operation, 1, model, data);
-
-    if (!input0.IsValid() || !input1.IsValid())
-    {
-        return Fail("%s: Operation has invalid inputs", __func__);
-    }
-
-    const Operand* outputOperand = GetOutputOperand<hal_1_2::HalPolicy>(operation, 0, model);
-    if (!outputOperand)
-    {
-        return Fail("%s: Could not read output", __func__);
-    }
-
-    const TensorInfo& outInfo = GetTensorInfoForOperand(*outputOperand);
-    if (IsDynamicTensor(outInfo))
-    {
-        return Fail("%s: Dynamic output tensors are not supported", __func__);
-    }
-
-    bool isSupported = false;
-    FORWARD_LAYER_SUPPORT_FUNC(__func__,
-                               IsMaximumSupported,
-                               data.m_Backends,
-                               isSupported,
-                               input0.GetTensorInfo(),
-                               input1.GetTensorInfo(),
-                               outInfo);
-
-    if (!isSupported)
-    {
-        return false;
-    }
-
-    IConnectableLayer* layer = data.m_Network->AddMaximumLayer();
-    assert(layer != nullptr);
-    bool isReshapeSupported = BroadcastTensor(input0, input1, layer, data);
-    if (!isReshapeSupported)
-    {
-        return false;
-    }
-
-    return SetupAndTrackLayerOutputSlot<hal_1_2::HalPolicy>(operation, 0, *layer, model, data);
+    return ::ConvertMaximum<hal_1_2::HalPolicy>(operation, model, data);
 }
 
 bool HalPolicy::ConvertMean(const Operation& operation, const Model& model, ConversionData& data)
@@ -1369,50 +305,7 @@
 bool HalPolicy::ConvertMinimum(const Operation& operation, const Model& model, ConversionData& data)
 {
     ALOGV("hal_1_2::HalPolicy::ConvertMinimum()");
-
-    LayerInputHandle input0 = ConvertToLayerInputHandle<hal_1_2::HalPolicy>(operation, 0, model, data);
-    LayerInputHandle input1 = ConvertToLayerInputHandle<hal_1_2::HalPolicy>(operation, 1, model, data);
-
-    if (!input0.IsValid() || !input1.IsValid())
-    {
-        return Fail("%s: Operation has invalid inputs", __func__);
-    }
-
-    const Operand* output = GetOutputOperand<hal_1_2::HalPolicy>(operation, 0, model);
-    if (!output)
-    {
-        return Fail("%s: Could not read output 0", __func__);
-    }
-
-    const TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
-    if (IsDynamicTensor(outputInfo))
-    {
-         return Fail("%s: Dynamic output tensors are not supported", __func__);
-    }
-
-    bool isSupported = false;
-    FORWARD_LAYER_SUPPORT_FUNC(__func__,
-                               IsMinimumSupported,
-                               data.m_Backends,
-                               isSupported,
-                               input0.GetTensorInfo(),
-                               input1.GetTensorInfo(),
-                               outputInfo);
-
-    if (!isSupported)
-    {
-        return false;
-    }
-
-    IConnectableLayer* const layer = data.m_Network->AddMinimumLayer();
-    assert(layer != nullptr);
-    bool isReshapeSupported = BroadcastTensor(input0, input1, layer, data);
-    if (!isReshapeSupported)
-    {
-        return false;
-    }
-
-    return SetupAndTrackLayerOutputSlot<hal_1_2::HalPolicy>(operation, 0, *layer, model, data);
+    return ::ConvertMinimum<hal_1_2::HalPolicy>(operation, model, data);
 }
 
 bool HalPolicy::ConvertMul(const Operation& operation, const Model& model, ConversionData& data)
@@ -1430,401 +323,25 @@
 bool HalPolicy::ConvertPadV2(const Operation& operation, const Model& model, ConversionData& data)
 {
     ALOGV("hal_1_2::HalPolicy::ConvertPadV2()");
-
-    LayerInputHandle input = ConvertToLayerInputHandle<hal_1_2::HalPolicy>(operation, 0, model, data);
-    if (!input.IsValid())
-    {
-        return Fail("%s: Could not read input 0", __func__);
-    }
-
-    const Operand* output = GetOutputOperand<hal_1_2::HalPolicy>(operation, 0, model);
-    if (!output)
-    {
-        return Fail("%s: Could not read output", __func__);
-    }
-
-    const TensorInfo& inputInfo  = input.GetTensorInfo();
-    unsigned int rank = inputInfo.GetNumDimensions();
-
-    PadDescriptor descriptor;
-    if (!ConvertPaddings<hal_1_2::HalPolicy>(operation, model, data, rank, descriptor))
-    {
-        return Fail("%s: Could not convert paddings", __func__);
-    }
-
-    const TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
-    if (IsDynamicTensor(outputInfo))
-    {
-        return Fail("%s: Dynamic output tensors are not supported", __func__);
-    }
-
-    // Determine type of padding value
-    OperandType operandType0;
-    OperandType operandType2;
-
-    if (!GetOperandType<hal_1_2::HalPolicy>(operation, 0, model, operandType0) ||
-        !GetOperandType<hal_1_2::HalPolicy>(operation, 2, model, operandType2))
-    {
-        return Fail("%s: Operation has invalid inputs", __func__);
-    }
-
-    // Read value to use for padding
-    if (operandType0 == OperandType::TENSOR_FLOAT16 && operandType2 == OperandType::FLOAT16)
-    {
-        Half f16PadValue;
-        if (!GetInputScalar<hal_1_2::HalPolicy>(operation, 2, operandType2, f16PadValue, model, data))
-        {
-            return Fail("%s: Could not read input 2 (FLOAT16)", __func__);
-        }
-
-        descriptor.m_PadValue = f16PadValue;
-    }
-    else if (operandType0 == OperandType::TENSOR_FLOAT32 && operandType2 == OperandType::FLOAT32)
-    {
-        if (!GetInputFloat32<hal_1_2::HalPolicy>(operation, 2, descriptor.m_PadValue, model, data))
-        {
-            return Fail("%s: Could not read input 2 (FLOAT32)", __func__);
-        }
-    }
-    else if (operandType0 == OperandType::TENSOR_QUANT8_ASYMM && operandType2 == OperandType::INT32)
-    {
-        int32_t intPadValue = 0;
-        if (!GetInputInt32<hal_1_2::HalPolicy>(operation, 2, intPadValue, model, data))
-        {
-            return Fail("%s: Could not read input 2 (INT32)", __func__);
-        }
-        descriptor.m_PadValue = intPadValue;
-    }
-    else
-    {
-        return Fail("%s: Operation has invalid inputs: type mismatch", __func__);
-    }
-
-    bool isSupported = false;
-    FORWARD_LAYER_SUPPORT_FUNC(__func__,
-                               IsPadSupported,
-                               data.m_Backends,
-                               isSupported,
-                               inputInfo,
-                               outputInfo,
-                               descriptor);
-    if (!isSupported)
-    {
-        return false;
-    }
-
-    IConnectableLayer* const layer = data.m_Network->AddPadLayer(descriptor);
-    assert(layer != nullptr);
-    input.Connect(layer->GetInputSlot(0));
-    layer->GetOutputSlot(0).SetTensorInfo(outputInfo);
-
-    return SetupAndTrackLayerOutputSlot<hal_1_2::HalPolicy>(operation, 0, *layer, model, data);
+    return ::ConvertPadV2<hal_1_2::HalPolicy>(operation, model, data);
 }
 
 bool HalPolicy::ConvertPrelu(const Operation& operation, const Model& model, ConversionData& data)
 {
     ALOGV("hal_1_2::HalPolicy::ConvertPrelu()");
-
-    LayerInputHandle input = ConvertToLayerInputHandle<hal_1_2::HalPolicy>(operation, 0, model, data);
-    LayerInputHandle alpha = ConvertToLayerInputHandle<hal_1_2::HalPolicy>(operation, 1, model, data);
-
-    if (!input.IsValid() || !alpha.IsValid())
-    {
-        return Fail("%s: Operation has invalid inputs", __func__);
-    }
-
-    const Operand* output = GetOutputOperand<hal_1_2::HalPolicy>(operation, 0, model);
-
-    if (!output)
-    {
-        return Fail("%s: Could not read output", __func__);
-    }
-
-    const TensorInfo& inputInfo  = input.GetTensorInfo();
-    const TensorInfo& alphaInfo  = alpha.GetTensorInfo();
-    const TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
-
-    if (IsDynamicTensor(outputInfo))
-    {
-        return Fail("%s: Dynamic output tensors are not supported", __func__);
