Release 18.08
diff --git a/third-party/half/ChangeLog.txt b/third-party/half/ChangeLog.txt
new file mode 100644
index 0000000..9100b6a
--- /dev/null
+++ b/third-party/half/ChangeLog.txt
@@ -0,0 +1,184 @@
+Release Notes											{#changelog}

+=============

+

+1.12.0 release (2017-03-06):

+----------------------------

+

+- Changed behaviour of `half_cast` to perform conversions to/from `double` 

+  and `long double` directly according to specified rounding mode, without an 

+  intermediate `float` conversion.

+- Added `noexcept` specifiers to constructors.

+- Fixed minor portability problem with `logb` and `ilogb`.

+- Tested for *VC++ 2015*.

+

+

+1.11.0 release (2013-11-16):

+----------------------------

+

+- Made tie-breaking behaviour in round to nearest configurable by 

+  `HALF_ROUND_TIES_TO_EVEN` macro.

+- Completed support for all C++11 mathematical functions even if single-

+  precision versions from `<cmath>` are unsupported.

+- Fixed inability to disable support for C++11 mathematical functions on 

+  *VC++ 2013*.

+

+

+1.10.0 release (2013-11-09):

+----------------------------

+

+- Made default rounding mode configurable by `HALF_ROUND_STYLE` macro.

+- Added support for non-IEEE single-precision implementations.

+- Added `HALF_ENABLE_CPP11_TYPE_TRAITS` preprocessor flag for checking 

+  support for C++11 type traits and TMP features.

+- Restricted `half_cast` to support built-in arithmetic types only.

+- Changed behaviour of `half_cast` to respect rounding mode when casting 

+  to/from integer types.

+

+

+1.9.2 release (2013-11-01):

+---------------------------

+

+- Tested for *gcc 4.8*.

+- Tested and fixed for *VC++ 2013*.

+- Removed unnecessary warnings in *MSVC*.

+

+

+1.9.1 release (2013-08-08):

+---------------------------

+

+- Fixed problems with older gcc and MSVC versions.

+- Small fix to non-C++11 implementations of `remainder` and `remquo`.

+

+

+1.9.0 release (2013-08-07):

+---------------------------

+

+- Changed behaviour of `nearbyint`, `rint`, `lrint` and `llrint` to use 

+  rounding mode of half-precision implementation (which is 

+  truncating/indeterminate) instead of single-precision rounding mode.

+- Added support for more C++11 mathematical functions even if single-

+  precision versions from `<cmath>` are unsupported, in particular 

+  `remainder`, `remquo` and `cbrt`.

+- Minor implementation changes.

+

+

+1.8.1 release (2013-01-22):

+---------------------------

+

+- Fixed bug resulting in multiple definitions of the `nanh` function due to 

+  a missing `inline` specification.

+

+

+1.8.0 release (2013-01-19):

+---------------------------

+

+- Added support for more C++11 mathematical functions even if single-

+  precision versions from `<cmath>` are unsupported, in particular 

+  exponential and logarithm functions, hyperbolic area functions and the 

+  hypotenuse function.

+- Made `fma` function use default implementation if single-precision version

+  from `<cmath>` is not faster and thus `FP_FAST_FMAH` to be defined always.

+- Fixed overload resolution issues when invoking certain mathematical 

+  functions by unqualified calls.

+

+

+1.7.0 release (2012-10-26):

+---------------------------

+

+- Added support for C++11 `noexcept` specifiers.

+- Changed C++11 `long long` to be supported on *VC++ 2003* and up.

+

+

+1.6.1 release (2012-09-13):

+---------------------------

+

+- Made `fma` and `fdim` functions available even if corresponding 

+  single-precision functions are not.

+

+

+1.6.0 release (2012-09-12):

+---------------------------

+

+- Added `HALF_ENABLE_CPP11_LONG_LONG` to control support for `long long` 

+  integers and corresponding mathematical functions.

+- Fixed C++98 compatibility on non-VC compilers.

+

+

+1.5.1 release (2012-08-17):

+---------------------------

+

+- Recorrected `std::numeric_limits::round_style` to always return 

+  `std::round_indeterminate`, due to overflow-handling deviating from 

+  correct round-toward-zero behaviour.

+

+

+1.5.0 release (2012-08-16):

+---------------------------

+

+- Added `half_cast` for explicitly casting between half and any type 

+  convertible to/from `float` and allowing the explicit specification of 

+  the rounding mode to use.

+

+

+1.4.0 release (2012-08-12):

+---------------------------

+

+- Added support for C++11 generalized constant expressions (`constexpr`).

+

+

+1.3.1 release (2012-08-11):

+---------------------------

+

+- Fixed requirement for `std::signbit` and `std::isnan` (even if C++11 

+  `<cmath>` functions disabled) on non-VC compilers.

+

+

+1.3.0 release (2012-08-10):

+---------------------------

+

+- Made requirement for `<cstdint>` and `static_assert` optional and thus 

+  made the library C++98-compatible.

+- Made support for C++11 features user-overridable through explicit 

+  definition of corresponding preprocessor symbols to either 0 or 1.

+- Renamed `HALF_ENABLE_HASH` to `HALF_ENABLE_CPP11_HASH` in correspondence 

+  with other C++11 preprocessor symbols.

+

+

+1.2.0 release (2012-08-07):

+---------------------------

+

+- Added proper preprocessor definitions for `HUGE_VALH` and `FP_FAST_FMAH` 

+  in correspondence with their single-precision counterparts from `<cmath>`.

+- Fixed internal preprocessor macros to be properly undefined after use.

+

+

+1.1.2 release (2012-08-07):

+---------------------------

+

+- Revised `std::numeric_limits::round_style` to return 

+  `std::round_toward_zero` if the `float` version also does and 

+  `std::round_indeterminate` otherwise.

+- Fixed `std::numeric_limits::round_error` to reflect worst-case round 

+  toward zero behaviour.

+

+

+1.1.1 release (2012-08-06):

+---------------------------

+

+- Fixed `std::numeric_limits::min` to return smallest positive normal 

+  number, instead of subnormal number.

