Revert "Revert "IVGCVSW-6267 Add support of Unidirectional Sequence Lstm fp32/fp16 to Cl""

This reverts commit 79cef69b1ec58f9ce010461eaaad04c896a4fe15.

Reason for revert: 22.05 release.

Change-Id: Id2ecbf563e8808694fb8605604e8c3c39c29cec2
diff --git a/src/backends/cl/workloads/CMakeLists.txt b/src/backends/cl/workloads/CMakeLists.txt
index 6e7dd36..423a4a6 100644
--- a/src/backends/cl/workloads/CMakeLists.txt
+++ b/src/backends/cl/workloads/CMakeLists.txt
@@ -125,6 +125,8 @@
     ClTransposeConvolution2dWorkload.hpp
     ClTransposeWorkload.cpp
     ClTransposeWorkload.hpp
+    ClUnidirectionalSequenceLstmFloatWorkload.cpp
+    ClUnidirectionalSequenceLstmFloatWorkload.hpp
     ClWorkloads.hpp
     ClWorkloadUtils.hpp
 )
diff --git a/src/backends/cl/workloads/ClUnidirectionalSequenceLstmFloatWorkload.cpp b/src/backends/cl/workloads/ClUnidirectionalSequenceLstmFloatWorkload.cpp
new file mode 100644
index 0000000..cc9aea8
--- /dev/null
+++ b/src/backends/cl/workloads/ClUnidirectionalSequenceLstmFloatWorkload.cpp
@@ -0,0 +1,903 @@
+//
+// Copyright © 2022 Arm Ltd and Contributors. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+
+#include "ClUnidirectionalSequenceLstmFloatWorkload.hpp"
+#include "ClWorkloadUtils.hpp"
+
+#include <aclCommon/ArmComputeUtils.hpp>
+#include <aclCommon/ArmComputeTensorUtils.hpp>
+
+#include <armnn/utility/NumericCast.hpp>
+#include <armnnUtils/Permute.hpp>
+#include <cl/test/ClWorkloadFactoryHelper.hpp>
+#include <backendsCommon/WorkloadUtils.hpp>
+
+#include "cl/ClTensorHandle.hpp"
+
+namespace
+{
+unsigned int CalcAclAxis(unsigned int numDimensions, unsigned int axis)
+{
+    return (numDimensions - axis) - 1;
+}
+} //namespace
+
+namespace armnn
+{
+using namespace armcomputetensorutils;
+
+ClUnidirectionalSequenceLstmFloatWorkload::ClUnidirectionalSequenceLstmFloatWorkload
+    (const UnidirectionalSequenceLstmQueueDescriptor& descriptor,
+     const WorkloadInfo& info,
+     const arm_compute::CLCompileContext& clCompileContext)
+    : FloatWorkload<UnidirectionalSequenceLstmQueueDescriptor>(descriptor, info)
+{
+    // Report Profiling Details
+    ARMNN_REPORT_PROFILING_WORKLOAD_DESC("ClUnidirectionalSequenceLstmFloatWorkload_Construct",
+                                         descriptor.m_Parameters,
+                                         info,
+                                         GetGuid());
+
+    const arm_compute::ICLTensor& input = static_cast<IClTensorHandle*>(m_Data.m_Inputs[0])->GetTensor();
+    arm_compute::ICLTensor& output = static_cast<IClTensorHandle*>(m_Data.m_Outputs[0])->GetTensor();
+
+    TensorInfo inputInfo = info.m_InputTensorInfos[0];
+    TensorInfo outputInfo = info.m_OutputTensorInfos[0];
+
+    arm_compute::DataType armComputeDataType = static_cast<IClTensorHandle*>(m_Data.m_Inputs[0])->GetDataType();
+    armnn::DataType armnnDataType = GetArmNNDataType(armComputeDataType);
+
+    TensorShape inputLayerShape = static_cast<IClTensorHandle*>(m_Data.m_Inputs[0])->GetShape();
+    TensorShape cellStateLayerShape = static_cast<IClTensorHandle*>(m_Data.m_Inputs[2])->GetShape();
+    TensorShape outputLayerShape = static_cast<IClTensorHandle*>(m_Data.m_Outputs[0])->GetShape();
+
+    unsigned int maxTime = m_Data.m_Parameters.m_TimeMajor ? inputLayerShape[0] : inputLayerShape[1];
+    unsigned int batchSize = m_Data.m_Parameters.m_TimeMajor ? inputLayerShape[1] : inputLayerShape[0];
+    unsigned int inputSize = inputLayerShape[2];
+    unsigned int outputSize = outputLayerShape[2];
+    unsigned int numUnits = cellStateLayerShape[1];
+
+    const TensorShape timeMajorShapeInput({maxTime, batchSize, inputSize});
+    const TensorShape timeMajorShapeOutput({maxTime, batchSize, outputSize});
+
+    //
+    // Permute: performed if Unidirectional Sequence Layer inputs/outputs are in batch major format.
+    //
+    if (!m_Data.m_Parameters.m_TimeMajor)
+    {
+        std::unique_ptr<arm_compute::CLPermute> layer(new arm_compute::CLPermute());
+
+        TensorInfo permuteOutInfo = inputInfo;
+        permuteOutInfo.SetShape(timeMajorShapeInput);
+        BuildArmComputeTensor(m_PermuteFirstOut, permuteOutInfo);
+        armcomputetensorutils::InitialiseArmComputeTensorEmpty(m_PermuteFirstOut);
+
+        // Permute to time major format.
+        layer->configure(clCompileContext, &input, &m_PermuteFirstOut, arm_compute::PermutationVector(0U,2U,1U));
+        m_Permute1.reset(layer.release());
+    }
+
+    //
+    // Split and Concat Tensors
+    //
+    for (unsigned int i = 0; i < maxTime; ++i)
+    {
+        arm_compute::CLTensor splitter_out;
+        arm_compute::CLTensor concat_in;
+
+        auto splitterTensorInfo = inputInfo;
+        auto concatTensorInfo = outputInfo;
+        splitterTensorInfo.SetShape({batchSize, inputSize});
+        concatTensorInfo.SetShape({batchSize, outputSize});
+        BuildArmComputeTensor(splitter_out, splitterTensorInfo);
+        BuildArmComputeTensor(concat_in, concatTensorInfo);
+
+        armcomputetensorutils::InitialiseArmComputeTensorEmpty(splitter_out);
+        armcomputetensorutils::InitialiseArmComputeTensorEmpty(concat_in);
+
+        // append to std::vector<arm_compute::CLTensor>
+        m_SplitterOutputsTensors.push_back(std::move(splitter_out));
+        m_ConcatInputsTensors.push_back(std::move(concat_in));
+    }
+
+    for (unsigned int i = 0; i < maxTime; ++i)
+    {
+        // append to std::vector<arm_compute::ICLTensor*>
+        m_SplitterOutputs.push_back(&m_SplitterOutputsTensors[i]);
+        m_ConcatInputs.push_back(&m_ConcatInputsTensors[i]);
+    }
+
+    //
+    // Split
+    //
+    unsigned int numberDimensions = 3;
+    unsigned int dimension = 0; // splitting on 0-dimension (i.e. maxTime dimension)
+
+    if (maxTime != 1) // ACL split does not work with only one element to split.