-    }
-
-    bool isSupported = false;
-    FORWARD_LAYER_SUPPORT_FUNC(__func__,
-                               IsPreluSupported,
-                               data.m_Backends,
-                               isSupported,
-                               inputInfo,
-                               alphaInfo,
-                               outputInfo);
-    if (!isSupported)
-    {
-        return false;
-    }
-
-    IConnectableLayer* const layer = data.m_Network->AddPreluLayer();
-
-    if (!layer)
-    {
-        return Fail("%s: AddPreluLayer failed", __func__);
-    }
-
-    bool isReshapeSupported = BroadcastTensor(input, alpha, layer, data);
-    if (!isReshapeSupported)
-    {
-        return false;
-    }
-
-    return SetupAndTrackLayerOutputSlot<hal_1_2::HalPolicy>(operation, 0, *layer, model, data);
+    return ::ConvertPrelu<hal_1_2::HalPolicy>(operation, model, data);
 }
 
 bool HalPolicy::ConvertQuantize(const Operation& operation, const Model& model, ConversionData& data)
 {
     ALOGV("hal_1_2::HalPolicy::ConvertQuantize()");
-
-    LayerInputHandle input = ConvertToLayerInputHandle<hal_1_2::HalPolicy>(operation, 0, model, data);
-    if (!input.IsValid())
-    {
-        return Fail("%s: Operation has invalid input", __func__);
-    }
-
-    const Operand* const outputOperand = GetOutputOperand<hal_1_2::HalPolicy>(operation, 0, model);
-    if (!outputOperand)
-    {
-        return Fail("%s: Operation has invalid outputs", __func__);
-    }
-
-    const TensorInfo& outputInfo = GetTensorInfoForOperand(*outputOperand);
-    if (IsDynamicTensor(outputInfo))
-    {
-        return Fail("%s: Dynamic output tensors are not supported", __func__);
-    }
-
-    bool isSupported = false;
-    FORWARD_LAYER_SUPPORT_FUNC(__func__,
-                               IsQuantizeSupported,
-                               data.m_Backends,
-                               isSupported,
-                               input.GetTensorInfo(),
-                               outputInfo);
-    if (!isSupported)
-    {
-        return false;
-    }
-
-    IConnectableLayer* const layer = data.m_Network->AddQuantizeLayer();
-    assert(layer != nullptr);
-    input.Connect(layer->GetInputSlot(0));
-
-    return SetupAndTrackLayerOutputSlot<hal_1_2::HalPolicy>(operation, 0, *layer, model, data);
+    return ::ConvertQuantize<hal_1_2::HalPolicy>(operation, model, data);
 }
 
 bool HalPolicy::ConvertQuantizedLstm(const Operation& operation, const Model& model, ConversionData& data)
 {
     ALOGV("hal_1_2::HalPolicy::ConvertQuantizedLstm()");
-
-    //Inputs:
-    // 0: The input: A 2-D tensor of type ANEURALNETWORKS_TENSOR_QUANT8_ASYMM and shape [numBatches, inputSize]
-    //    specifying the input to the LSTM cell. Tensor is quantized with a fixed quantization range of -1, 127/128.
-    LayerInputHandle input = ConvertToLayerInputHandle<hal_1_2::HalPolicy>(operation, 0, model, data);
-    if (!input.IsValid())
-    {
-        return Fail("%s: Could not read input 0: input", __func__);
-    }
-
-    //13: The previous cell state: A 2-D tensor of type ANEURALNETWORKS_TENSOR_QUANT16_SYMM and shape
-    //    [numBatches, outputSize] specifying the cell state from the previous time step of the LSTM cell.
-    //    It is quantized using a quantization range of -2^4, 2^4 * 32767/32768.
-    LayerInputHandle previousCellStateIn = ConvertToLayerInputHandle<hal_1_2::HalPolicy>(operation, 13, model, data);
-    if (!previousCellStateIn.IsValid())
-    {
-        return Fail("%s: Could not read input 13: previousCellStateIn", __func__);
-    }
-
-    // 14: The previous output state: A 2-D tensor of type ANEURALNETWORKS_TENSOR_QUANT8_ASYMM and shape
-    //     [numBathes, outputSize] specifying the output of the LSTM cell from previous time-step. Tensor
-    //     is quantized with a fixed quantization range of -1, 127/128.
-    LayerInputHandle previousOutputIn = ConvertToLayerInputHandle<hal_1_2::HalPolicy>(operation, 14, model, data);
-    if (!previousOutputIn.IsValid())
-    {
-        return Fail("%s: Could not read input 14: previousOutputIn", __func__);
-    }
-
-    // Get the input tensors:
-    // 1: The input-to-input weights. A 2-D tensor of type ANEURALNETWORKS_TENSOR_QUANT8_ASYMM and shape
-    //    [outputSize, inputSize] specifying input-to-input part of weights for fully-connected layer inside the
-    //    LSTM cell. Quantization zero point and scale must be the same across all the weights.
-    const ConstTensorPin inputToInputWeightsPin =
-            ConvertOperationInputToConstTensorPin<hal_1_2::HalPolicy>(operation, 1, model, data);
-
-    // 2: The input-to-forget weights. A 2-D tensor of type ANEURALNETWORKS_TENSOR_QUANT8_ASYMM and shape
-    //    [outputSize, inputSize] specifying input-to-forget part of weights for fully-connected layer inside the
-    //    LSTM cell. Quantization zero point and scale must be the same across all the weights.
-    const ConstTensorPin inputToForgetWeightsPin =
-            ConvertOperationInputToConstTensorPin<hal_1_2::HalPolicy>(operation, 2, model, data);
-
-    // 3: The input-to-cell weights. A 2-D tensor of type ANEURALNETWORKS_TENSOR_QUANT8_ASYMM and shape
-    //    [outputSize, inputSize] specifying input-to-cell part of weights for fully-connected layer inside the
-    //    LSTM cell. Quantization zero point and scale must be the same across all the weights.
-    const ConstTensorPin inputToCellWeightsPin =
-            ConvertOperationInputToConstTensorPin<hal_1_2::HalPolicy>(operation, 3, model, data);
-
-    // 4: The input-to-output weights. A 2-D tensor of type ANEURALNETWORKS_TENSOR_QUANT8_ASYMM and shape
-    //    [outputSize, inputSize] specifying input-to-output part of weights for fully-connected layer inside the
-    //    LSTM cell. Quantization zero point and scale must be the same across all the weights.
-    const ConstTensorPin inputToOutputWeightsPin =
-            ConvertOperationInputToConstTensorPin<hal_1_2::HalPolicy>(operation, 4, model, data);
-
-    // 5: The recurrent-to-input weights. A 2-D tensor of type ANEURALNETWORKS_TENSOR_QUANT8_ASYMM and shape
-    //    [outputSize, outputSize] specifying recurrent-to-input part of weights for fully-connected layer inside
-    //    the LSTM cell. Quantization zero point and scale must be the same across all the weights.
-    const ConstTensorPin recurrentToInputWeightsPin =
-            ConvertOperationInputToConstTensorPin<hal_1_2::HalPolicy>(operation, 5, model, data);
-
-    // 6: The recurrent-to-forget weights. A 2-D tensor of type ANEURALNETWORKS_TENSOR_QUANT8_ASYMM and shape
-    //    [outputSize, outputSize] specifying recurrent-to-forget part of weights for fully-connected layer inside
-    //    the LSTM cell. Quantization zero point and scale must be the same across all the weights.
-    const ConstTensorPin recurrentToForgetWeightsPin =
-            ConvertOperationInputToConstTensorPin<hal_1_2::HalPolicy>(operation, 6, model, data);
-
-    // 7: The recurrent-to-cell weights. A 2-D tensor of type ANEURALNETWORKS_TENSOR_QUANT8_ASYMM and shape
-    //    [outputSize, outputSize] specifying recurrent-to-cell part of weights for fully-connected layer inside
-    //    the LSTM cell. Quantization zero point and scale must be the same across all the weights.
-    const ConstTensorPin recurrentToCellWeightsPin =
-            ConvertOperationInputToConstTensorPin<hal_1_2::HalPolicy>(operation, 7, model, data);
-
-    // 8: The recurrent-to-output weights. A 2-D tensor of type ANEURALNETWORKS_TENSOR_QUANT8_ASYMM and shape
-    //    [outputSize, outputSize] specifying recurrent-to-output part of weights for fully-connected layer inside
-    //    the LSTM cell. Quantization zero point and scale must be the same across all the weights.