+- Fixed `std::numeric_limits::round_style` to return 

+  `std::round_indeterminate` due to mixture of separately rounded 

+  single-precision arithmetics with truncating single-to-half conversions.

+

+

+1.1.0 release (2012-08-06):

+---------------------------

+

+- Added half-precision literals.

+

+

+1.0.0 release (2012-08-05):

+---------------------------

+

+- First release.

diff --git a/third-party/half/LICENSE.txt b/third-party/half/LICENSE.txt
new file mode 100644
index 0000000..9e4618b
--- /dev/null
+++ b/third-party/half/LICENSE.txt
@@ -0,0 +1,21 @@
+The MIT License

+

+Copyright (c) 2012-2017 Christian Rau

+

+Permission is hereby granted, free of charge, to any person obtaining a copy

+of this software and associated documentation files (the "Software"), to deal

+in the Software without restriction, including without limitation the rights

+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

+copies of the Software, and to permit persons to whom the Software is

+furnished to do so, subject to the following conditions:

+

+The above copyright notice and this permission notice shall be included in

+all copies or substantial portions of the Software.

+

+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN

+THE SOFTWARE.

diff --git a/third-party/half/README.txt b/third-party/half/README.txt
new file mode 100644
index 0000000..3a0960c
--- /dev/null
+++ b/third-party/half/README.txt
@@ -0,0 +1,288 @@
+HALF-PRECISION FLOATING POINT LIBRARY (Version 1.12.0)

+------------------------------------------------------

+

+This is a C++ header-only library to provide an IEEE 754 conformant 16-bit 

+half-precision floating point type along with corresponding arithmetic 

+operators, type conversions and common mathematical functions. It aims for both 

+efficiency and ease of use, trying to accurately mimic the behaviour of the 

+builtin floating point types at the best performance possible.

+

+

+INSTALLATION AND REQUIREMENTS

+-----------------------------

+

+Comfortably enough, the library consists of just a single header file 

+containing all the functionality, which can be directly included by your 

+projects, without the neccessity to build anything or link to anything.

+

+Whereas this library is fully C++98-compatible, it can profit from certain 

+C++11 features. Support for those features is checked automatically at compile 

+(or rather preprocessing) time, but can be explicitly enabled or disabled by 

+defining the corresponding preprocessor symbols to either 1 or 0 yourself. This 

+is useful when the automatic detection fails (for more exotic implementations) 

+or when a feature should be explicitly disabled:

+

+  - 'long long' integer type for mathematical functions returning 'long long' 

+    results (enabled for VC++ 2003 and newer, gcc and clang, overridable with 

+    'HALF_ENABLE_CPP11_LONG_LONG').

+

+  - Static assertions for extended compile-time checks (enabled for VC++ 2010, 

+    gcc 4.3, clang 2.9 and newer, overridable with 'HALF_ENABLE_CPP11_STATIC_ASSERT').

+

+  - Generalized constant expressions (enabled for VC++ 2015, gcc 4.6, clang 3.1 

+    and newer, overridable with 'HALF_ENABLE_CPP11_CONSTEXPR').

+

+  - noexcept exception specifications (enabled for VC++ 2015, gcc 4.6, clang 3.0 

+    and newer, overridable with 'HALF_ENABLE_CPP11_NOEXCEPT').

+

+  - User-defined literals for half-precision literals to work (enabled for 

+    VC++ 2015, gcc 4.7, clang 3.1 and newer, overridable with 

+    'HALF_ENABLE_CPP11_USER_LITERALS').

+

+  - Type traits and template meta-programming features from <type_traits> 

+    (enabled for VC++ 2010, libstdc++ 4.3, libc++ and newer, overridable with 

+    'HALF_ENABLE_CPP11_TYPE_TRAITS').

+

+  - Special integer types from <cstdint> (enabled for VC++ 2010, libstdc++ 4.3, 

+    libc++ and newer, overridable with 'HALF_ENABLE_CPP11_CSTDINT').

+

+  - Certain C++11 single-precision mathematical functions from <cmath> for 

+    an improved implementation of their half-precision counterparts to work 

+    (enabled for VC++ 2013, libstdc++ 4.3, libc++ and newer, overridable with 

+    'HALF_ENABLE_CPP11_CMATH').

+

+  - Hash functor 'std::hash' from <functional> (enabled for VC++ 2010, 

+    libstdc++ 4.3, libc++ and newer, overridable with 'HALF_ENABLE_CPP11_HASH').

+

+The library has been tested successfully with Visual C++ 2005-2015, gcc 4.4-4.8 

+and clang 3.1. Please contact me if you have any problems, suggestions or even 

+just success testing it on other platforms.

+

+

+DOCUMENTATION

+-------------

+

+Here follow some general words about the usage of the library and its 

+implementation. For a complete documentation of its iterface look at the 

+corresponding website http://half.sourceforge.net. You may also generate the 

+complete developer documentation from the library's only include file's doxygen 

+comments, but this is more relevant to developers rather than mere users (for 

+reasons described below).

+

+BASIC USAGE

+

+To make use of the library just include its only header file half.hpp, which 

+defines all half-precision functionality inside the 'half_float' namespace. The 

+actual 16-bit half-precision data type is represented by the 'half' type. This 

+type behaves like the builtin floating point types as much as possible, 

+supporting the usual arithmetic, comparison and streaming operators, which 

+makes its use pretty straight-forward:

+

+    using half_float::half;

+    half a(3.4), b(5);

+    half c = a * b;

+    c += 3;

+    if(c > a)

+	    std::cout << c << std::endl;

+

+Additionally the 'half_float' namespace also defines half-precision versions 

+for all mathematical functions of the C++ standard library, which can be used 

+directly through ADL:

+

+    half a(-3.14159);

+    half s = sin(abs(a));

+    long l = lround(s);

+

+You may also specify explicit half-precision literals, since the library 

+provides a user-defined literal inside the 'half_float::literal' namespace, 

+which you just need to import (assuming support for C++11 user-defined literals):

+

+    using namespace half_float::literal;

+    half x = 1.0_h;

+

+Furthermore the library provides proper specializations for 

+'std::numeric_limits', defining various implementation properties, and 

+'std::hash' for hashing half-precision numbers (assuming support for C++11 

+'std::hash'). Similar to the corresponding preprocessor symbols from <cmath> 

+the library also defines the 'HUGE_VALH' constant and maybe the 'FP_FAST_FMAH' 

+symbol.