+    {
+        ViewsDescriptor splitterDesc(maxTime, numberDimensions);
+        unsigned int splitterDimSizes[3] = {1, batchSize, inputSize};
+        for (unsigned int outputIdx = 0u; outputIdx < maxTime; ++outputIdx)
+        {
+            splitterDesc.SetViewOriginCoord(outputIdx, dimension, splitterDimSizes[dimension] * outputIdx);
+            for (unsigned int dimIdx = 0u; dimIdx < numberDimensions; ++dimIdx)
+            {
+                splitterDesc.SetViewSize(outputIdx, dimIdx, splitterDimSizes[dimIdx]);
+            }
+        }
+
+        std::set<unsigned int> splitAxis = ComputeSplitAxis(splitterDesc, timeMajorShapeInput);
+
+        std::unique_ptr<arm_compute::CLSplit> split_layer(new arm_compute::CLSplit());
+        unsigned int aclAxisSplit = CalcAclAxis(splitterDesc.GetNumDimensions(), *splitAxis.begin());
+        if (!m_Data.m_Parameters.m_TimeMajor)
+        {
+            split_layer->configure(&m_PermuteFirstOut, m_SplitterOutputs, aclAxisSplit);
+        }
+        else
+        {
+            split_layer->configure(&input, m_SplitterOutputs, aclAxisSplit);
+        }
+
+        split_layer->prepare();
+        m_Splitter.reset(split_layer.release());
+    }
+
+    //
+    // Lstm
+    //
+    arm_compute::LSTMParams<arm_compute::ICLTensor> lstm_param;
+
+    m_InputToForgetWeightsTensor = std::make_unique<arm_compute::CLTensor>();
+    BuildArmComputeTensor(*m_InputToForgetWeightsTensor, m_Data.m_InputToForgetWeights->GetTensorInfo());
+
+    m_InputToCellWeightsTensor = std::make_unique<arm_compute::CLTensor>();
+    BuildArmComputeTensor(*m_InputToCellWeightsTensor, m_Data.m_InputToCellWeights->GetTensorInfo());
+
+    m_InputToOutputWeightsTensor = std::make_unique<arm_compute::CLTensor>();
+    BuildArmComputeTensor(*m_InputToOutputWeightsTensor, m_Data.m_InputToOutputWeights->GetTensorInfo());
+
+    m_RecurrentToForgetWeightsTensor = std::make_unique<arm_compute::CLTensor>();
+    BuildArmComputeTensor(*m_RecurrentToForgetWeightsTensor, m_Data.m_RecurrentToForgetWeights->GetTensorInfo());
+
+    m_RecurrentToCellWeightsTensor = std::make_unique<arm_compute::CLTensor>();
+    BuildArmComputeTensor(*m_RecurrentToCellWeightsTensor, m_Data.m_RecurrentToCellWeights->GetTensorInfo());
+
+    m_RecurrentToOutputWeightsTensor = std::make_unique<arm_compute::CLTensor>();
+    BuildArmComputeTensor(*m_RecurrentToOutputWeightsTensor, m_Data.m_RecurrentToOutputWeights->GetTensorInfo());
+
+    m_ForgetGateBiasTensor = std::make_unique<arm_compute::CLTensor>();
+    BuildArmComputeTensor(*m_ForgetGateBiasTensor, m_Data.m_ForgetGateBias->GetTensorInfo());
+
+    m_CellBiasTensor = std::make_unique<arm_compute::CLTensor>();
+    BuildArmComputeTensor(*m_CellBiasTensor, m_Data.m_CellBias->GetTensorInfo());
+
+    m_OutputGateBiasTensor = std::make_unique<arm_compute::CLTensor>();
+    BuildArmComputeTensor(*m_OutputGateBiasTensor, m_Data.m_OutputGateBias->GetTensorInfo());
+
+    // for future reference: check the AndroidNN API for the logic here
+    if (!m_Data.m_Parameters.m_CifgEnabled)
+    {
+        m_InputToInputWeightsTensor = std::make_unique<arm_compute::CLTensor>();
+        BuildArmComputeTensor(*m_InputToInputWeightsTensor, m_Data.m_InputToInputWeights->GetTensorInfo());
+
+        m_RecurrentToInputWeightsTensor = std::make_unique<arm_compute::CLTensor>();
+        BuildArmComputeTensor(*m_RecurrentToInputWeightsTensor, m_Data.m_RecurrentToInputWeights->GetTensorInfo());
+
+        m_CellToInputWeightsTensor = std::make_unique<arm_compute::CLTensor>();
+        if (m_Data.m_CellToInputWeights != nullptr)
+        {
+            BuildArmComputeTensor(*m_CellToInputWeightsTensor, m_Data.m_CellToInputWeights->GetTensorInfo());
+        }
+
+        m_InputGateBiasTensor = std::make_unique<arm_compute::CLTensor>();
+        BuildArmComputeTensor(*m_InputGateBiasTensor, m_Data.m_InputGateBias->GetTensorInfo());
+
+        lstm_param.set_cifg_params(m_InputToInputWeightsTensor.get(),
+                                   m_RecurrentToInputWeightsTensor.get(),
+                                   m_Data.m_CellToInputWeights ? m_CellToInputWeightsTensor.get() : nullptr,
+                                   m_InputGateBiasTensor.get());
+    }
+
+    if (m_Data.m_Parameters.m_ProjectionEnabled)
+    {
+        m_ProjectionWeightsTensor = std::make_unique<arm_compute::CLTensor>();
+        BuildArmComputeTensor(*m_ProjectionWeightsTensor, m_Data.m_ProjectionWeights->GetTensorInfo());
+
+        m_ProjectionBiasTensor = std::make_unique<arm_compute::CLTensor>();
+        if (m_Data.m_ProjectionBias != nullptr)
+        {
+            BuildArmComputeTensor(*m_ProjectionBiasTensor, m_Data.m_ProjectionBias->GetTensorInfo());
+        }
+
+        lstm_param.set_projection_params(m_ProjectionWeightsTensor.get(),
+                                         m_Data.m_ProjectionBias ? m_ProjectionBiasTensor.get() : nullptr);
+    }
+
+    if (m_Data.m_Parameters.m_PeepholeEnabled)
+    {
+        m_CellToForgetWeightsTensor = std::make_unique<arm_compute::CLTensor>();
+        BuildArmComputeTensor(*m_CellToForgetWeightsTensor, m_Data.m_CellToForgetWeights->GetTensorInfo());
+
+        m_CellToOutputWeightsTensor = std::make_unique<arm_compute::CLTensor>();
+        BuildArmComputeTensor(*m_CellToOutputWeightsTensor, m_Data.m_CellToOutputWeights->GetTensorInfo());