-    const ConstTensorPin recurrentToOutputWeightsPin =
-            ConvertOperationInputToConstTensorPin<hal_1_2::HalPolicy>(operation, 8, model, data);
-
-    // 9: The input gate bias. A 1-D tensor of type ANEURALNETWORKS_TENSOR_INT32 and shape [outputSize] specifying the
-    //    bias for the fully-connected layer inside the LSTM cell. Bias is quantized with scale being a product
-    //    of input and weights scales and zeroPoint equal to 0.
-    const ConstTensorPin inputGateBiasPin =
-            ConvertOperationInputToConstTensorPin<hal_1_2::HalPolicy>(operation, 9, model, data);
-
-    // 10: The forget gate bias. A 1-D tensor of type ANEURALNETWORKS_TENSOR_INT32 and shape [outputSize] specifying
-    //     the bias for the fully-connected layer inside the LSTM cell. Bias is quantized with scale being a product
-    //     of input and weights scales and zeroPoint equal to 0.
-    const ConstTensorPin forgetGateBiasPin =
-            ConvertOperationInputToConstTensorPin<hal_1_2::HalPolicy>(operation, 10, model, data);
-
-    // 11:The cell bias. A 1-D tensor of type ANEURALNETWORKS_TENSOR_INT32 and shape [outputSize] specifying the bias
-    //    for the fully-connected layer inside the LSTM cell. Bias is quantized with scale being a product of input
-    //    and weights scales and zeroPoint equal to 0.
-    const ConstTensorPin cellBiasPin =
-            ConvertOperationInputToConstTensorPin<hal_1_2::HalPolicy>(operation, 11, model, data);
-
-    // 12:The output gate bias. A 1-D tensor of type ANEURALNETWORKS_TENSOR_INT32 and shape [outputSize] specifying
-    //    the bias for the fully-connected layer inside the LSTM cell. Bias is quantized with scale being a product
-    //    of input and weights scales and zeroPoint equal to 0.
-    const ConstTensorPin outputGateBiasPin =
-            ConvertOperationInputToConstTensorPin<hal_1_2::HalPolicy>(operation, 12, model, data);
-
-    if (!inputToInputWeightsPin.IsValid() ||
-        !inputToForgetWeightsPin.IsValid() ||
-        !inputToCellWeightsPin.IsValid() ||
-        !inputToOutputWeightsPin.IsValid() ||
-        !recurrentToInputWeightsPin.IsValid() ||
-        !recurrentToForgetWeightsPin.IsValid() ||
-        !recurrentToCellWeightsPin.IsValid() ||
-        !recurrentToOutputWeightsPin.IsValid() ||
-        !inputGateBiasPin.IsValid() ||
-        !forgetGateBiasPin.IsValid() ||
-        !cellBiasPin.IsValid() ||
-        !outputGateBiasPin.IsValid())
-    {
-        return Fail("%s: Operation has invalid tensor inputs", __func__);
-    }
-
-    // Outputs:
-    // 0: The cell state: A 2-D tensor of type ANEURALNETWORKS_TENSOR_QUANT16_SYMM and shape [numBatches, outputSize]
-    //    which contains a cell state from the current time step. Tensor is quantized using a quantization range
-    //    of -2^4, 2^4 * 32767/32768.
-    const Operand* cellStateOut = GetOutputOperand<hal_1_2::HalPolicy>(operation, 0, model);
-    if (!cellStateOut)
-    {
-        return Fail("%s: Could not read output 0: cellStateOut", __func__);
-    }
-
-    // 1: The output: A 2-D tensor of type ANEURALNETWORKS_TENSOR_QUANT8_ASYMM and shape [numBathes, outputSize] which
-    //      contains the output value. Tensor is quantized with a fixed quantization range of -1, 127/128.
-    const Operand* output = GetOutputOperand<hal_1_2::HalPolicy>(operation, 1, model);
-    if (!output)
-    {
-        return Fail("%s: Could not read output 1: output", __func__);
-    }
-
-    // Inputs
-    const TensorInfo& inputInfo               = input.GetTensorInfo();
-    const TensorInfo& previousCellStateInInfo = previousCellStateIn.GetTensorInfo();
-    const TensorInfo& previousOutputInInfo    = previousOutputIn.GetTensorInfo();
-
-    // Outputs
-    const TensorInfo& cellStateOutInfo = GetTensorInfoForOperand(*cellStateOut);
-    const TensorInfo& outputInfo       = GetTensorInfoForOperand(*output);
-
-    // Dynamic tensors currently not supported
-    if (IsDynamicTensor(cellStateOutInfo) || IsDynamicTensor(outputInfo))
-    {
-        return Fail("%s: Dynamic output tensors are not supported", __func__);
-    }
-
-    QuantizedLstmInputParams params;
-
-    params.m_InputToInputWeights      = inputToInputWeightsPin.GetConstTensorPtr();
-    params.m_InputToForgetWeights     = inputToForgetWeightsPin.GetConstTensorPtr();
-    params.m_InputToCellWeights       = inputToCellWeightsPin.GetConstTensorPtr();
-    params.m_InputToOutputWeights     = inputToOutputWeightsPin.GetConstTensorPtr();
-    params.m_RecurrentToInputWeights  = recurrentToInputWeightsPin.GetConstTensorPtr();
-    params.m_RecurrentToForgetWeights = recurrentToForgetWeightsPin.GetConstTensorPtr();
-    params.m_RecurrentToCellWeights   = recurrentToCellWeightsPin.GetConstTensorPtr();
-    params.m_RecurrentToOutputWeights = recurrentToOutputWeightsPin.GetConstTensorPtr();
-    params.m_InputGateBias            = inputGateBiasPin.GetConstTensorPtr();
-    params.m_ForgetGateBias           = forgetGateBiasPin.GetConstTensorPtr();
-    params.m_CellBias                 = cellBiasPin.GetConstTensorPtr();
-    params.m_OutputGateBias           = outputGateBiasPin.GetConstTensorPtr();
-
-    QuantizedLstmInputParamsInfo paramsInfo;
-    paramsInfo.m_InputToInputWeights      = &(params.m_InputToInputWeights->GetInfo());
-    paramsInfo.m_InputToForgetWeights     = &(params.m_InputToForgetWeights->GetInfo());
-    paramsInfo.m_InputToCellWeights       = &(params.m_InputToCellWeights->GetInfo());
-    paramsInfo.m_InputToOutputWeights     = &(params.m_InputToOutputWeights->GetInfo());
-    paramsInfo.m_RecurrentToInputWeights  = &(params.m_RecurrentToInputWeights->GetInfo());
-    paramsInfo.m_RecurrentToForgetWeights = &(params.m_RecurrentToForgetWeights->GetInfo());
-    paramsInfo.m_RecurrentToCellWeights   = &(params.m_RecurrentToCellWeights->GetInfo());
-    paramsInfo.m_RecurrentToOutputWeights = &(params.m_RecurrentToOutputWeights->GetInfo());
-    paramsInfo.m_InputGateBias            = &(params.m_InputGateBias->GetInfo());
-    paramsInfo.m_ForgetGateBias           = &(params.m_ForgetGateBias->GetInfo());
-    paramsInfo.m_CellBias                 = &(params.m_CellBias->GetInfo());
-    paramsInfo.m_OutputGateBias           = &(params.m_OutputGateBias->GetInfo());
-
-    bool isSupported = false;
-    FORWARD_LAYER_SUPPORT_FUNC(__func__,
-                               IsQuantizedLstmSupported,
-                               data.m_Backends,
-                               isSupported,
-                               inputInfo,
-                               previousCellStateInInfo,
-                               previousOutputInInfo,
-                               cellStateOutInfo,
-                               outputInfo,
-                               paramsInfo);
-
-    if (!isSupported)
-    {
-        return false;
-    }
-
-    IConnectableLayer* const layer = data.m_Network->AddQuantizedLstmLayer(params, "QuantizedLstm");
-    input.Connect(layer->GetInputSlot(0));
-    previousCellStateIn.Connect(layer->GetInputSlot(1));
-    previousOutputIn.Connect(layer->GetInputSlot(2));
-
-    return (SetupAndTrackLayerOutputSlot<hal_1_2::HalPolicy>(operation, 0, *layer, 0, model, data) &&
-            SetupAndTrackLayerOutputSlot<hal_1_2::HalPolicy>(operation, 1, *layer, 1, model, data));
+    return ::ConvertQuantizedLstm<hal_1_2::HalPolicy>(operation, model, data);
 }
 
 bool HalPolicy::ConvertReLu(const Operation& operation, const Model& model, ConversionData& data)
@@ -1857,134 +374,7 @@
                               ResizeMethod resizeMethod)
 {
     ALOGV("hal_1_2::HalPolicy::ConvertResize()");
-    ALOGV("resizeMethod = %s", GetResizeMethodAsCString(resizeMethod));
-
-    LayerInputHandle input = ConvertToLayerInputHandle<hal_1_2::HalPolicy>(operation, 0, model, data);
-    if (!input.IsValid())
-    {
-        return Fail("%s: Could not read input 0", __func__);
-    }
-
-    const Operand* output = GetOutputOperand<hal_1_2::HalPolicy>(operation, 0, model);
-    if (!output)
-    {
-        return Fail("%s: Could not read output 0", __func__);
-    }
-
-    const TensorInfo& inputInfo  = input.GetTensorInfo();