+

+CONVERSIONS AND ROUNDING

+

+The half is explicitly constructible/convertible from a single-precision float 

+argument. Thus it is also explicitly constructible/convertible from any type 

+implicitly convertible to float, but constructing it from types like double or 

+int will involve the usual warnings arising when implicitly converting those to 

+float because of the lost precision. On the one hand those warnings are 

+intentional, because converting those types to half neccessarily also reduces 

+precision. But on the other hand they are raised for explicit conversions from 

+those types, when the user knows what he is doing. So if those warnings keep 

+bugging you, then you won't get around first explicitly converting to float 

+before converting to half, or use the 'half_cast' described below. In addition 

+you can also directly assign float values to halfs.

+

+In contrast to the float-to-half conversion, which reduces precision, the 

+conversion from half to float (and thus to any other type implicitly 

+convertible from float) is implicit, because all values represetable with 

+half-precision are also representable with single-precision. This way the 

+half-to-float conversion behaves similar to the builtin float-to-double 

+conversion and all arithmetic expressions involving both half-precision and 

+single-precision arguments will be of single-precision type. This way you can 

+also directly use the mathematical functions of the C++ standard library, 

+though in this case you will invoke the single-precision versions which will 

+also return single-precision values, which is (even if maybe performing the 

+exact same computation, see below) not as conceptually clean when working in a 

+half-precision environment.

+

+The default rounding mode for conversions from float to half uses truncation 

+(round toward zero, but mapping overflows to infinity) for rounding values not 

+representable exactly in half-precision. This is the fastest rounding possible 

+and is usually sufficient. But by redefining the 'HALF_ROUND_STYLE' 

+preprocessor symbol (before including half.hpp) this default can be overridden 

+with one of the other standard rounding modes using their respective constants 

+or the equivalent values of 'std::float_round_style' (it can even be 

+synchronized with the underlying single-precision implementation by defining it 

+to 'std::numeric_limits<float>::round_style'):

+

+  - 'std::round_indeterminate' or -1 for the fastest rounding (default).

+

+  - 'std::round_toward_zero' or 0 for rounding toward zero.

+

+  - std::round_to_nearest' or 1 for rounding to the nearest value.

+

+  - std::round_toward_infinity' or 2 for rounding toward positive infinity.

+

+  - std::round_toward_neg_infinity' or 3 for rounding toward negative infinity.

+

+In addition to changing the overall default rounding mode one can also use the 

+'half_cast'. This converts between half and any built-in arithmetic type using 

+a configurable rounding mode (or the default rounding mode if none is 

+specified). In addition to a configurable rounding mode, 'half_cast' has 

+another big difference to a mere 'static_cast': Any conversions are performed 

+directly using the given rounding mode, without any intermediate conversion 

+to/from 'float'. This is especially relevant for conversions to integer types, 

+which don't necessarily truncate anymore. But also for conversions from 

+'double' or 'long double' this may produce more precise results than a 

+pre-conversion to 'float' using the single-precision implementation's current 

+rounding mode would.

+

+    half a = half_cast<half>(4.2);

+    half b = half_cast<half,std::numeric_limits<float>::round_style>(4.2f);

+    assert( half_cast<int, std::round_to_nearest>( 0.7_h )     == 1 );

+    assert( half_cast<half,std::round_toward_zero>( 4097 )     == 4096.0_h );

+    assert( half_cast<half,std::round_toward_infinity>( 4097 ) == 4100.0_h );

+    assert( half_cast<half,std::round_toward_infinity>( std::numeric_limits<double>::min() ) > 0.0_h );

+

+When using round to nearest (either as default or through 'half_cast') ties are 

+by default resolved by rounding them away from zero (and thus equal to the 

+behaviour of the 'round' function). But by redefining the 

+'HALF_ROUND_TIES_TO_EVEN' preprocessor symbol to 1 (before including half.hpp) 

+this default can be changed to the slightly slower but less biased and more 

+IEEE-conformant behaviour of rounding half-way cases to the nearest even value.

+

+    #define HALF_ROUND_TIES_TO_EVEN 1

+    #include <half.hpp>

+    ...

+    assert( half_cast<int,std::round_to_nearest>(3.5_h) 

+         == half_cast<int,std::round_to_nearest>(4.5_h) );

+

+IMPLEMENTATION

+

+For performance reasons (and ease of implementation) many of the mathematical 

+functions provided by the library as well as all arithmetic operations are 

+actually carried out in single-precision under the hood, calling to the C++ 

+standard library implementations of those functions whenever appropriate, 

+meaning the arguments are converted to floats and the result back to half. But 

+to reduce the conversion overhead as much as possible any temporary values 

+inside of lengthy expressions are kept in single-precision as long as possible, 

+while still maintaining a strong half-precision type to the outside world. Only 

+when finally assigning the value to a half or calling a function that works 

+directly on halfs is the actual conversion done (or never, when further 

+converting the result to float.

+

+This approach has two implications. First of all you have to treat the 

+library's documentation at http://half.sourceforge.net as a simplified version, 

+describing the behaviour of the library as if implemented this way. The actual 

+argument and return types of functions and operators may involve other internal 

+types (feel free to generate the exact developer documentation from the Doxygen 

+comments in the library's header file if you really need to). But nevertheless 

+the behaviour is exactly like specified in the documentation. The other 

+implication is, that in the presence of rounding errors or over-/underflows 

+arithmetic expressions may produce different results when compared to 

+converting to half-precision after each individual operation:

+

+    half a = std::numeric_limits<half>::max() * 2.0_h / 2.0_h;       // a = MAX

+    half b = half(std::numeric_limits<half>::max() * 2.0_h) / 2.0_h; // b = INF

+    assert( a != b );

+

+But this should only be a problem in very few cases. One last word has to be 

+said when talking about performance. Even with its efforts in reducing 

+conversion overhead as much as possible, the software half-precision 

+implementation can most probably not beat the direct use of single-precision 

+computations. Usually using actual float values for all computations and 

+temproraries and using halfs only for storage is the recommended way. On the 

+one hand this somehow makes the provided mathematical functions obsolete 

+(especially in light of the implicit conversion from half to float), but 

+nevertheless the goal of this library was to provide a complete and 

+conceptually clean half-precision implementation, to which the standard 

+mathematical functions belong, even if usually not needed.