+
+        lstm_param.set_peephole_params(m_CellToForgetWeightsTensor.get(), m_CellToOutputWeightsTensor.get());
+    }
+
+    if (m_Data.m_Parameters.m_LayerNormEnabled)
+    {
+        m_InputLayerNormWeightsTensor = std::make_unique<arm_compute::CLTensor>();
+        if (!m_Data.m_Parameters.m_CifgEnabled)
+        {
+            BuildArmComputeTensor(*m_InputLayerNormWeightsTensor, m_Data.m_InputLayerNormWeights->GetTensorInfo());
+        }
+
+        m_ForgetLayerNormWeightsTensor = std::make_unique<arm_compute::CLTensor>();
+        BuildArmComputeTensor(*m_ForgetLayerNormWeightsTensor, m_Data.m_ForgetLayerNormWeights->GetTensorInfo());
+
+        m_CellLayerNormWeightsTensor = std::make_unique<arm_compute::CLTensor>();
+        BuildArmComputeTensor(*m_CellLayerNormWeightsTensor, m_Data.m_CellLayerNormWeights->GetTensorInfo());
+
+        m_OutputLayerNormWeightsTensor = std::make_unique<arm_compute::CLTensor>();
+        BuildArmComputeTensor(*m_OutputLayerNormWeightsTensor, m_Data.m_OutputLayerNormWeights->GetTensorInfo());
+
+        auto inputNormWeightTensor = m_Data.m_Parameters.m_CifgEnabled ? nullptr : m_InputLayerNormWeightsTensor.get();
+        lstm_param.set_layer_normalization_params(inputNormWeightTensor,
+                                                  m_ForgetLayerNormWeightsTensor.get(),
+                                                  m_CellLayerNormWeightsTensor.get(),
+                                                  m_OutputLayerNormWeightsTensor.get());
+    }
+
+    arm_compute::ICLTensor& output_state_in = static_cast<IClTensorHandle*>(m_Data.m_Inputs[1])->GetTensor();
+    arm_compute::ICLTensor& cell_state_in   = static_cast<IClTensorHandle*>(m_Data.m_Inputs[2])->GetTensor();
+
+    arm_compute::ICLTensor& output_state_out = static_cast<IClTensorHandle*>(m_Data.m_Inputs[1])->GetTensor();
+    arm_compute::ICLTensor& cell_state_out = static_cast<IClTensorHandle*>(m_Data.m_Inputs[2])->GetTensor();
+
+    m_ScratchBuffer = std::make_unique<arm_compute::CLTensor>();
+    if (m_Data.m_Parameters.m_CifgEnabled)
+    {
+        // scratch_buffer [num_units * 3, batch_size] with CIFG
+        BuildArmComputeTensor(*m_ScratchBuffer, TensorInfo({batchSize, numUnits * 3}, armnnDataType));
+    }
+    else
+    {
+        // scratch_buffer [num_units * 4, batch_size] without CIFG
+        BuildArmComputeTensor(*m_ScratchBuffer, TensorInfo({batchSize, numUnits * 4}, armnnDataType));
+    }
+
+    // Need to be set at negative threshold to be compatible for ACL
+    float cell_threshold       = m_Data.m_Parameters.m_ClippingThresCell;
+    float projection_threshold = m_Data.m_Parameters.m_ClippingThresProj;
+
+    // For preparing the object for the class ActivationLayerInfo, consider 5 situations
+    arm_compute::ActivationLayerInfo activationLayerInfo =
+        ConvertLstmActivationFuncToAclLayerInfo(m_Data.m_Parameters.m_ActivationFunc);
+
+    for (unsigned int i = 0; i != maxTime; ++i)
+    {
+        // Set LSTM input and output ITensors depending on:
+        // input format (timeMajor) & number of LSTM batches (maxTime).
+        arm_compute::ICLTensor* outputLSTM;
+        arm_compute::ICLTensor* inputLSTM;
+        // If there is only one LSTM time major batch, we will not concat OR permute.
+        // Set input of LSTM to be first input ITensor.
+        // Set output of LSTM to be final output ITensor.
+        // LSTM input/output cannot be > 2 dimensions so need to resize its TensorInfo.
+        if (maxTime == 1 && m_Data.m_Parameters.m_TimeMajor)
+        {
+            TensorShape inputShape = GetTensorShape((&input)->info()->tensor_shape(), 1U);
+            TensorShape outputShape = GetTensorShape((&output)->info()->tensor_shape(), 1U);
+            TensorShape inputShapeShrink({inputShape[1], inputShape[2]});
+            TensorShape outputShapeShrink({outputShape[1], outputShape[2]});
+            auto acl_input_shape_shrink = BuildArmComputeTensorShape(inputShapeShrink);
+            auto acl_output_shape_shrink = BuildArmComputeTensorShape(outputShapeShrink);
+            (&input)->info()->set_tensor_shape(acl_input_shape_shrink);
+            inputLSTM = const_cast<arm_compute::ICLTensor*>(&input);
+            (&output)->info()->set_tensor_shape(acl_output_shape_shrink);
+            outputLSTM = &output;
+        }
+            // If there is only one LSTM batch major batch, we will not concat, only permute.
+            // Set input of LSTM to be output of initial permute.
+            // Set output of LSTM to be first element of m_ConcatInputs & use that value later in permute.
+            // LSTM output cannot be > 2 dimensions so need to resize its TensorInfo.
+        else if (maxTime == 1 && !m_Data.m_Parameters.m_TimeMajor)
+        {
+            TensorShape inputShape = GetTensorShape(m_PermuteFirstOut.info()->tensor_shape(), 1U);
+            TensorShape inputShapeShrink({inputShape[1], inputShape[2]});
+            auto acl_input_shape_shrink = BuildArmComputeTensorShape(inputShapeShrink);
+            m_PermuteFirstOut.info()->set_tensor_shape(acl_input_shape_shrink);
+            inputLSTM = &m_PermuteFirstOut;
+            outputLSTM = const_cast<arm_compute::ICLTensor*>(m_ConcatInputs[i]);
+        }
+            // Batch major AND/OR 2+ LSTM batches so will use concat AND/OR permute later on.