-    const TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
-
-    if (IsDynamicTensor(outputInfo))
-    {
-        return Fail("%s: Dynamic output tensors are not supported", __func__);
-    }
-
-    ResizeDescriptor descriptor;
-    descriptor.m_Method     = resizeMethod;
-    descriptor.m_DataLayout = OptionalDataLayout<hal_1_2::HalPolicy>(operation, 3, model, data);
-
-    OperandType operandType1;
-    OperandType operandType2;
-
-    if (!GetOperandType<hal_1_2::HalPolicy>(operation, 1, model, operandType1) ||
-        !GetOperandType<hal_1_2::HalPolicy>(operation, 2, model, operandType2))
-    {
-        return Fail("%s: Operation has invalid inputs", __func__);
-    }
-
-    if (operandType1 != operandType2)
-    {
-        return Fail("%s: Operation has invalid inputs. Type of input 1 and 2 should be the same", __func__);
-    }
-
-    if (operandType1 == OperandType::INT32)
-    {
-        // Case 1: resizing by shape
-        int32_t targetWidth  = 0;
-        int32_t targetHeight = 0;
-
-        if (!GetInputInt32<hal_1_2::HalPolicy>(operation, 1, targetWidth, model, data) ||
-            !GetInputInt32<hal_1_2::HalPolicy>(operation, 2, targetHeight, model, data))
-        {
-            return Fail("%s: Operation has invalid inputs for resizing by shape", __func__);
-        }
-
-        if (targetWidth < 0 || targetHeight < 0)
-        {
-            return Fail("%s: Operation has invalid inputs for resizing by shape. "
-                        "Target width/height cannot be < 0", __func__);
-        }
-
-        descriptor.m_TargetWidth = static_cast<uint32_t>(targetWidth);
-        descriptor.m_TargetHeight = static_cast<uint32_t>(targetHeight);
-    }
-    else if (operandType1 == OperandType::FLOAT32)
-    {
-        // Case 2: resizing by scale
-        float widthScale  = 1.0f;
-        float heightScale = 1.0f;
-
-        if (!GetInputFloat32<hal_1_2::HalPolicy>(operation, 1, widthScale, model, data) ||
-            !GetInputFloat32<hal_1_2::HalPolicy>(operation, 2, heightScale, model, data))
-        {
-            return Fail("%s: Operation has invalid inputs for resizing by scale", __func__);
-        }
-
-        const TensorShape& inputShape = inputInfo.GetShape();
-        armnnUtils::DataLayoutIndexed dataLayoutIndexed(descriptor.m_DataLayout);
-
-        float width  = inputShape[dataLayoutIndexed.GetWidthIndex()];
-        float height = inputShape[dataLayoutIndexed.GetHeightIndex()];
-
-        descriptor.m_TargetWidth  = std::floor(width  * widthScale);
-        descriptor.m_TargetHeight = std::floor(height * heightScale);
-    }
-    else if (operandType1 == OperandType::FLOAT16)
-    {
-        Half widthScale;
-        Half heightScale;
-
-        if (!GetInputScalar<HalPolicy>(operation, 1, HalPolicy::OperandType::FLOAT16, widthScale, model, data) ||
-            !GetInputScalar<HalPolicy>(operation, 2, HalPolicy::OperandType::FLOAT16, heightScale, model, data))
-        {
-            return Fail("%s: Operation has invalid inputs for resizing by scale", __func__);
-        }
-
-        const TensorShape& inputShape = inputInfo.GetShape();
-        armnnUtils::DataLayoutIndexed dataLayoutIndexed(descriptor.m_DataLayout);
-
-        Half width  = static_cast<Half>(inputShape[dataLayoutIndexed.GetWidthIndex()]);
-        Half height = static_cast<Half>(inputShape[dataLayoutIndexed.GetHeightIndex()]);
-
-        descriptor.m_TargetWidth  = std::floor(width  * widthScale);
-        descriptor.m_TargetHeight = std::floor(height * heightScale);
-    }
-    else
-    {
-        return Fail("%s: Operand has invalid data type for resizing by scale", __func__);
-    }
-
-    bool isSupported = false;
-    FORWARD_LAYER_SUPPORT_FUNC(__func__,
-                               IsResizeSupported,
-                               data.m_Backends,
-                               isSupported,
-                               inputInfo,
-                               outputInfo,
-                               descriptor);
-
-    if (!isSupported)
-    {
-        return false;
-    }
-
-    IConnectableLayer* layer = data.m_Network->AddResizeLayer(descriptor);
-
-    assert(layer != nullptr);
-
-    input.Connect(layer->GetInputSlot(0));
-
-    return SetupAndTrackLayerOutputSlot<hal_1_2::HalPolicy>(operation, 0, *layer, model, data);
+    return ::ConvertResize<hal_1_2::HalPolicy>(operation, model, data, resizeMethod);
 }
 
 bool HalPolicy::ConvertSpaceToBatchNd(const Operation& operation, const Model& model, ConversionData& data)
@@ -1996,126 +386,13 @@
 bool HalPolicy::ConvertSpaceToDepth(const Operation& operation, const Model& model, ConversionData& data)
 {
     ALOGV("hal_1_2::HalPolicy::ConvertSpaceToDepth()");
-
-    LayerInputHandle input = ConvertToLayerInputHandle<hal_1_2::HalPolicy>(operation, 0, model, data);
-    if (!input.IsValid() )
-    {
-        return Fail("%s: Operation has invalid inputs", __func__);
-    }
-
-    const TensorInfo& inputInfo = input.GetTensorInfo();
-    unsigned int rank = inputInfo.GetNumDimensions();
-    if (rank != 4)
-    {
-        return Fail("%s: Only inputs with rank 4 are supported", __func__);
-    }
-
-    const Operand* output = GetOutputOperand<hal_1_2::HalPolicy>(operation, 0, model);
-    if (!output)
-    {
-        return Fail("%s: Could not read output 0", __func__);
-    }
-
-    const TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
-    if (IsDynamicTensor(outputInfo))
-    {
-        return Fail("%s: Dynamic output tensors are not supported", __func__);
-    }
-
-    SpaceToDepthDescriptor desc;
-
-    GetInputScalar<hal_1_2::HalPolicy>(operation, 1, OperandType::INT32, desc.m_BlockSize, model, data);
-
-    if (desc.m_BlockSize <= 1)
-    {
-        return Fail("%s: Block size must be at least 1 in all dimensions");
-    }
-
-    desc.m_DataLayout = OptionalDataLayout<hal_1_2::HalPolicy>(operation, 2, model, data);
-
-    bool isSupported = false;
-    FORWARD_LAYER_SUPPORT_FUNC(__func__,
-                               IsSpaceToDepthSupported,
-                               data.m_Backends,
-                               isSupported,
-                               inputInfo,
-                               outputInfo,
-                               desc);
-    if (!isSupported)
-    {
-        return false;
-    }
-
-    IConnectableLayer* const layer = data.m_Network->AddSpaceToDepthLayer(desc);
-    assert(layer != nullptr);
-    input.Connect(layer->GetInputSlot(0));
-
-    return SetupAndTrackLayerOutputSlot<hal_1_2::HalPolicy>(operation, 0, *layer, model, data);
+    return ::ConvertSpaceToDepth<hal_1_2::HalPolicy>(operation, model, data);
 }
 
 bool HalPolicy::ConvertSoftmax(const Operation& operation, const Model& model, ConversionData& data)
 {
     ALOGV("hal_1_2::HalPolicy::ConvertSoftmax()");
-
-    LayerInputHandle input = ConvertToLayerInputHandle<hal_1_2::HalPolicy>(operation, 0, model, data);
-    if (!input.IsValid())
-    {
-        return Fail("%s: Operation has invalid inputs", __func__);
-    }
-
-    const Operand* outputOperand = GetOutputOperand<hal_1_2::HalPolicy>(operation, 0, model);
-    if (!outputOperand)
-    {
-        return Fail("%s: Operation has no outputs", __func__);
-    }
-
-    const TensorInfo& outputInfo = GetTensorInfoForOperand(*outputOperand);
-    if (IsDynamicTensor(outputInfo))
-    {
-        return Fail("%s: Dynamic output tensors are not supported", __func__);
-    }
-
-    SoftmaxDescriptor desc;
-    if (!GetInputFloat32<hal_1_2::HalPolicy>(operation, 1, desc.m_Beta, model, data))
-    {
-        return Fail("%s: Operation has invalid inputs", __func__);
-    }
-
-    if (operation.inputs.size() > 2 && !GetInputScalar<hal_1_2::HalPolicy>(operation,
-                                                                           2,
-                                                                           HalPolicy::OperandType::INT32,
-                                                                           desc.m_Axis,
-                                                                           model,
-                                                                           data))