+

+IEEE CONFORMANCE

+

+The half type uses the standard IEEE representation with 1 sign bit, 5 exponent 

+bits and 10 mantissa bits (11 when counting the hidden bit). It supports all 

+types of special values, like subnormal values, infinity and NaNs. But there 

+are some limitations to the complete conformance to the IEEE 754 standard:

+

+  - The implementation does not differentiate between signalling and quiet 

+    NaNs, this means operations on halfs are not specified to trap on 

+    signalling NaNs (though they may, see last point).

+

+  - Though arithmetic operations are internally rounded to single-precision 

+    using the underlying single-precision implementation's current rounding 

+    mode, those values are then converted to half-precision using the default 

+    half-precision rounding mode (changed by defining 'HALF_ROUND_STYLE' 

+    accordingly). This mixture of rounding modes is also the reason why 

+    'std::numeric_limits<half>::round_style' may actually return 

+    'std::round_indeterminate' when half- and single-precision rounding modes 

+    don't match.

+

+  - Because of internal truncation it may also be that certain single-precision 

+    NaNs will be wrongly converted to half-precision infinity, though this is 

+    very unlikely to happen, since most single-precision implementations don't 

+    tend to only set the lowest bits of a NaN mantissa.

+

+  - The implementation does not provide any floating point exceptions, thus 

+    arithmetic operations or mathematical functions are not specified to invoke 

+    proper floating point exceptions. But due to many functions implemented in 

+    single-precision, those may still invoke floating point exceptions of the 

+    underlying single-precision implementation.

+

+Some of those points could have been circumvented by controlling the floating 

+point environment using <cfenv> or implementing a similar exception mechanism. 

+But this would have required excessive runtime checks giving two high an impact 

+on performance for something that is rarely ever needed. If you really need to 

+rely on proper floating point exceptions, it is recommended to explicitly 

+perform computations using the built-in floating point types to be on the safe 

+side. In the same way, if you really need to rely on a particular rounding 

+behaviour, it is recommended to either use single-precision computations and 

+explicitly convert the result to half-precision using 'half_cast' and 

+specifying the desired rounding mode, or synchronize the default half-precision 

+rounding mode to the rounding mode of the single-precision implementation (most 

+likely 'HALF_ROUND_STYLE=1', 'HALF_ROUND_TIES_TO_EVEN=1'). But this is really 

+considered an expert-scenario that should be used only when necessary, since 

+actually working with half-precision usually comes with a certain 

+tolerance/ignorance of exactness considerations and proper rounding comes with 

+a certain performance cost.

+

+

+CREDITS AND CONTACT

+-------------------

+

+This library is developed by CHRISTIAN RAU and released under the MIT License 

+(see LICENSE.txt). If you have any questions or problems with it, feel free to 

+contact me at rauy@users.sourceforge.net.

+

+Additional credit goes to JEROEN VAN DER ZIJP for his paper on "Fast Half Float 

+Conversions", whose algorithms have been used in the library for converting 

+between half-precision and single-precision values.

diff --git a/third-party/half/half.hpp b/third-party/half/half.hpp
new file mode 100644
index 0000000..0d7459b
--- /dev/null
+++ b/third-party/half/half.hpp
@@ -0,0 +1,3068 @@
+// half - IEEE 754-based half-precision floating point library.

+//

+// Copyright (c) 2012-2017 Christian Rau <rauy@users.sourceforge.net>

+//

+// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation 

+// files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, 

+// modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the 

+// Software is furnished to do so, subject to the following conditions:

+//

+// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

+//

+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE 

+// WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR 

+// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 

+// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

+

+// Version 1.12.0

+

+/// \file

+/// Main header file for half precision functionality.

+

+#ifndef HALF_HALF_HPP

+#define HALF_HALF_HPP

+

+/// Combined gcc version number.

+#define HALF_GNUC_VERSION (__GNUC__*100+__GNUC_MINOR__)

+

+//check C++11 language features

+#if defined(__clang__)										//clang

+	#if __has_feature(cxx_static_assert) && !defined(HALF_ENABLE_CPP11_STATIC_ASSERT)

+		#define HALF_ENABLE_CPP11_STATIC_ASSERT 1

+	#endif

+	#if __has_feature(cxx_constexpr) && !defined(HALF_ENABLE_CPP11_CONSTEXPR)

+		#define HALF_ENABLE_CPP11_CONSTEXPR 1

+	#endif

+	#if __has_feature(cxx_noexcept) && !defined(HALF_ENABLE_CPP11_NOEXCEPT)

+		#define HALF_ENABLE_CPP11_NOEXCEPT 1

+	#endif

+	#if __has_feature(cxx_user_literals) && !defined(HALF_ENABLE_CPP11_USER_LITERALS)

+		#define HALF_ENABLE_CPP11_USER_LITERALS 1

+	#endif

+	#if (defined(__GXX_EXPERIMENTAL_CXX0X__) || __cplusplus >= 201103L) && !defined(HALF_ENABLE_CPP11_LONG_LONG)

+		#define HALF_ENABLE_CPP11_LONG_LONG 1

+	#endif

+/*#elif defined(__INTEL_COMPILER)								//Intel C++

+	#if __INTEL_COMPILER >= 1100 && !defined(HALF_ENABLE_CPP11_STATIC_ASSERT)		????????

+		#define HALF_ENABLE_CPP11_STATIC_ASSERT 1

+	#endif

+	#if __INTEL_COMPILER >= 1300 && !defined(HALF_ENABLE_CPP11_CONSTEXPR)			????????

+		#define HALF_ENABLE_CPP11_CONSTEXPR 1

+	#endif

+	#if __INTEL_COMPILER >= 1300 && !defined(HALF_ENABLE_CPP11_NOEXCEPT)			????????