+        else
+        {
+            inputLSTM = m_SplitterOutputs[i];
+            outputLSTM = const_cast<arm_compute::ICLTensor*>(m_ConcatInputs[i]);
+        }
+
+        std::unique_ptr<arm_compute::CLLSTMLayer> lstm_layer(new arm_compute::CLLSTMLayer());
+        lstm_layer->configure(clCompileContext,
+                              inputLSTM,
+                              m_InputToForgetWeightsTensor.get(),
+                              m_InputToCellWeightsTensor.get(),
+                              m_InputToOutputWeightsTensor.get(),
+                              m_RecurrentToForgetWeightsTensor.get(),
+                              m_RecurrentToCellWeightsTensor.get(),
+                              m_RecurrentToOutputWeightsTensor.get(),
+                              m_ForgetGateBiasTensor.get(),
+                              m_CellBiasTensor.get(),
+                              m_OutputGateBiasTensor.get(),
+                              &output_state_in,
+                              &cell_state_in,
+                              m_ScratchBuffer.get(),
+                              &output_state_out,
+                              &cell_state_out,
+                              outputLSTM,
+                              lstm_param,
+                              activationLayerInfo,
+                              cell_threshold,
+                              projection_threshold);
+
+        m_Layers.emplace_back(std::move(lstm_layer));
+    }
+
+    armcomputetensorutils::InitialiseArmComputeTensorEmpty(*m_ScratchBuffer);
+
+    InitializeArmComputeClTensorData(*m_InputToForgetWeightsTensor, m_Data.m_InputToForgetWeights);
+    InitializeArmComputeClTensorData(*m_InputToCellWeightsTensor, m_Data.m_InputToCellWeights);
+    InitializeArmComputeClTensorData(*m_InputToOutputWeightsTensor, m_Data.m_InputToOutputWeights);
+    InitializeArmComputeClTensorData(*m_RecurrentToForgetWeightsTensor, m_Data.m_RecurrentToForgetWeights);
+    InitializeArmComputeClTensorData(*m_RecurrentToCellWeightsTensor, m_Data.m_RecurrentToCellWeights);
+    InitializeArmComputeClTensorData(*m_RecurrentToOutputWeightsTensor, m_Data.m_RecurrentToOutputWeights);
+    InitializeArmComputeClTensorData(*m_ForgetGateBiasTensor, m_Data.m_ForgetGateBias);
+    InitializeArmComputeClTensorData(*m_CellBiasTensor, m_Data.m_CellBias);
+    InitializeArmComputeClTensorData(*m_OutputGateBiasTensor, m_Data.m_OutputGateBias);
+
+    if (!m_Data.m_Parameters.m_CifgEnabled)
+    {
+        InitializeArmComputeClTensorData(*m_InputToInputWeightsTensor, m_Data.m_InputToInputWeights);
+        InitializeArmComputeClTensorData(*m_RecurrentToInputWeightsTensor, m_Data.m_RecurrentToInputWeights);
+        if (m_Data.m_CellToInputWeights != nullptr)
+        {
+            InitializeArmComputeClTensorData(*m_CellToInputWeightsTensor, m_Data.m_CellToInputWeights);
+        }
+        InitializeArmComputeClTensorData(*m_InputGateBiasTensor, m_Data.m_InputGateBias);
+    }
+
+    if (m_Data.m_Parameters.m_ProjectionEnabled)
+    {
+        InitializeArmComputeClTensorData(*m_ProjectionWeightsTensor, m_Data.m_ProjectionWeights);
+        if (m_Data.m_ProjectionBias != nullptr)
+        {
+            InitializeArmComputeClTensorData(*m_ProjectionBiasTensor, m_Data.m_ProjectionBias);
+        }
+    }
+
+    if (m_Data.m_Parameters.m_PeepholeEnabled)
+    {
+        InitializeArmComputeClTensorData(*m_CellToForgetWeightsTensor, m_Data.m_CellToForgetWeights);
+        InitializeArmComputeClTensorData(*m_CellToOutputWeightsTensor, m_Data.m_CellToOutputWeights);
+    }
+
+    if (m_Data.m_Parameters.m_LayerNormEnabled)
+    {
+        if (!m_Data.m_Parameters.m_CifgEnabled)
+        {
+            InitializeArmComputeClTensorData(*m_InputLayerNormWeightsTensor, m_Data.m_InputLayerNormWeights);
+        }
+        InitializeArmComputeClTensorData(*m_ForgetLayerNormWeightsTensor, m_Data.m_ForgetLayerNormWeights);
+        InitializeArmComputeClTensorData(*m_CellLayerNormWeightsTensor, m_Data.m_CellLayerNormWeights);
+        InitializeArmComputeClTensorData(*m_OutputLayerNormWeightsTensor, m_Data.m_OutputLayerNormWeights);
+    }
+
+    // Force Compute Library to perform the necessary copying and reshaping.
+    // After which delete all the input tensors that will no longer be needed.
+    for (uint32_t i = 0; i < m_Layers.size(); ++i)
+    {
+        m_Layers[i]->prepare();
+    }
+
+    //
+    // Concat
+    //
+
+    // Expand dimensions of LSTM outputs adding one empty dimension to fit concatenate inputs.
+    TensorShape shape = GetTensorShape(m_ConcatInputs[0]->info()->tensor_shape(), 1U);
+    TensorShape shapeExpandTimeMajor({1, shape[0], shape[1]});
+    TensorShape shapeExpandBatchMajor({shape[0], 1, shape[1]});
+
+    if (maxTime != 1) // ACL concat does not work with only one element to concatenate.
+    {
+        for (unsigned int i = 0; i < maxTime; ++i)
+        {
+            m_ConcatInputs[i]->info()->set_tensor_shape(BuildArmComputeTensorShape(shapeExpandTimeMajor));
+        }
+
+        ConcatDescriptor  concatDescriptor(maxTime, numberDimensions);  // maxTime = num inputs (aka. number of views).
+        for (unsigned int inputIdx = 0u; inputIdx < maxTime; ++inputIdx)
+        {
+            concatDescriptor.SetViewOriginCoord(inputIdx, dimension, inputIdx);
+            concatDescriptor.SetConcatAxis(dimension);
+        }
+
+        m_Concat.reset(new arm_compute::CLConcatenateLayer());
+        unsigned int aclAxisConcat = CalcAclAxis(concatDescriptor.GetNumDimensions(),
+                                                 concatDescriptor.GetConcatAxis());
+        if (!m_Data.m_Parameters.m_TimeMajor)
+        {
+            TensorInfo concatOuputTensorInfo = outputInfo;
+            concatOuputTensorInfo.SetShape(timeMajorShapeOutput);
+            BuildArmComputeTensor(concat_out, concatOuputTensorInfo);
+            armcomputetensorutils::InitialiseArmComputeTensorEmpty(concat_out);
+
+            m_Concat->configure(m_ConcatInputs, &concat_out, aclAxisConcat);
+        }
+        else
+        {
+            m_Concat->configure(m_ConcatInputs, &output, aclAxisConcat);
+        }
+
+        m_Concat->prepare();
+    }
+    // If only one LSTM batch, we do not concat and/or permute.
+    // Must ensure final output info is expanded to correct batch major dimensions.
+    else
+    {
+        if (!m_Data.m_Parameters.m_TimeMajor)
+        {
+            (&output)->info()->set_tensor_shape(BuildArmComputeTensorShape(shapeExpandBatchMajor));
+        }
+        else
+        {
+            (&output)->info()->set_tensor_shape(BuildArmComputeTensorShape(shapeExpandTimeMajor));
+        }
+    }
+
+    //
+    // Permute: only done if input/output are in batch major format.
+    //
+    if (!m_Data.m_Parameters.m_TimeMajor)
+    {
+        // Output now time major. Permute output back to batch major.