-    {
-        return Fail("%s: Operation has invalid inputs", __func__);
-    }
-
-    if (input.GetTensorInfo().GetNumDimensions() > 2 ||
-        !(desc.m_Axis == 1 ||
-          (desc.m_Axis < 0 && static_cast<int>(input.GetTensorInfo().GetNumDimensions()) + desc.m_Axis == 1)))
-    {
-        return Fail("%s: Unsupported input greater than 2D or axis != 1", __func__);
-    }
-
-    bool isSupported = false;
-    FORWARD_LAYER_SUPPORT_FUNC(__func__,
-                               IsSoftmaxSupported,
-                               data.m_Backends,
-                               isSupported,
-                               input.GetTensorInfo(),
-                               outputInfo,
-                               desc);
-    if (!isSupported)
-    {
-        return false;
-    }
-
-    IConnectableLayer* layer = data.m_Network->AddSoftmaxLayer(desc);
-    assert(layer != nullptr);
-    input.Connect(layer->GetInputSlot(0));
-
-    return SetupAndTrackLayerOutputSlot<hal_1_2::HalPolicy>(operation, 0, *layer, model, data);
+    return ::ConvertSoftmax<hal_1_2::HalPolicy>(operation, model, data);
 }
 
 bool HalPolicy::ConvertSub(const Operation& operation, const Model& model, ConversionData& data)
@@ -2130,450 +407,10 @@
     return ::ConvertTanH<hal_1_2::HalPolicy>(operation, model, data);
 }
 
-template<typename HalPolicy,
-         typename HalOperation = typename HalPolicy::Operation,
-         typename HalModel     = typename HalPolicy::Model>
-bool SetupAndTrackLayerOutputSlotAndOverrideTensorInfo(const HalOperation& operation,
-                                  uint32_t operationOutputIndex,
-                                  armnn::IConnectableLayer& layer,
-                                  uint32_t layerOutputIndex,
-                                  const HalModel& model,
-                                  ConversionData& data,
-                                  const armnn::TensorInfo tensor_info)
-{
-    using HalOperand = typename HalPolicy::Operand;
-
-    const HalOperand* outputOperand = GetOutputOperand<HalPolicy>(operation, operationOutputIndex, model);
-    if ((outputOperand == nullptr) || (operationOutputIndex >= layer.GetNumOutputSlots()))
-    {
-        return false;
-    }
-
-    armnn::IOutputSlot& outputSlot = layer.GetOutputSlot(layerOutputIndex);
-
-    const uint32_t operandIndex = operation.outputs[operationOutputIndex];
-    data.m_OutputSlotForOperand[operandIndex] = &outputSlot;
-
-    outputSlot.SetTensorInfo(tensor_info);
-
-    return true;
-}
-
-
 bool HalPolicy::ConvertLstm(const Operation& operation, const Model& model, ConversionData& data)
 {
     ALOGV("hal_1_2::HalPolicy::ConvertLstm()");
-
-    // Inputs:
-    // 00: The input: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, input_size], where
-    //      “batch_size” corresponds to the batching dimension, and “input_size” is the size of the input.
-    LayerInputHandle input = ConvertToLayerInputHandle<hal_1_2::HalPolicy>(operation, 0, model, data);
-    if (!input.IsValid())
-    {
-        return Fail("%s: Could not read input 0: input", __func__);
-    }
-    // 18: The output state: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, output_size].
-    LayerInputHandle outputStateIn = ConvertToLayerInputHandle<hal_1_2::HalPolicy>(operation, 18, model, data);
-    if (!outputStateIn.IsValid())
-    {
-        return Fail("%s: Could not read input 18: outputStateIn", __func__);
-    }
-    // 19: The cell state: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, num_units].
-    LayerInputHandle cellStateIn = ConvertToLayerInputHandle<hal_1_2::HalPolicy>(operation, 19, model, data);
-    if (!cellStateIn.IsValid())
-    {
-        return Fail("%s: Could not read input 19: cellStateIn", __func__);
-    }
-
-    // Get the mandatory input tensors:
-    // 02: The input-to-forget weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
-    //     [num_units, input_size].
-    const ConstTensorPin inputToForgetWeightsPin =
-            (DequantizeAndMakeConstTensorPin<hal_1_2::HalPolicy>(operation, model, data, 2));
-    // 03: The input-to-cell weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
-    // [num_units, input_size].
-    const ConstTensorPin inputToCellWeightsPin =
-            (DequantizeAndMakeConstTensorPin<hal_1_2::HalPolicy>(operation, model, data, 3));
-    // 04: The input-to-output weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
-    //     [num_units, input_size].
-    const ConstTensorPin inputToOutputWeightsPin =
-           (DequantizeAndMakeConstTensorPin<hal_1_2::HalPolicy>(operation, model, data, 4));
-    // 06: The recurrent-to-forget weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
-    //     [num_units, output_size].
-    const ConstTensorPin recurrentToForgetWeightsPin =
-           (DequantizeAndMakeConstTensorPin<hal_1_2::HalPolicy>(operation, model, data, 6));
-    // 07: The recurrent-to-cell weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
-    //     [num_units, output_size].
-    const ConstTensorPin recurrentToCellWeightsPin =
-           (DequantizeAndMakeConstTensorPin<hal_1_2::HalPolicy>(operation, model, data, 7));
-    // 08: The recurrent-to-output weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
-    //     [num_units, output_size].
-    const ConstTensorPin recurrentToOutputWeightsPin =
-            (DequantizeAndMakeConstTensorPin<hal_1_2::HalPolicy>(operation, model, data, 8));
-    // 13: The forget gate bias: A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units].
-    const ConstTensorPin forgetGateBiasPin =
-            ConvertOperationInputToConstTensorPin<hal_1_2::HalPolicy>(operation, 13, model, data);
-    // 14: The cell bias: A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units].
-    const ConstTensorPin cellBiasPin =
-            ConvertOperationInputToConstTensorPin<hal_1_2::HalPolicy>(operation, 14, model, data);
-    // 15: The output gate bias: A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units].
-    const ConstTensorPin outputGateBiasPin =
-            ConvertOperationInputToConstTensorPin<hal_1_2::HalPolicy>(operation, 15, model, data);
-
-    if (!inputToForgetWeightsPin.IsValid() ||
-        !inputToCellWeightsPin.IsValid() ||
-        !inputToOutputWeightsPin.IsValid() ||
-        !recurrentToForgetWeightsPin.IsValid() ||
-        !recurrentToCellWeightsPin.IsValid() ||
-        !recurrentToOutputWeightsPin.IsValid() ||
-        !forgetGateBiasPin.IsValid() ||
-        !cellBiasPin.IsValid() ||
-        !outputGateBiasPin.IsValid())
-    {
-        return Fail("%s: Operation has invalid tensor inputs", __func__);
-    }
-
-    // Get the optional input tensors:
-    // 01: The input-to-input weights: Optional. A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
-    //     [num_units, input_size], where “num_units” corresponds to the number of cell units.
-    const ConstTensorPin inputToInputWeightsPin =
-            (DequantizeAndMakeConstTensorPin<hal_1_2::HalPolicy>(operation, model, data, 1, true));
-    // 05: The recurrent-to-input weights: Optional. A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
-    //     [num_units, output_size], where “output_size” corresponds to either the number of cell units (i.e.,
-    //     “num_units”), or the second dimension of the “projection_weights”, if defined.
-    const ConstTensorPin recurrentToInputWeightsPin =
-            (DequantizeAndMakeConstTensorPin<hal_1_2::HalPolicy>(operation, model, data, 5, true));
-    // 09: The cell-to-input weights: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units].
-    const ConstTensorPin cellToInputWeightsPin =
-            (DequantizeAndMakeConstTensorPin<hal_1_2::HalPolicy>(operation, model, data, 9, true));
-    // 10: The cell-to-forget weights: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units].
-    const ConstTensorPin cellToForgetWeightsPin =
-            (DequantizeAndMakeConstTensorPin<hal_1_2::HalPolicy>(operation, model, data, 10, true));
-    // 11: The cell-to-output weights: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units].