+		#define HALF_ENABLE_CPP11_NOEXCEPT 1

+	#endif

+	#if __INTEL_COMPILER >= 1100 && !defined(HALF_ENABLE_CPP11_LONG_LONG)			????????

+		#define HALF_ENABLE_CPP11_LONG_LONG 1

+	#endif*/

+#elif defined(__GNUC__)										//gcc

+	#if defined(__GXX_EXPERIMENTAL_CXX0X__) || __cplusplus >= 201103L

+		#if HALF_GNUC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_STATIC_ASSERT)

+			#define HALF_ENABLE_CPP11_STATIC_ASSERT 1

+		#endif

+		#if HALF_GNUC_VERSION >= 406 && !defined(HALF_ENABLE_CPP11_CONSTEXPR)

+			#define HALF_ENABLE_CPP11_CONSTEXPR 1

+		#endif

+		#if HALF_GNUC_VERSION >= 406 && !defined(HALF_ENABLE_CPP11_NOEXCEPT)

+			#define HALF_ENABLE_CPP11_NOEXCEPT 1

+		#endif

+		#if HALF_GNUC_VERSION >= 407 && !defined(HALF_ENABLE_CPP11_USER_LITERALS)

+			#define HALF_ENABLE_CPP11_USER_LITERALS 1

+		#endif

+		#if !defined(HALF_ENABLE_CPP11_LONG_LONG)

+			#define HALF_ENABLE_CPP11_LONG_LONG 1

+		#endif

+	#endif

+#elif defined(_MSC_VER)										//Visual C++

+	#if _MSC_VER >= 1900 && !defined(HALF_ENABLE_CPP11_CONSTEXPR)

+		#define HALF_ENABLE_CPP11_CONSTEXPR 1

+	#endif

+	#if _MSC_VER >= 1900 && !defined(HALF_ENABLE_CPP11_NOEXCEPT)

+		#define HALF_ENABLE_CPP11_NOEXCEPT 1

+	#endif

+	#if _MSC_VER >= 1900 && !defined(HALF_ENABLE_CPP11_USER_LITERALS)

+		#define HALF_ENABLE_CPP11_USER_LITERALS 1

+	#endif

+	#if _MSC_VER >= 1600 && !defined(HALF_ENABLE_CPP11_STATIC_ASSERT)

+		#define HALF_ENABLE_CPP11_STATIC_ASSERT 1

+	#endif

+	#if _MSC_VER >= 1310 && !defined(HALF_ENABLE_CPP11_LONG_LONG)

+		#define HALF_ENABLE_CPP11_LONG_LONG 1

+	#endif

+	#define HALF_POP_WARNINGS 1

+	#pragma warning(push)

+	#pragma warning(disable : 4099 4127 4146)	//struct vs class, constant in if, negative unsigned

+#endif

+

+//check C++11 library features

+#include <utility>

+#if defined(_LIBCPP_VERSION)								//libc++

+	#if defined(__GXX_EXPERIMENTAL_CXX0X__) || __cplusplus >= 201103

+		#ifndef HALF_ENABLE_CPP11_TYPE_TRAITS

+			#define HALF_ENABLE_CPP11_TYPE_TRAITS 1

+		#endif

+		#ifndef HALF_ENABLE_CPP11_CSTDINT

+			#define HALF_ENABLE_CPP11_CSTDINT 1

+		#endif

+		#ifndef HALF_ENABLE_CPP11_CMATH

+			#define HALF_ENABLE_CPP11_CMATH 1

+		#endif

+		#ifndef HALF_ENABLE_CPP11_HASH

+			#define HALF_ENABLE_CPP11_HASH 1

+		#endif

+	#endif

+#elif defined(__GLIBCXX__)									//libstdc++

+	#if defined(__GXX_EXPERIMENTAL_CXX0X__) || __cplusplus >= 201103

+		#ifdef __clang__

+			#if __GLIBCXX__ >= 20080606 && !defined(HALF_ENABLE_CPP11_TYPE_TRAITS)

+				#define HALF_ENABLE_CPP11_TYPE_TRAITS 1

+			#endif

+			#if __GLIBCXX__ >= 20080606 && !defined(HALF_ENABLE_CPP11_CSTDINT)

+				#define HALF_ENABLE_CPP11_CSTDINT 1

+			#endif

+			#if __GLIBCXX__ >= 20080606 && !defined(HALF_ENABLE_CPP11_CMATH)

+				#define HALF_ENABLE_CPP11_CMATH 1

+			#endif

+			#if __GLIBCXX__ >= 20080606 && !defined(HALF_ENABLE_CPP11_HASH)

+				#define HALF_ENABLE_CPP11_HASH 1

+			#endif

+		#else

+			#if HALF_GNUC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_CSTDINT)

+				#define HALF_ENABLE_CPP11_CSTDINT 1

+			#endif

+			#if HALF_GNUC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_CMATH)

+				#define HALF_ENABLE_CPP11_CMATH 1

+			#endif

+			#if HALF_GNUC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_HASH)

+				#define HALF_ENABLE_CPP11_HASH 1

+			#endif

+		#endif

+	#endif

+#elif defined(_CPPLIB_VER)									//Dinkumware/Visual C++

+	#if _CPPLIB_VER >= 520

+		#ifndef HALF_ENABLE_CPP11_TYPE_TRAITS

+			#define HALF_ENABLE_CPP11_TYPE_TRAITS 1

+		#endif

+		#ifndef HALF_ENABLE_CPP11_CSTDINT

+			#define HALF_ENABLE_CPP11_CSTDINT 1

+		#endif

+		#ifndef HALF_ENABLE_CPP11_HASH

+			#define HALF_ENABLE_CPP11_HASH 1

+		#endif

+	#endif

+	#if _CPPLIB_VER >= 610

+		#ifndef HALF_ENABLE_CPP11_CMATH

+			#define HALF_ENABLE_CPP11_CMATH 1

+		#endif

+	#endif

+#endif

+#undef HALF_GNUC_VERSION

+

+//support constexpr

+#if HALF_ENABLE_CPP11_CONSTEXPR

+	#define HALF_CONSTEXPR			constexpr

+	#define HALF_CONSTEXPR_CONST	constexpr

+#else

+	#define HALF_CONSTEXPR

+	#define HALF_CONSTEXPR_CONST	const

+#endif

+

+//support noexcept

+#if HALF_ENABLE_CPP11_NOEXCEPT

+	#define HALF_NOEXCEPT	noexcept

+	#define HALF_NOTHROW	noexcept

+#else

+	#define HALF_NOEXCEPT

+	#define HALF_NOTHROW	throw()

+#endif

+

+#include <algorithm>

+#include <iostream>

+#include <limits>

+#include <climits>

+#include <cmath>

+#include <cstring>

+#include <cstdlib>

+#if HALF_ENABLE_CPP11_TYPE_TRAITS

+	#include <type_traits>

+#endif

+#if HALF_ENABLE_CPP11_CSTDINT

+	#include <cstdint>

+#endif

+#if HALF_ENABLE_CPP11_HASH

+	#include <functional>

+#endif

+

+

+/// Default rounding mode.