+        std::unique_ptr<arm_compute::CLPermute> layer(new arm_compute::CLPermute());
+        if (maxTime != 1)
+        {
+            layer->configure(clCompileContext, &concat_out, &output, arm_compute::PermutationVector(0U, 2U, 1U));
+        }
+        else
+        {
+            layer->configure(clCompileContext, m_ConcatInputs[0], &output, arm_compute::PermutationVector(0U, 2U, 1U));
+        }
+        m_Permute2.reset(layer.release());
+    }
+
+    FreeUnusedTensors();
+}
+
+void ClUnidirectionalSequenceLstmFloatWorkload::Execute() const
+{
+    ARMNN_SCOPED_PROFILING_EVENT_CL_GUID("ClUnidirectionalSequenceLstmFloatWorkload_Execute", GetGuid());
+    if (m_Permute1)
+    {
+        m_Permute1->run();
+    }
+    if (m_Splitter)
+    {
+        m_Splitter->run();
+    }
+    for (uint32_t i = 0; i < m_Layers.size(); ++i)
+    {
+        m_Layers[i]->run();
+    }
+    if (m_Concat)
+    {
+        m_Concat->run();
+    }
+    if (m_Permute2)
+    {
+        m_Permute2->run();
+    }
+}
+
+arm_compute::Status
+ClUnidirectionalSequenceLstmFloatWorkloadValidate(const TensorInfo& input,
+                                                  const TensorInfo& outputStateIn,
+                                                  const TensorInfo& cellStateIn,
+                                                  const TensorInfo& output,
+                                                  const Optional<TensorInfo>& hiddenStateOutput,
+                                                  const Optional<TensorInfo>& cellStateOutput,
+                                                  const UnidirectionalSequenceLstmDescriptor& descriptor,
+                                                  const LstmInputParamsInfo& paramsInfo)
+{
+    IgnoreUnused(hiddenStateOutput, cellStateOutput);
+
+    TensorShape inputLayerShape  = input.GetShape();
+    TensorShape outputLayerShape = outputStateIn.GetShape();
+
+    unsigned int maxTime    = descriptor.m_TimeMajor?inputLayerShape[0]:inputLayerShape[1];
+    unsigned int batchSize  = descriptor.m_TimeMajor?inputLayerShape[1]:inputLayerShape[0];
+    unsigned int inputSize  = inputLayerShape[2];
+    unsigned int outputSize = outputLayerShape[2];
+
+    const TensorShape timeMajorShapeInput({maxTime, batchSize, inputSize});
+    const TensorShape timeMajorShapeOutput({maxTime, batchSize, outputSize});
+
+    arm_compute::Status statusPermute1 = arm_compute::Status(arm_compute::ErrorCode::OK,
+                                                             "Permute1 status");
+    arm_compute::Status statusSplit    = arm_compute::Status(arm_compute::ErrorCode::OK,
+                                                             "Split status");
+    arm_compute::Status statusLSTM     = arm_compute::Status(arm_compute::ErrorCode::OK,
+                                                             "LSTM status");
+    arm_compute::Status statusConcat   = arm_compute::Status(arm_compute::ErrorCode::OK,
+                                                             "Concat status");
+    arm_compute::Status statusPermute2 = arm_compute::Status(arm_compute::ErrorCode::OK,
+                                                             "Permute2 status");
+
+    const arm_compute::TensorInfo aclInputInfo  = armcomputetensorutils::BuildArmComputeTensorInfo(input);
+    const arm_compute::TensorInfo aclOutputInfo = armcomputetensorutils::BuildArmComputeTensorInfo(output);
+
+    //
+    // Permute validate
+    //
+    TensorInfo              permuteOutInfo    = TensorInfo(input);
+    arm_compute::TensorInfo aclPermuteOutInfo = armcomputetensorutils::BuildArmComputeTensorInfo(permuteOutInfo);
+    if (!descriptor.m_TimeMajor)
+    {
+        statusPermute1 = arm_compute::CLPermute::validate(&aclInputInfo,
+                                                          &aclPermuteOutInfo,
+                                                          arm_compute::PermutationVector(0U, 2U, 1U));
+    }
+
+    //
+    // Split and Concat Tensors validate
+    //
+    std::vector<arm_compute::TensorInfo>         splitterOutputsTensorInfos;
+    std::vector<arm_compute::TensorInfo>         concatInputsTensorInfos;
+    std::vector<arm_compute::ITensorInfo*>       splitterOutputsTensorInfosPtr;
+    std::vector<const arm_compute::ITensorInfo*> concatInputsTensorInfosPtr;
+    splitterOutputsTensorInfos.reserve(maxTime);
+    concatInputsTensorInfos.reserve(maxTime);
+    for (unsigned int i = 0; i < maxTime; ++i)
+    {
+        arm_compute::TensorInfo splitter_out;
+        arm_compute::TensorInfo concat_in;
+
+        auto splitterTensorInfo = TensorInfo(input);
+        auto concatTensorInfo   = TensorInfo(output);
+        splitterTensorInfo.SetShape({batchSize, inputSize});
+        concatTensorInfo.SetShape({batchSize, outputSize});
+
+        arm_compute::TensorInfo aclSplitterTensorInfo
+                                    = armcomputetensorutils::BuildArmComputeTensorInfo(splitterTensorInfo);
+        arm_compute::TensorInfo aclConcatTensorInfo
+                                    = armcomputetensorutils::BuildArmComputeTensorInfo(concatTensorInfo);
+
+        splitterOutputsTensorInfos.emplace_back(aclSplitterTensorInfo);
+        concatInputsTensorInfos.emplace_back(aclConcatTensorInfo);
+        splitterOutputsTensorInfosPtr.emplace_back(&splitterOutputsTensorInfos[i]);
+        concatInputsTensorInfosPtr.emplace_back(&concatInputsTensorInfos[i]);
+    }
+
+    //
+    // Split validate
+    //
+    unsigned int numberDimensions = 3;
+    unsigned int dimension        = 0; // splitting on 0-dimension (i.e. maxTime dimension)
+    unsigned int aclAxisSplit     = CalcAclAxis(numberDimensions, dimension);
+
+    if (maxTime != 1) // ACL split does not work with only one element to split.