-    const ConstTensorPin cellToOutputWeightsPin =
-            (DequantizeAndMakeConstTensorPin<hal_1_2::HalPolicy>(operation, model, data, 11, true));
-    // 12: The input gate bias: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units].
-    const ConstTensorPin inputGateBiasPin =
-            ConvertOperationInputToConstTensorPin<hal_1_2::HalPolicy>(operation,
-                                                                      12,
-                                                                      model,
-                                                                      data,
-                                                                      g_DontPermute,
-                                                                      nullptr,
-                                                                      true);
-
-    // 16: The projection weights: Optional. A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
-    //     [output_size, num_units].
-    const ConstTensorPin projectionWeightsPin =
-            (DequantizeAndMakeConstTensorPin<hal_1_2::HalPolicy>(operation, model, data, 16, true));
-    // 17: The projection bias: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [output_size].
-    const ConstTensorPin projectionBiasPin =
-            ConvertOperationInputToConstTensorPin<hal_1_2::HalPolicy>(operation,
-                                                                      17,
-                                                                      model,
-                                                                      data,
-                                                                      g_DontPermute,
-                                                                      nullptr,
-                                                                      true);
-
-    if ((!inputToInputWeightsPin.IsValid() && !inputToInputWeightsPin.IsOptional()) ||
-        (!recurrentToInputWeightsPin.IsValid() && !recurrentToInputWeightsPin.IsOptional()) ||
-        (!cellToInputWeightsPin.IsValid() && !cellToInputWeightsPin.IsOptional()) ||
-        (!cellToForgetWeightsPin.IsValid() && !cellToForgetWeightsPin.IsOptional()) ||
-        (!cellToOutputWeightsPin.IsValid() && !cellToOutputWeightsPin.IsOptional()) ||
-        (!inputGateBiasPin.IsValid() && !inputGateBiasPin.IsOptional()) ||
-        (!projectionWeightsPin.IsValid() && !projectionWeightsPin.IsOptional()) ||
-        (!projectionBiasPin.IsValid() && !projectionBiasPin.IsOptional()))
-    {
-        return Fail("%s: Operation has invalid tensor inputs", __func__);
-    }
-
-    // Get the mandatory input scalars (actually 1-D tensors of size 1):
-    // 20: The activation function: A value indicating the activation function:
-    //     0: None; 1: Relu; 3: Relu6; 4: Tanh; 6: Sigmoid.
-    // 21: The clipping threshold: for the cell state, such that values are bound within [-cell_clip, cell_clip].
-    //     If set to 0.0 then clipping is disabled.
-    // 22: The clipping threshold: for the output from the projection layer, such that values are bound within
-    //     [-proj_clip, proj_clip]. If set to 0.0 then clipping is disabled.
-    ActivationFn activation;
-    float cellClip;
-    float projClip;
-    if (!GetInputActivationFunctionFromTensor<hal_1_2::HalPolicy>(operation, 20, activation, model, data) ||
-        !GetInputScalar<hal_1_2::HalPolicy>(operation, 21, OperandType::FLOAT32, cellClip, model, data) ||
-        !GetInputScalar<hal_1_2::HalPolicy>(operation, 22, OperandType::FLOAT32, projClip, model, data))
-    {
-        return Fail("%s: Operation has invalid scalar inputs", __func__);
-    }
-
-    // Get the normalization tensors
-    // 23: The input layer normalization weights. A 1-D tensor of shape [num_units].
-    //     Used to rescale normalized inputs to activation at input gate.
-    const ConstTensorPin inputLayerNormWeightsPin
-            (DequantizeAndMakeConstTensorPin<hal_1_2::HalPolicy>(operation, model, data, 23, true));
-
-    // 24: The forget layer normalization weights. A 1-D tensor of shape [num_units].
-    //     Used to rescale normalized inputs to activation at forget gate.
-    const ConstTensorPin forgetLayerNormWeightsPin =
-            ConvertOperationInputToConstTensorPin<hal_1_2::HalPolicy>(operation,
-                                                                      24,
-                                                                      model,
-                                                                      data,
-                                                                      g_DontPermute,
-                                                                      nullptr,
-                                                                      true);
-
-    // 25: The cell layer normalization weights. A 1-D tensor of shape [num_units].
-    //     Used to rescale normalized inputs to activation at cell gate.
-    const ConstTensorPin cellLayerNormWeightsPin =
-            ConvertOperationInputToConstTensorPin<hal_1_2::HalPolicy>(operation,
-                                                                      25,
-                                                                      model,
-                                                                      data,
-                                                                      g_DontPermute,
-                                                                      nullptr,
-                                                                      true);
-
-    // 26: The output layer normalization weights. A 1-D tensor of shape [num_units].
-    //     Used to rescale normalized inputs to activation at output gate.
-    const ConstTensorPin outputLayerNormWeightsPin =
-            ConvertOperationInputToConstTensorPin<hal_1_2::HalPolicy>(operation,
-                                                                      26,
-                                                                      model,
-                                                                      data,
-                                                                      g_DontPermute,
-                                                                      nullptr,
-                                                                      true);
-
-    // Outputs:
-    // 00: The scratch buffer: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, num_units * 4]
-    // with CIFG, or [batch_size, num_units * 3] without CIFG.
-    const Operand* scratchBuffer = GetOutputOperand<hal_1_2::HalPolicy>(operation, 0, model);
-    if (!scratchBuffer)
-    {
-        return Fail("%s: Could not read output 0: scratchBuffer", __func__);
-    }
-    // 01: The output state (out): A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, output_size].
-    const Operand* outputStateOut = GetOutputOperand<hal_1_2::HalPolicy>(operation, 1, model);
-    if (!outputStateOut)
-    {
-        return Fail("%s: Could not read output 1: outputStateOut", __func__);
-    }
-    // 02: The cell state (out): A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, num_units].
-    const Operand* cellStateOut = GetOutputOperand<hal_1_2::HalPolicy>(operation, 2, model);
-    if (!cellStateOut)
-    {
-        return Fail("%s: Could not read output 2: cellStateOut", __func__);
-    }
-    // 03: The output: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, output_size]. This is
-    //     effectively the same as the current “output state (out)” value.