+/// This specifies the rounding mode used for all conversions between [half](\ref half_float::half)s and `float`s as well as 

+/// for the half_cast() if not specifying a rounding mode explicitly. It can be redefined (before including half.hpp) to one 

+/// of the standard rounding modes using their respective constants or the equivalent values of `std::float_round_style`:

+///

+/// `std::float_round_style`         | value | rounding

+/// ---------------------------------|-------|-------------------------

+/// `std::round_indeterminate`       | -1    | fastest (default)

+/// `std::round_toward_zero`         | 0     | toward zero

+/// `std::round_to_nearest`          | 1     | to nearest

+/// `std::round_toward_infinity`     | 2     | toward positive infinity

+/// `std::round_toward_neg_infinity` | 3     | toward negative infinity

+///

+/// By default this is set to `-1` (`std::round_indeterminate`), which uses truncation (round toward zero, but with overflows 

+/// set to infinity) and is the fastest rounding mode possible. It can even be set to `std::numeric_limits<float>::round_style` 

+/// to synchronize the rounding mode with that of the underlying single-precision implementation.

+#ifndef HALF_ROUND_STYLE

+	#define HALF_ROUND_STYLE	-1			// = std::round_indeterminate

+#endif

+

+/// Tie-breaking behaviour for round to nearest.

+/// This specifies if ties in round to nearest should be resolved by rounding to the nearest even value. By default this is 

+/// defined to `0` resulting in the faster but slightly more biased behaviour of rounding away from zero in half-way cases (and 

+/// thus equal to the round() function), but can be redefined to `1` (before including half.hpp) if more IEEE-conformant 

+/// behaviour is needed.

+#ifndef HALF_ROUND_TIES_TO_EVEN

+	#define HALF_ROUND_TIES_TO_EVEN	0		// ties away from zero

+#endif

+

+/// Value signaling overflow.

+/// In correspondence with `HUGE_VAL[F|L]` from `<cmath>` this symbol expands to a positive value signaling the overflow of an 

+/// operation, in particular it just evaluates to positive infinity.

+#define HUGE_VALH	std::numeric_limits<half_float::half>::infinity()

+

+/// Fast half-precision fma function.

+/// This symbol is only defined if the fma() function generally executes as fast as, or faster than, a separate 

+/// half-precision multiplication followed by an addition. Due to the internal single-precision implementation of all 

+/// arithmetic operations, this is in fact always the case.

+#define FP_FAST_FMAH	1

+

+#ifndef FP_ILOGB0

+	#define FP_ILOGB0		INT_MIN

+#endif

+#ifndef FP_ILOGBNAN

+	#define FP_ILOGBNAN		INT_MAX

+#endif

+#ifndef FP_SUBNORMAL

+	#define FP_SUBNORMAL	0

+#endif

+#ifndef FP_ZERO

+	#define FP_ZERO			1

+#endif

+#ifndef FP_NAN

+	#define FP_NAN			2

+#endif

+#ifndef FP_INFINITE

+	#define FP_INFINITE		3

+#endif

+#ifndef FP_NORMAL

+	#define FP_NORMAL		4

+#endif

+

+

+/// Main namespace for half precision functionality.

+/// This namespace contains all the functionality provided by the library.

+namespace half_float

+{

+	class half;

+

+#if HALF_ENABLE_CPP11_USER_LITERALS

+	/// Library-defined half-precision literals.

+	/// Import this namespace to enable half-precision floating point literals:

+	/// ~~~~{.cpp}

+	/// using namespace half_float::literal;

+	/// half_float::half = 4.2_h;

+	/// ~~~~

+	namespace literal

+	{

+		half operator""_h(long double);

+	}

+#endif

+

+	/// \internal

+	/// \brief Implementation details.

+	namespace detail

+	{

+	#if HALF_ENABLE_CPP11_TYPE_TRAITS

+		/// Conditional type.

+		template<bool B,typename T,typename F> struct conditional : std::conditional<B,T,F> {};

+

+		/// Helper for tag dispatching.

+		template<bool B> struct bool_type : std::integral_constant<bool,B> {};

+		using std::true_type;

+		using std::false_type;

+

+		/// Type traits for floating point types.

+		template<typename T> struct is_float : std::is_floating_point<T> {};

+	#else

+		/// Conditional type.

+		template<bool,typename T,typename> struct conditional { typedef T type; };

+		template<typename T,typename F> struct conditional<false,T,F> { typedef F type; };

+

+		/// Helper for tag dispatching.

+		template<bool> struct bool_type {};

+		typedef bool_type<true> true_type;

+		typedef bool_type<false> false_type;

+

+		/// Type traits for floating point types.

+		template<typename> struct is_float : false_type {};

+		template<typename T> struct is_float<const T> : is_float<T> {};

+		template<typename T> struct is_float<volatile T> : is_float<T> {};

+		template<typename T> struct is_float<const volatile T> : is_float<T> {};

+		template<> struct is_float<float> : true_type {};

+		template<> struct is_float<double> : true_type {};

+		template<> struct is_float<long double> : true_type {};

+	#endif

+

+		/// Type traits for floating point bits.