+    {
+        if (!descriptor.m_TimeMajor)
+        {
+            statusSplit = arm_compute::CLSplit::validate(&aclPermuteOutInfo,
+                                                         splitterOutputsTensorInfosPtr,
+                                                         aclAxisSplit);
+        }
+        else
+        {
+            statusSplit = arm_compute::CLSplit::validate(&aclInputInfo, splitterOutputsTensorInfosPtr, aclAxisSplit);
+        }
+    }
+
+    //
+    // LSTM validate
+    //
+
+    arm_compute::LSTMParams<arm_compute::ITensorInfo> lstm_params_info;
+
+    const TensorInfo& scratchBuffer = TensorInfo(cellStateIn.GetShape(), input.GetDataType());
+    const TensorInfo& outputStateOut = TensorInfo(outputStateIn.GetShape(), input.GetDataType());
+    const TensorInfo& cellStateOut = TensorInfo(cellStateIn.GetShape(), input.GetDataType());
+
+    // The inputs and outputs
+    const arm_compute::TensorInfo aclOutputStateInInfo = BuildArmComputeTensorInfo(outputStateIn);
+    const arm_compute::TensorInfo aclCellStateInInfo = BuildArmComputeTensorInfo(cellStateIn);
+    const arm_compute::TensorInfo aclScratchBufferInfo = BuildArmComputeTensorInfo(scratchBuffer);
+    const arm_compute::TensorInfo aclOutputStateOutInfo = BuildArmComputeTensorInfo(outputStateOut);
+    const arm_compute::TensorInfo aclCellStateOutInfo = BuildArmComputeTensorInfo(cellStateOut);
+
+    // Basic parameters
+    const arm_compute::TensorInfo aclInputToForgetWeightsInfo
+                                      = BuildArmComputeTensorInfo(paramsInfo.GetInputToForgetWeights());
+    const arm_compute::TensorInfo aclInputToCellWeightsInfo
+                                      = BuildArmComputeTensorInfo(paramsInfo.GetInputToCellWeights());
+    const arm_compute::TensorInfo aclInputToOutputWeightsInfo
+                                      = BuildArmComputeTensorInfo(paramsInfo.GetInputToOutputWeights());
+    const arm_compute::TensorInfo aclRecurrentToForgetWeightsInfo
+                                      = BuildArmComputeTensorInfo(paramsInfo.GetRecurrentToForgetWeights());
+    const arm_compute::TensorInfo aclRecurrentToCellWeightsInfo
+                                      = BuildArmComputeTensorInfo(paramsInfo.GetRecurrentToCellWeights());
+    const arm_compute::TensorInfo aclRecurrentToOutputWeightsInfo
+                                      = BuildArmComputeTensorInfo(paramsInfo.GetRecurrentToOutputWeights());
+    const arm_compute::TensorInfo aclForgetGateBiasInfo
+                                      = BuildArmComputeTensorInfo(paramsInfo.GetForgetGateBias());
+    const arm_compute::TensorInfo aclCellBiasInfo
+                                      = BuildArmComputeTensorInfo(paramsInfo.GetCellBias());
+    const arm_compute::TensorInfo aclOutputGateBiasInfo
+                                      = BuildArmComputeTensorInfo(paramsInfo.GetOutputGateBias());
+
+    arm_compute::TensorInfo aclInputToInputWeightsInfo;
+    arm_compute::TensorInfo aclRecurrentToInputWeightsInfo;
+    arm_compute::TensorInfo aclCellToInputWeightsInfo;
+    arm_compute::TensorInfo aclInputGateBiasInfo;
+    arm_compute::TensorInfo aclProjectionWeightsInfo;
+    arm_compute::TensorInfo aclProjectionBiasInfo;
+    arm_compute::TensorInfo aclCellToForgetWeightsInfo;
+    arm_compute::TensorInfo aclCellToOutputWeightsInfo;
+
+    arm_compute::TensorInfo aclInputLayerNormWeightsInfo;
+    arm_compute::TensorInfo aclForgetLayerNormWeightsInfo;
+    arm_compute::TensorInfo aclCellLayerNormWeightsInfo;
+    arm_compute::TensorInfo aclOutputLayerNormWeightsInfo;
+
+
+    if (!descriptor.m_CifgEnabled)
+    {
+        if (descriptor.m_PeepholeEnabled)
+        {
+            aclCellToInputWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetCellToInputWeights());
+        }
+        aclInputToInputWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetInputToInputWeights());
+        aclRecurrentToInputWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetRecurrentToInputWeights());
+        aclInputGateBiasInfo = BuildArmComputeTensorInfo(paramsInfo.GetInputGateBias());
+
+        lstm_params_info.set_cifg_params(&aclInputToInputWeightsInfo,
+                                         &aclRecurrentToInputWeightsInfo,
+                                         descriptor.m_PeepholeEnabled ? &aclCellToInputWeightsInfo : nullptr,
+                                         &aclInputGateBiasInfo);
+    }
+
+    if (descriptor.m_ProjectionEnabled)
+    {
+        if (paramsInfo.m_ProjectionBias != nullptr)
+        {
+            aclProjectionBiasInfo = BuildArmComputeTensorInfo(paramsInfo.GetProjectionBias());
+        }
+        aclProjectionWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetProjectionWeights());
+
+        lstm_params_info.set_projection_params(&aclProjectionWeightsInfo,
+                                               paramsInfo.m_ProjectionBias ? &aclProjectionBiasInfo : nullptr);
+    }
+
+    if (descriptor.m_PeepholeEnabled)
+    {
+        aclCellToForgetWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetCellToForgetWeights());
+        aclCellToOutputWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetCellToOutputWeights());
+
+        lstm_params_info.set_peephole_params(&aclCellToForgetWeightsInfo, &aclCellToOutputWeightsInfo);
+    }
+
+    if (descriptor.m_LayerNormEnabled)
+    {
+        if (!descriptor.m_CifgEnabled)
+        {
+            aclInputLayerNormWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetInputLayerNormWeights());
+        }
+        aclForgetLayerNormWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetForgetLayerNormWeights());
+        aclCellLayerNormWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetCellLayerNormWeights());
+        aclOutputLayerNormWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetOutputLayerNormWeights());
+
+        lstm_params_info.set_layer_normalization_params(descriptor.m_CifgEnabled ? nullptr :
+                                                        &aclInputLayerNormWeightsInfo,
+                                                        &aclForgetLayerNormWeightsInfo,
+                                                        &aclCellLayerNormWeightsInfo,
+                                                        &aclOutputLayerNormWeightsInfo);
+    }
+
+    // Need to be set at negative threshold to be compatible for ACL
+    float cell_threshold = descriptor.m_ClippingThresCell;
+    float projection_threshold = descriptor.m_ClippingThresProj;
+
+    arm_compute::ActivationLayerInfo activationLayerInfo =
+        ConvertLstmActivationFuncToAclLayerInfo(descriptor.m_ActivationFunc);
+
+    for (unsigned int i = 0; i != maxTime; ++i)
+    {
+
+        // Set LSTM input and output ITensors depending on:
+        // input format (timeMajor) & number of LSTM batches (maxTime).
+        arm_compute::ITensorInfo* outputLSTM;
+        arm_compute::ITensorInfo* inputLSTM;
+        // If there is only one LSTM time major batch, we will not concat OR permute.
+        // Set input of LSTM to be first input ITensor.
+        // Set output of LSTM to be final output ITensor.
+        // LSTM input/output cannot be > 2 dimensions so need to resize its TensorInfo.
+        if (maxTime == 1 && !descriptor.m_TimeMajor)
+        {
+            TensorShape inputShape = GetTensorShape(aclInputInfo.tensor_shape(), 1U);
+            TensorShape outputShape = GetTensorShape(aclOutputInfo.tensor_shape(), 1U);
+            TensorShape inputShapeShrink({inputShape[1], inputShape[2]});
+            TensorShape outputShapeShrink({outputShape[1], outputShape[2]});
+            auto acl_input_shape_shrink = BuildArmComputeTensorShape(inputShapeShrink);
+            auto acl_output_shape_shrink = BuildArmComputeTensorShape(outputShapeShrink);
+            const_cast<arm_compute::TensorInfo*>(&aclInputInfo)->set_tensor_shape(acl_input_shape_shrink);
+            inputLSTM = const_cast<arm_compute::TensorInfo*>(&aclInputInfo);
+            const_cast<arm_compute::TensorInfo*>(&aclOutputInfo)->set_tensor_shape(acl_output_shape_shrink);
+            outputLSTM = const_cast<arm_compute::TensorInfo*>(&aclOutputInfo);
+        }
+            // If there is only one LSTM batch major batch, we will not concat, only permute.