-    const Operand* output = GetOutputOperand<hal_1_2::HalPolicy>(operation, 3, model);
-    if (!output)
-    {
-        return Fail("%s: Could not read output 3: output", __func__);
-    }
-
-    // set the params structure for the AddLstmLayer call
-    LstmInputParams params;
-    params.m_InputToInputWeights = inputToInputWeightsPin.GetConstTensorPtr();
-    params.m_InputToForgetWeights = inputToForgetWeightsPin.GetConstTensorPtr();
-    params.m_InputToCellWeights = inputToCellWeightsPin.GetConstTensorPtr();
-    params.m_InputToOutputWeights = inputToOutputWeightsPin.GetConstTensorPtr();
-    params.m_RecurrentToInputWeights = recurrentToInputWeightsPin.GetConstTensorPtr();
-    params.m_RecurrentToForgetWeights = recurrentToForgetWeightsPin.GetConstTensorPtr();
-    params.m_RecurrentToCellWeights = recurrentToCellWeightsPin.GetConstTensorPtr();
-    params.m_RecurrentToOutputWeights = recurrentToOutputWeightsPin.GetConstTensorPtr();
-    params.m_CellToInputWeights = cellToInputWeightsPin.GetConstTensorPtr();
-    params.m_CellToForgetWeights = cellToForgetWeightsPin.GetConstTensorPtr();
-    params.m_CellToOutputWeights = cellToOutputWeightsPin.GetConstTensorPtr();
-    params.m_InputGateBias = inputGateBiasPin.GetConstTensorPtr();
-    params.m_ForgetGateBias = forgetGateBiasPin.GetConstTensorPtr();
-    params.m_CellBias = cellBiasPin.GetConstTensorPtr();
-    params.m_OutputGateBias = outputGateBiasPin.GetConstTensorPtr();
-    params.m_ProjectionWeights = projectionWeightsPin.GetConstTensorPtr();
-    params.m_ProjectionBias = projectionBiasPin.GetConstTensorPtr();
-    params.m_InputLayerNormWeights = inputLayerNormWeightsPin.GetConstTensorPtr();
-    params.m_ForgetLayerNormWeights = forgetLayerNormWeightsPin.GetConstTensorPtr();
-    params.m_CellLayerNormWeights = cellLayerNormWeightsPin.GetConstTensorPtr();
-    params.m_OutputLayerNormWeights = outputLayerNormWeightsPin.GetConstTensorPtr();
-
-    // set the layer descriptor
-    LstmDescriptor desc;
-    desc.m_ActivationFunc = activation;
-    desc.m_ClippingThresCell = cellClip;
-    desc.m_ClippingThresProj = projClip;
-    desc.m_CifgEnabled = (params.m_InputToInputWeights == nullptr ||
-                          params.m_RecurrentToInputWeights == nullptr ||
-                          params.m_InputGateBias == nullptr);
-    desc.m_PeepholeEnabled = (params.m_CellToForgetWeights != nullptr ||
-                              params.m_CellToOutputWeights != nullptr);
-    desc.m_ProjectionEnabled = (params.m_ProjectionWeights != nullptr);
-    desc.m_LayerNormEnabled = (params.m_InputLayerNormWeights != nullptr ||
-                               params.m_ForgetLayerNormWeights != nullptr ||
-                               params.m_CellLayerNormWeights != nullptr ||
-                               params.m_OutputLayerNormWeights != nullptr);
-
-    // validate the optional input groups
-    if (desc.m_CifgEnabled &&
-        (params.m_InputToInputWeights != nullptr ||
-         params.m_RecurrentToInputWeights != nullptr ||
-         params.m_InputGateBias != nullptr))
-    {
-        return Fail("%s: All, or none, of input-to-input weights, recurrent-to-input weights,"
-                    " and input gate bias must be provided", __func__);
-    }
-
-    if (!desc.m_ProjectionEnabled && params.m_ProjectionBias != nullptr)
-    {
-        return Fail("%s: projection bias should not be provided without projection weights", __func__);
-    }
-
-    if (desc.m_PeepholeEnabled &&
-        (params.m_CellToForgetWeights == nullptr ||
-         params.m_CellToOutputWeights == nullptr ||
-         (!desc.m_CifgEnabled && params.m_CellToInputWeights == nullptr)))
-    {
-        return Fail("%s: All, or none, of cell-to-forget weights and cell-to-output weights must be provided"
-                    " and, if CIFG is not enabled, cell-to-input weights must also be provided", __func__);
-    }
-
-    if (desc.m_LayerNormEnabled &&
-        (params.m_ForgetLayerNormWeights == nullptr ||
-         params.m_CellLayerNormWeights == nullptr ||
-         params.m_OutputLayerNormWeights == nullptr ||
-         (!desc.m_CifgEnabled && params.m_InputLayerNormWeights == nullptr)))
-    {
-        return Fail("%s: All, or none, of forget-norm weights, cell-norm weights and output-norm weights must be"
-                    " provided and, if CIFG is not enabled, input-norm weights must also be provided", __func__);
-    }
-
-    // Check if the layer is supported
-    // Inputs
-    const TensorInfo& inputInfo         = input.GetTensorInfo();
-    const TensorInfo& outputStateInInfo = outputStateIn.GetTensorInfo();
-    const TensorInfo& cellStateInInfo   = cellStateIn.GetTensorInfo();
-
-    // Outputs
-    const TensorInfo& scratchBufferInfo  = GetTensorInfoForOperand(*scratchBuffer);
-    const TensorInfo& outputStateOutInfo = GetTensorInfoForOperand(*outputStateOut);
-    const TensorInfo& cellStateOutInfo   = GetTensorInfoForOperand(*cellStateOut);
-    const TensorInfo& outputInfo         = GetTensorInfoForOperand(*output);
-
-    // Check if the scratch buffer shape was initialized,
-    // In some cases the shape could be (0,0) which requires the driver
-    // to infer the shape and set it up accordingly.
-    // The code below does that.
-    TensorInfo fixSbInfo = scratchBufferInfo;
-    if (IsDynamicTensor(scratchBufferInfo))
-    {
-        auto & s = fixSbInfo.GetShape();
-        s[0] = outputStateInInfo.GetShape()[0];
-        if (desc.m_CifgEnabled)
-        {
-           // 2D tensor with dimensions [num_units * 3, batch_size] with CIFG
-           s[1] = cellStateOutInfo.GetShape()[1]*3;
-        }
-        else
-        {
-          // scratch_buffer [num_units * 4, batch_size] without CIFG
-          s[1] = cellStateOutInfo.GetShape()[1]*4;
-        }
-    }
-
-    if (IsDynamicTensor(outputStateOutInfo) ||
-        IsDynamicTensor(cellStateOutInfo)   ||
-        IsDynamicTensor(outputInfo))
-    {
-        return Fail("%s: Dynamic output tensors are not supported %d %d %d %d", __func__,
-                    IsDynamicTensor(scratchBufferInfo), IsDynamicTensor(outputStateOutInfo),
-                    IsDynamicTensor(cellStateOutInfo), IsDynamicTensor(outputInfo));
-    }
-
-    // Basic parameters
-    LstmInputParamsInfo paramsInfo;
-    paramsInfo.m_InputToForgetWeights     = &(params.m_InputToForgetWeights->GetInfo());
-    paramsInfo.m_InputToCellWeights       = &(params.m_InputToCellWeights->GetInfo());
-    paramsInfo.m_InputToOutputWeights     = &(params.m_InputToOutputWeights->GetInfo());
-    paramsInfo.m_RecurrentToForgetWeights = &(params.m_RecurrentToForgetWeights->GetInfo());
-    paramsInfo.m_RecurrentToCellWeights   = &(params.m_RecurrentToCellWeights->GetInfo());
-    paramsInfo.m_RecurrentToOutputWeights = &(params.m_RecurrentToOutputWeights->GetInfo());
-    paramsInfo.m_ForgetGateBias           = &(params.m_ForgetGateBias->GetInfo());
-    paramsInfo.m_CellBias                 = &(params.m_CellBias->GetInfo());
-    paramsInfo.m_OutputGateBias           = &(params.m_OutputGateBias->GetInfo());
-
-    // Optional parameters
-    if(!desc.m_CifgEnabled)
-    {
-        paramsInfo.m_InputToInputWeights = &(params.m_InputToInputWeights->GetInfo());
-        paramsInfo.m_RecurrentToInputWeights = &(params.m_RecurrentToInputWeights->GetInfo());
-        if (params.m_CellToInputWeights != nullptr)
-        {
-            paramsInfo.m_CellToInputWeights = &(params.m_CellToInputWeights->GetInfo());
-        }
-        paramsInfo.m_InputGateBias = &(params.m_InputGateBias->GetInfo());
-    }
-
-    if(desc.m_ProjectionEnabled)
-    {
-        paramsInfo.m_ProjectionWeights = &(params.m_ProjectionWeights->GetInfo());
-        if (params.m_ProjectionBias != nullptr)
-        {
-            paramsInfo.m_ProjectionBias = &(params.m_ProjectionBias->GetInfo());
-        }
-    }
-
-    if(desc.m_PeepholeEnabled)
-    {
-        paramsInfo.m_CellToForgetWeights = &(params.m_CellToForgetWeights->GetInfo());
-        paramsInfo.m_CellToOutputWeights = &(params.m_CellToOutputWeights->GetInfo());
-    }
-
-    if (desc.m_LayerNormEnabled)
-    {
-        if(!desc.m_CifgEnabled)
-        {
-            paramsInfo.m_InputLayerNormWeights = &(params.m_InputLayerNormWeights->GetInfo());
-        }
-        paramsInfo.m_ForgetLayerNormWeights = &(params.m_ForgetLayerNormWeights->GetInfo());
-        paramsInfo.m_CellLayerNormWeights = &(params.m_CellLayerNormWeights->GetInfo());
-        paramsInfo.m_OutputLayerNormWeights = &(params.m_OutputLayerNormWeights->GetInfo());
-    }
-
-    bool isSupported = false;
-    FORWARD_LAYER_SUPPORT_FUNC(__func__,
-                               IsLstmSupported,
-                               data.m_Backends,
-                               isSupported,
-                               inputInfo,
-                               outputStateInInfo,
-                               cellStateInInfo,
-                               fixSbInfo,
-                               outputStateOutInfo,
-                               cellStateOutInfo,
-                               outputInfo,
-                               desc,
-                               paramsInfo);
-    if (!isSupported)
-    {
-        return false;
-    }
-
-    // Add the layer
-    IConnectableLayer* layer = data.m_Network->AddLstmLayer(desc, params, "Lstm");
-
-    input.Connect(layer->GetInputSlot(0));
-    outputStateIn.Connect(layer->GetInputSlot(1));
-    cellStateIn.Connect(layer->GetInputSlot(2));
-
-
-    return (
-            (IsDynamicTensor(scratchBufferInfo)?