+		template<typename T> struct bits { typedef unsigned char type; };

+		template<typename T> struct bits<const T> : bits<T> {};

+		template<typename T> struct bits<volatile T> : bits<T> {};

+		template<typename T> struct bits<const volatile T> : bits<T> {};

+

+	#if HALF_ENABLE_CPP11_CSTDINT

+		/// Unsigned integer of (at least) 16 bits width.

+		typedef std::uint_least16_t uint16;

+

+		/// Unsigned integer of (at least) 32 bits width.

+		template<> struct bits<float> { typedef std::uint_least32_t type; };

+

+		/// Unsigned integer of (at least) 64 bits width.

+		template<> struct bits<double> { typedef std::uint_least64_t type; };

+	#else

+		/// Unsigned integer of (at least) 16 bits width.

+		typedef unsigned short uint16;

+

+		/// Unsigned integer of (at least) 32 bits width.

+		template<> struct bits<float> : conditional<std::numeric_limits<unsigned int>::digits>=32,unsigned int,unsigned long> {};

+

+		#if HALF_ENABLE_CPP11_LONG_LONG

+			/// Unsigned integer of (at least) 64 bits width.

+			template<> struct bits<double> : conditional<std::numeric_limits<unsigned long>::digits>=64,unsigned long,unsigned long long> {};

+		#else

+			/// Unsigned integer of (at least) 64 bits width.

+			template<> struct bits<double> { typedef unsigned long type; };

+		#endif

+	#endif

+

+		/// Tag type for binary construction.

+		struct binary_t {};

+

+		/// Tag for binary construction.

+		HALF_CONSTEXPR_CONST binary_t binary = binary_t();

+

+		/// Temporary half-precision expression.

+		/// This class represents a half-precision expression which just stores a single-precision value internally.

+		struct expr

+		{

+			/// Conversion constructor.

+			/// \param f single-precision value to convert

+			explicit HALF_CONSTEXPR expr(float f) HALF_NOEXCEPT : value_(f) {}

+

+			/// Conversion to single-precision.

+			/// \return single precision value representing expression value

+			HALF_CONSTEXPR operator float() const HALF_NOEXCEPT { return value_; }

+

+		private:

+			/// Internal expression value stored in single-precision.

+			float value_;

+		};

+

+		/// SFINAE helper for generic half-precision functions.

+		/// This class template has to be specialized for each valid combination of argument types to provide a corresponding 

+		/// `type` member equivalent to \a T.

+		/// \tparam T type to return

+		template<typename T,typename,typename=void,typename=void> struct enable {};

+		template<typename T> struct enable<T,half,void,void> { typedef T type; };

+		template<typename T> struct enable<T,expr,void,void> { typedef T type; };

+		template<typename T> struct enable<T,half,half,void> { typedef T type; };

+		template<typename T> struct enable<T,half,expr,void> { typedef T type; };

+		template<typename T> struct enable<T,expr,half,void> { typedef T type; };

+		template<typename T> struct enable<T,expr,expr,void> { typedef T type; };

+		template<typename T> struct enable<T,half,half,half> { typedef T type; };

+		template<typename T> struct enable<T,half,half,expr> { typedef T type; };

+		template<typename T> struct enable<T,half,expr,half> { typedef T type; };

+		template<typename T> struct enable<T,half,expr,expr> { typedef T type; };

+		template<typename T> struct enable<T,expr,half,half> { typedef T type; };

+		template<typename T> struct enable<T,expr,half,expr> { typedef T type; };

+		template<typename T> struct enable<T,expr,expr,half> { typedef T type; };

+		template<typename T> struct enable<T,expr,expr,expr> { typedef T type; };

+

+		/// Return type for specialized generic 2-argument half-precision functions.

+		/// This class template has to be specialized for each valid combination of argument types to provide a corresponding 

+		/// `type` member denoting the appropriate return type.

+		/// \tparam T first argument type

+		/// \tparam U first argument type

+		template<typename T,typename U> struct result : enable<expr,T,U> {};

+		template<> struct result<half,half> { typedef half type; };

+

+		/// \name Classification helpers

+		/// \{

+

+		/// Check for infinity.

+		/// \tparam T argument type (builtin floating point type)

+		/// \param arg value to query

+		/// \retval true if infinity

+		/// \retval false else

+		template<typename T> bool builtin_isinf(T arg)

+		{

+		#if HALF_ENABLE_CPP11_CMATH

+			return std::isinf(arg);

+		#elif defined(_MSC_VER)

+			return !::_finite(static_cast<double>(arg)) && !::_isnan(static_cast<double>(arg));

+		#else

+			return arg == std::numeric_limits<T>::infinity() || arg == -std::numeric_limits<T>::infinity();

+		#endif

+		}

+

+		/// Check for NaN.

+		/// \tparam T argument type (builtin floating point type)

+		/// \param arg value to query

+		/// \retval true if not a number

+		/// \retval false else

+		template<typename T> bool builtin_isnan(T arg)

+		{

+		#if HALF_ENABLE_CPP11_CMATH

+			return std::isnan(arg);

+		#elif defined(_MSC_VER)

+			return ::_isnan(static_cast<double>(arg)) != 0;

+		#else

+			return arg != arg;

+		#endif

+		}

+

+		/// Check sign.

+		/// \tparam T argument type (builtin floating point type)

+		/// \param arg value to query

+		/// \retval true if signbit set

+		/// \retval false else

+		template<typename T> bool builtin_signbit(T arg)

+		{

+		#if HALF_ENABLE_CPP11_CMATH

+			return std::signbit(arg);

+		#else

+			return arg < T() || (arg == T() && T(1)/arg < T());

+		#endif

+		}

+

+		/// \}

+		/// \name Conversion

+		/// \{

+

+		/// Convert IEEE single-precision to half-precision.

+		/// Credit for this goes to [Jeroen van der Zijp](ftp://ftp.fox-toolkit.org/pub/fasthalffloatconversion.pdf).

+		/// \tparam R rounding mode to use, `std::round_indeterminate` for fastest rounding

+		/// \param value single-precision value

+		/// \return binary representation of half-precision value

+		template<std::float_round_style R> uint16 float2half_impl(float value, true_type)

+		{

+			typedef bits<float>::type uint32;

+			uint32 bits;// = *reinterpret_cast<uint32*>(&value);		//violating strict aliasing!