+            // Set input of LSTM to be output of initial permute.
+            // Set output of LSTM to be first element of m_ConcatInputs & use that value later in permute.
+            // LSTM output cannot be > 2 dimensions so need to resize its TensorInfo.
+        else if (maxTime == 1 && !descriptor.m_TimeMajor)
+        {
+            TensorShape inputShape = GetTensorShape(aclPermuteOutInfo.tensor_shape(), 1U);
+            TensorShape inputShapeShrink({inputShape[1], inputShape[2]});
+            auto acl_input_shape_shrink = BuildArmComputeTensorShape(inputShapeShrink);
+            aclPermuteOutInfo.set_tensor_shape(acl_input_shape_shrink);
+            inputLSTM = &aclPermuteOutInfo;
+            outputLSTM = const_cast<arm_compute::ITensorInfo*>(concatInputsTensorInfosPtr[i]);
+        }
+            // Batch major AND/OR 2+ LSTM batches so will use concat AND/OR permute later on.
+        else
+        {
+            inputLSTM = splitterOutputsTensorInfosPtr[i];
+            outputLSTM = const_cast<arm_compute::ITensorInfo*>(concatInputsTensorInfosPtr[i]);
+        }
+
+        statusLSTM = arm_compute::CLLSTMLayer::validate(inputLSTM,
+                                                        &aclInputToForgetWeightsInfo,
+                                                        &aclInputToCellWeightsInfo,
+                                                        &aclInputToOutputWeightsInfo,
+                                                        &aclRecurrentToForgetWeightsInfo,
+                                                        &aclRecurrentToCellWeightsInfo,
+                                                        &aclRecurrentToOutputWeightsInfo,
+                                                        &aclForgetGateBiasInfo,
+                                                        &aclCellBiasInfo,
+                                                        &aclOutputGateBiasInfo,
+                                                        &aclOutputStateInInfo,
+                                                        &aclCellStateInInfo,
+                                                        &aclScratchBufferInfo,
+                                                        &aclOutputStateOutInfo,
+                                                        &aclCellStateOutInfo,
+                                                        outputLSTM,
+                                                        lstm_params_info,
+                                                        activationLayerInfo,
+                                                        cell_threshold,
+                                                        projection_threshold);
+
+        if (statusLSTM.error_code() != arm_compute::ErrorCode::OK)
+        {
+            break;
+        }
+    }
+
+    //
+    // Concat validate
+    //
+
+    // Expand dimensions of LSTM outputs adding one empty dimension to fit concatenate inputs.
+    TensorShape shape = GetTensorShape(concatInputsTensorInfosPtr[0]->tensor_shape(), 1U);
+    TensorShape shapeExpandTimeMajor({1, shape[0], shape[1]});
+    TensorShape shapeExpandBatchMajor({shape[0], 1, shape[1]});
+
+    TensorInfo concatOuputTensorInfo = TensorInfo(output);
+    concatOuputTensorInfo.SetShape(timeMajorShapeOutput);
+    arm_compute::TensorInfo aclConcatOuputTensorInfo= BuildArmComputeTensorInfo(concatOuputTensorInfo);
+
+    if (maxTime != 1) // ACL concat does not work with only one element to concatenate.
+    {
+        for (unsigned int i = 0; i < maxTime; ++i)
+        {
+            auto acl_shape_expand = BuildArmComputeTensorShape(shapeExpandTimeMajor);
+            concatInputsTensorInfos[i].set_tensor_shape(acl_shape_expand);
+        }
+
+        unsigned int aclAxisConcat = CalcAclAxis(numberDimensions, dimension);
+        if (!descriptor.m_TimeMajor)
+        {
+            statusConcat = arm_compute::CLConcatenateLayer::validate(concatInputsTensorInfosPtr,
+                                                                     &aclConcatOuputTensorInfo,
+                                                                     aclAxisConcat);
+        }
+        else
+        {
+            statusConcat = arm_compute::CLConcatenateLayer::validate(concatInputsTensorInfosPtr,
+                                                                     &aclOutputInfo,
+                                                                     aclAxisConcat);
+        }
+    }
+    // If only one LSTM batch, we do not concat and/or permute.
+    // Must ensure final output info is expanded to correct batch major dimensions.
+    else
+    {
+        if (!descriptor.m_TimeMajor)
+        {
+            const_cast<arm_compute::TensorInfo*>(&aclInputInfo)->set_tensor_shape(
+                BuildArmComputeTensorShape(shapeExpandBatchMajor));
+        }
+        else
+        {
+            const_cast<arm_compute::TensorInfo*>(&aclInputInfo)->set_tensor_shape(
+                BuildArmComputeTensorShape(shapeExpandTimeMajor));
+        }
+    }
+    //
+    // Permute validate
+    //
+    if (!descriptor.m_TimeMajor)
+    {
+        // Output now time major. Permute output back to batch major.
+        if (maxTime != 1)
+        {
+            statusPermute2 = arm_compute::CLPermute::validate(&aclConcatOuputTensorInfo,
+                                                              &aclOutputInfo,
+                                                              arm_compute::PermutationVector(0U, 2U, 1U));
+        }
+        else
+        {
+            statusPermute2 = arm_compute::CLPermute::validate(concatInputsTensorInfosPtr[0],
+                                                              &aclOutputInfo,
+                                                              arm_compute::PermutationVector(0U, 2U, 1U));
+        }
+    }
+
+    auto okCode = arm_compute::ErrorCode::OK;
+    if (statusPermute1.error_code() == okCode &&
+        statusSplit.error_code()    == okCode &&
+        statusLSTM .error_code()    == okCode &&
+        statusConcat.error_code()   == okCode &&
+        statusPermute2.error_code() == okCode)
+    {
+        return arm_compute::Status(arm_compute::ErrorCode::OK,
+                                   "All Unidirectional Sequence LSTM layer validate status OK.");
+    }
+    else
+    {
+        return arm_compute::Status(arm_compute::ErrorCode::RUNTIME_ERROR,
+                                   "Unidirectional Sequence LSTM layer validate status failed.");
+    }
+}
+