-                SetupAndTrackLayerOutputSlotAndOverrideTensorInfo<hal_1_2::HalPolicy>(
-                    operation, 0, *layer, 0, model, data,fixSbInfo):
-                SetupAndTrackLayerOutputSlot<hal_1_2::HalPolicy>(
-                    operation, 0, *layer, 0, model, data)) &&
-            SetupAndTrackLayerOutputSlot<hal_1_2::HalPolicy>(operation, 1, *layer, 1, model, data) &&
-            SetupAndTrackLayerOutputSlot<hal_1_2::HalPolicy>(operation, 2, *layer, 2, model, data) &&
-            SetupAndTrackLayerOutputSlot<hal_1_2::HalPolicy>(operation, 3, *layer, 3, model, data));
+    return ::ConvertLstm<hal_1_2::HalPolicy>(operation, model, data);
 }
 
 bool HalPolicy::ConvertSqrt(const Operation& operation, const Model& model, ConversionData& data)
@@ -2605,175 +442,8 @@
 
 bool HalPolicy::ConvertTransposeConv2d(const Operation& operation, const Model& model, ConversionData& data)
 {
-    LayerInputHandle input = ConvertToLayerInputHandle<hal_1_2::HalPolicy>(operation, 0, model, data);
-
-    if (!input.IsValid())
-    {
-        return Fail("%s: Operation has invalid inputs", __func__);
-    }
-
-    const Operand* output = GetOutputOperand<hal_1_2::HalPolicy>(operation, 0, model);
-
-    if (!output)
-    {
-        return Fail("%s: Could not read output 0", __func__);
-    }
-
-    const TensorInfo& inputInfo  = input.GetTensorInfo();
-    const TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
-    if (IsDynamicTensor(outputInfo))
-    {
-        return Fail("%s: Dynamic output tensors are not supported", __func__);
-    }
-
-    // ArmNN does not currently support non-fixed weights or bias
-    // Find the shape of the weights tensor. In AndroidNN this will be [ 1, H, W, I * M ]
-    const Operand* weightsOperand = GetInputOperand<hal_1_2::HalPolicy>(operation, 1, model);
-
-    if (weightsOperand == nullptr)
-    {
-        return Fail("%s: Operand is invalid", __func__);
-    }
-    TransposeConvolution2dDescriptor desc;
-    desc.m_DataLayout = DataLayout::NHWC;
-
-    // Determine whether padding is implicit or explicit
-    bool implicitPadding = operation.inputs.size() == 9;
-
-    if (implicitPadding )
-    {
-        desc.m_DataLayout = OptionalDataLayout<hal_1_2::HalPolicy>(operation, 8, model, data);
-    }
-    else
-    {
-        desc.m_DataLayout = OptionalDataLayout<hal_1_2::HalPolicy>(operation, 10, model, data);
-    }
-
-    armnnUtils::DataLayoutIndexed dataLayoutIndexed(desc.m_DataLayout);
-    unsigned int widthIndex = dataLayoutIndexed.GetWidthIndex();
-    unsigned int heightIndex = dataLayoutIndexed.GetHeightIndex();
-
-    const PermutationVector OHWIToOIHW = {0, 2, 3, 1};
-
-    // The shape of the weight is [depth_out, filter_height, filter_width, depth_in].
-    // We have to permute it to OIHW if the data layout is NCHW.
-    const ConstTensorPin weightsPin = (desc.m_DataLayout == DataLayout::NCHW) ?
-            ConvertOperationInputToConstTensorPin<hal_1_2::HalPolicy>(operation, 1, model, data, OHWIToOIHW) :
-            ConvertOperationInputToConstTensorPin<hal_1_2::HalPolicy>(operation, 1, model, data);
-
-    // Bias is a 1D tensor
-    const ConstTensorPin biasPin =
-        ConvertOperationInputToConstTensorPin<hal_1_2::HalPolicy>(operation, 2, model, data);
-
-    if (!weightsPin.IsValid())
-    {
-        return Fail("%s: Operation has invalid weights", __func__);
-    }
-
-    if (!biasPin.IsValid())
-    {
-        return Fail("%s: Operation has invalid biases", __func__);
-    }
-
-    ConstTensor weights = weightsPin.GetConstTensor();
-    ConstTensor bias = biasPin.GetConstTensor();
-    SanitizeBiasQuantizationScale(bias.GetInfo(), weights.GetInfo(), inputInfo);
-
-    ActivationFn activation;
-
-    if (implicitPadding)
-    {
-        int32_t strideX{0};
-        int32_t strideY{0};
-        int32_t padLeft{0};
-        int32_t padRight{0};
-        int32_t padTop{0};
-        int32_t padBottom{0};
-
-        android::nn::PaddingScheme paddingScheme;
-        if (!GetInputPaddingScheme<hal_1_2::HalPolicy>(operation, 4, paddingScheme, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 5, OperandType::INT32, strideX, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 6, OperandType::INT32, strideY, model, data) ||
-            !GetInputActivationFunction<hal_1_2::HalPolicy>(operation, 7, activation, model, data))
-        {
-            return Fail("%s: Operation has invalid inputs (implicit padding)", __func__);
-        }
-
-        const uint32_t kernelX = weights.GetShape()[widthIndex];
-        const uint32_t kernelY = weights.GetShape()[heightIndex];
-        const uint32_t outputX = outputInfo.GetShape()[widthIndex];
-        const uint32_t outputY = outputInfo.GetShape()[heightIndex];
-
-        CalcPaddingTransposeConv(outputX, kernelX, strideX, padLeft, padRight, paddingScheme);
-        CalcPaddingTransposeConv(outputY, kernelY, strideY, padTop, padBottom, paddingScheme);
-
-        // NOTE: The Android NN API allows for negative padding values in TransposeConv2d,
-        // but Arm NN only supports values >= 0
-        if (padLeft < 0 || padRight < 0 || padTop < 0 || padBottom < 0)
-        {
-            return Fail("%s: Negative padding values are not supported", __func__);
-        }
-
-        desc.m_StrideX   = boost::numeric_cast<uint32_t>(strideX);
-        desc.m_StrideY   = boost::numeric_cast<uint32_t>(strideY);
-        desc.m_PadLeft   = boost::numeric_cast<uint32_t>(padLeft);
-        desc.m_PadRight  = boost::numeric_cast<uint32_t>(padRight);
-        desc.m_PadTop    = boost::numeric_cast<uint32_t>(padTop);
-        desc.m_PadBottom = boost::numeric_cast<uint32_t>(padBottom);
-    }
-    else if (operation.inputs.size() == 11)
-    {
-        // explicit padding
-        if (!GetInputScalar<hal_1_2::HalPolicy>(operation, 3, OperandType::INT32, desc.m_PadLeft, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 4, OperandType::INT32, desc.m_PadRight, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 5, OperandType::INT32, desc.m_PadTop, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 6, OperandType::INT32, desc.m_PadBottom, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 7, OperandType::INT32, desc.m_StrideX, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 8, OperandType::INT32, desc.m_StrideY, model, data) ||
-            !GetInputActivationFunction<hal_1_2::HalPolicy>(operation,  9, activation, model, data))
-        {
-            return Fail("%s: Operation has invalid inputs (explicit padding)", __func__);
-        }
-    }
-    else
-    {
-        return Fail("%s: Unsupported number of operation inputs", __func__);
-    }
-
-    desc.m_BiasEnabled = true;
-    Optional<TensorInfo> biases(bias.GetInfo());
-
-    bool isSupported = false;
-    FORWARD_LAYER_SUPPORT_FUNC(__func__,
-                               IsTransposeConvolution2dSupported,
-                               data.m_Backends,
-                               isSupported,
-                               inputInfo,
-                               outputInfo,
-                               desc,
-                               weights.GetInfo(),
-                               biases);
-    if (!isSupported)
-    {
-        return false;
-    }
-
-    IConnectableLayer* startLayer =
-        data.m_Network->AddTransposeConvolution2dLayer(desc, weights, Optional<ConstTensor>(bias));
-    if (!startLayer)
-    {
-        return Fail("%s: AddTransposeConvolution2dLayer failed", __func__);
-    }
-
-    IConnectableLayer* endLayer = ProcessActivation(outputInfo, activation, startLayer, data);
-    if (!endLayer)
-    {
-        return Fail("%s: ProcessActivation failed", __func__);
-    }
-
-    input.Connect(startLayer->GetInputSlot(0));
-
-    return SetupAndTrackLayerOutputSlot<hal_1_2::HalPolicy>(operation, 0, *endLayer, model, data);
+    ALOGV("hal_1_2::HalPolicy::ConvertTransposeConv2d()");
+    return ::ConvertTransposeConv2d<hal_1_2::HalPolicy>(operation, model, data);
 }
 
 } // namespace hal_1_2