+void ClUnidirectionalSequenceLstmFloatWorkload::FreeUnusedTensors()
+{
+    FreeTensorIfUnused(m_InputToInputWeightsTensor);
+    FreeTensorIfUnused(m_InputToForgetWeightsTensor);
+    FreeTensorIfUnused(m_InputToCellWeightsTensor);
+    FreeTensorIfUnused(m_InputToOutputWeightsTensor);
+    FreeTensorIfUnused(m_RecurrentToInputWeightsTensor);
+    FreeTensorIfUnused(m_RecurrentToForgetWeightsTensor);
+    FreeTensorIfUnused(m_RecurrentToCellWeightsTensor);
+    FreeTensorIfUnused(m_RecurrentToOutputWeightsTensor);
+    FreeTensorIfUnused(m_CellToInputWeightsTensor);
+    FreeTensorIfUnused(m_CellToForgetWeightsTensor);
+    FreeTensorIfUnused(m_CellToOutputWeightsTensor);
+    FreeTensorIfUnused(m_InputGateBiasTensor);
+    FreeTensorIfUnused(m_ForgetGateBiasTensor);
+    FreeTensorIfUnused(m_CellBiasTensor);
+    FreeTensorIfUnused(m_OutputGateBiasTensor);
+    FreeTensorIfUnused(m_ProjectionWeightsTensor);
+    FreeTensorIfUnused(m_ProjectionBiasTensor);
+    FreeTensorIfUnused(m_InputLayerNormWeightsTensor);
+    FreeTensorIfUnused(m_ForgetLayerNormWeightsTensor);
+    FreeTensorIfUnused(m_CellLayerNormWeightsTensor);
+    FreeTensorIfUnused(m_OutputLayerNormWeightsTensor);
+    FreeTensorIfUnused(m_ScratchBuffer);
+}
+
+} //namespace armnn
diff --git a/src/backends/cl/workloads/ClUnidirectionalSequenceLstmFloatWorkload.hpp b/src/backends/cl/workloads/ClUnidirectionalSequenceLstmFloatWorkload.hpp
new file mode 100644
index 0000000..f50e0a9
--- /dev/null
+++ b/src/backends/cl/workloads/ClUnidirectionalSequenceLstmFloatWorkload.hpp
@@ -0,0 +1,96 @@
+//
+// Copyright © 2022 Arm Ltd and Contributors. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+
+#pragma once
+
+#include <armnn/Descriptors.hpp>
+#include <armnn/LstmParams.hpp>
+#include <armnn/backends/Workload.hpp>
+#include <armnn/backends/WorkloadData.hpp>
+
+#include <arm_compute/graph/Tensor.h>
+#include <arm_compute/runtime/CL/functions/CLLSTMLayer.h>
+#include <arm_compute/runtime/CL/functions/CLPermute.h>
+#include <arm_compute/runtime/CL/functions/CLSplit.h>
+#include <arm_compute/runtime/CL/functions/CLConcatenateLayer.h>
+
+namespace armnn
+{
+
+class ClUnidirectionalSequenceLstmFloatWorkload : public FloatWorkload<UnidirectionalSequenceLstmQueueDescriptor>
+{
+public:
+    ClUnidirectionalSequenceLstmFloatWorkload(const UnidirectionalSequenceLstmQueueDescriptor& descriptor,
+                                              const WorkloadInfo& info,
+                                              const arm_compute::CLCompileContext& clCompileContext);
+    virtual void Execute() const override;
+
+private:
+
+    //
+    // ACL layers required to fully form a Unidirectional Sequence LSTM layer.
+    //
+
+    // permutation for input (only used when input is batch major)
+    mutable std::unique_ptr<arm_compute::CLPermute> m_Permute1;
+    mutable std::unique_ptr<arm_compute::IFunction> m_Splitter;
+    mutable std::vector<std::unique_ptr<arm_compute::CLLSTMLayer>> m_Layers;
+    mutable std::unique_ptr<arm_compute::CLConcatenateLayer> m_Concat;
+    // permutation for output (only used when input is batch major)
+    mutable std::unique_ptr<arm_compute::CLPermute> m_Permute2;
+
+    //
+    // ACL LSTM arm_compute::CLTensors.
+    //
+    std::unique_ptr<arm_compute::CLTensor> m_InputToInputWeightsTensor;
+    std::unique_ptr<arm_compute::CLTensor> m_InputToForgetWeightsTensor;
+    std::unique_ptr<arm_compute::CLTensor> m_InputToCellWeightsTensor;
+    std::unique_ptr<arm_compute::CLTensor> m_InputToOutputWeightsTensor;
+    std::unique_ptr<arm_compute::CLTensor> m_RecurrentToInputWeightsTensor;
+    std::unique_ptr<arm_compute::CLTensor> m_RecurrentToForgetWeightsTensor;
+    std::unique_ptr<arm_compute::CLTensor> m_RecurrentToCellWeightsTensor;
+    std::unique_ptr<arm_compute::CLTensor> m_RecurrentToOutputWeightsTensor;
+    std::unique_ptr<arm_compute::CLTensor> m_CellToInputWeightsTensor;
+    std::unique_ptr<arm_compute::CLTensor> m_CellToForgetWeightsTensor;
+    std::unique_ptr<arm_compute::CLTensor> m_CellToOutputWeightsTensor;
+    std::unique_ptr<arm_compute::CLTensor> m_InputGateBiasTensor;
+    std::unique_ptr<arm_compute::CLTensor> m_ForgetGateBiasTensor;
+    std::unique_ptr<arm_compute::CLTensor> m_CellBiasTensor;
+    std::unique_ptr<arm_compute::CLTensor> m_OutputGateBiasTensor;
+    std::unique_ptr<arm_compute::CLTensor> m_ProjectionWeightsTensor;
+    std::unique_ptr<arm_compute::CLTensor> m_ProjectionBiasTensor;
+
+    std::unique_ptr<arm_compute::CLTensor> m_ScratchBuffer;
+
+    std::unique_ptr<arm_compute::CLTensor> m_InputLayerNormWeightsTensor;
+    std::unique_ptr<arm_compute::CLTensor> m_ForgetLayerNormWeightsTensor;
+    std::unique_ptr<arm_compute::CLTensor> m_CellLayerNormWeightsTensor;
+    std::unique_ptr<arm_compute::CLTensor> m_OutputLayerNormWeightsTensor;
+
+    //
+    // Additional ACL arm_compute::CLTensors and std::vector<arm_compute::CLTensor>.
+    // Required to perform splitting, concatenation and permutations.
+    //
+    arm_compute::CLTensor m_PermuteFirstOut;
+    std::vector<arm_compute::CLTensor> m_SplitterOutputsTensors;
+    std::vector<arm_compute::CLTensor> m_ConcatInputsTensors;
+    std::vector<arm_compute::ICLTensor*> m_SplitterOutputs;
+    std::vector<const arm_compute::ICLTensor*> m_ConcatInputs;
+    arm_compute::CLTensor concat_out;
+
+    void FreeUnusedTensors();
+};
+
+arm_compute::Status
+ClUnidirectionalSequenceLstmFloatWorkloadValidate(const TensorInfo& input,
+                                                  const TensorInfo& outputStateIn,
+                                                  const TensorInfo& cellStateIn,
+                                                  const TensorInfo& output,
+                                                  const Optional<TensorInfo>& hiddenStateOutput,
+                                                  const Optional<TensorInfo>& cellStateOutput,
+                                                  const UnidirectionalSequenceLstmDescriptor& descriptor,
+                                                  const LstmInputParamsInfo& paramsInfo);
+
+} //namespace armnn
diff --git a/src/backends/cl/workloads/ClWorkloads.hpp b/src/backends/cl/workloads/ClWorkloads.hpp
index bb04b17..3558da3 100644
--- a/src/backends/cl/workloads/ClWorkloads.hpp
+++ b/src/backends/cl/workloads/ClWorkloads.hpp
@@ -65,3 +65,4 @@
 #include "ClConvertFp32ToFp16Workload.hpp"
 #include "ClTransposeConvolution2dWorkload.hpp"
 #include "ClTransposeWorkload.hpp"
+#include "ClUnidirectionalSequenceLstmFloatWorkload.hpp"