+			std::memcpy(&bits, &value, sizeof(float));

+/*			uint16 hbits = (bits>>16) & 0x8000;

+			bits &= 0x7FFFFFFF;

+			int exp = bits >> 23;

+			if(exp == 255)

+				return hbits | 0x7C00 | (0x3FF&-static_cast<unsigned>((bits&0x7FFFFF)!=0));

+			if(exp > 142)

+			{

+				if(R == std::round_toward_infinity)

+					return hbits | 0x7C00 - (hbits>>15);

+				if(R == std::round_toward_neg_infinity)

+					return hbits | 0x7BFF + (hbits>>15);

+				return hbits | 0x7BFF + (R!=std::round_toward_zero);

+			}

+			int g, s;

+			if(exp > 112)

+			{

+				g = (bits>>12) & 1;

+				s = (bits&0xFFF) != 0;

+				hbits |= ((exp-112)<<10) | ((bits>>13)&0x3FF);

+			}

+			else if(exp > 101)

+			{

+				int i = 125 - exp;

+				bits = (bits&0x7FFFFF) | 0x800000;

+				g = (bits>>i) & 1;

+				s = (bits&((1L<<i)-1)) != 0;

+				hbits |= bits >> (i+1);

+			}

+			else

+			{

+				g = 0;

+				s = bits != 0;

+			}

+			if(R == std::round_to_nearest)

+				#if HALF_ROUND_TIES_TO_EVEN

+					hbits += g & (s|hbits);

+				#else

+					hbits += g;

+				#endif

+			else if(R == std::round_toward_infinity)

+				hbits += ~(hbits>>15) & (s|g);

+			else if(R == std::round_toward_neg_infinity)

+				hbits += (hbits>>15) & (g|s);

+*/			static const uint16 base_table[512] = { 

+				0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 

+				0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 

+				0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 

+				0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 

+				0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 

+				0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 

+				0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, 0x0100, 

+				0x0200, 0x0400, 0x0800, 0x0C00, 0x1000, 0x1400, 0x1800, 0x1C00, 0x2000, 0x2400, 0x2800, 0x2C00, 0x3000, 0x3400, 0x3800, 0x3C00, 

+				0x4000, 0x4400, 0x4800, 0x4C00, 0x5000, 0x5400, 0x5800, 0x5C00, 0x6000, 0x6400, 0x6800, 0x6C00, 0x7000, 0x7400, 0x7800, 0x7C00, 

+				0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 

+				0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 

+				0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 

+				0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 

+				0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 

+				0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 

+				0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 

+				0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 

+				0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 

+				0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 

+				0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 

+				0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 

+				0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 

+				0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8001, 0x8002, 0x8004, 0x8008, 0x8010, 0x8020, 0x8040, 0x8080, 0x8100, 

+				0x8200, 0x8400, 0x8800, 0x8C00, 0x9000, 0x9400, 0x9800, 0x9C00, 0xA000, 0xA400, 0xA800, 0xAC00, 0xB000, 0xB400, 0xB800, 0xBC00, 

+				0xC000, 0xC400, 0xC800, 0xCC00, 0xD000, 0xD400, 0xD800, 0xDC00, 0xE000, 0xE400, 0xE800, 0xEC00, 0xF000, 0xF400, 0xF800, 0xFC00, 

+				0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 

+				0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 

+				0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 

+				0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 

+				0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 

+				0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 

+				0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00 };

+			static const unsigned char shift_table[512] = { 

+				24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 

+				24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 

+				24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 

+				24, 24, 24, 24, 24, 24, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 

+				13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 

+				24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 

+				24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 

+				24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 13, 

+				24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 

+				24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 

+				24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 

+				24, 24, 24, 24, 24, 24, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 

+				13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 

+				24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 

+				24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 

+				24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 13 };

+			uint16 hbits = base_table[bits>>23] + static_cast<uint16>((bits&0x7FFFFF)>>shift_table[bits>>23]);

+			if(R == std::round_to_nearest)

+				hbits += (((bits&0x7FFFFF)>>(shift_table[bits>>23]-1))|(((bits>>23)&0xFF)==102)) & ((hbits&0x7C00)!=0x7C00)

+				#if HALF_ROUND_TIES_TO_EVEN

+					& (((((static_cast<uint32>(1)<<(shift_table[bits>>23]-1))-1)&bits)!=0)|hbits)

+				#endif

+				;

+			else if(R == std::round_toward_zero)

+				hbits -= ((hbits&0x7FFF)==0x7C00) & ~shift_table[bits>>23];

+			else if(R == std::round_toward_infinity)

+				hbits += ((((bits&0x7FFFFF&((static_cast<uint32>(1)<<(shift_table[bits>>23]))-1))!=0)|(((bits>>23)<=102)&

+					((bits>>23)!=0)))&(hbits<0x7C00)) - ((hbits==0xFC00)&((bits>>23)!=511));

+			else if(R == std::round_toward_neg_infinity)

+				hbits += ((((bits&0x7FFFFF&((static_cast<uint32>(1)<<(shift_table[bits>>23]))-1))!=0)|(((bits>>23)<=358)&

+					((bits>>23)!=256)))&(hbits<0xFC00)&(hbits>>15)) - ((hbits==0x7C00)&((bits>>23)!=255));

+			return hbits;

+		}

+

+		/// Convert IEEE double-precision to half-precision.

+		/// \tparam R rounding mode to use, `std::round_indeterminate` for fastest rounding

+		/// \param value double-precision value

+		/// \return binary representation of half-precision value

+		template<std::float_round_style R> uint16 float2half_impl(double value, true_type)

+		{

+			typedef bits<float>::type uint32;

+			typedef bits<double>::type uint64;

+			uint64 bits;// = *reinterpret_cast<uint64*>(&value);		//violating strict aliasing!

+			std::memcpy(&bits, &value, sizeof(double));

+			uint32 hi = bits >> 32, lo = bits & 0xFFFFFFFF;

+			uint16 hbits = (hi>>16) & 0x8000;

+			hi &= 0x7FFFFFFF;

+			int exp = hi >> 20;

+			if(exp == 2047)

+				return hbits | 0x7C00 | (0x3FF&-static_cast<unsigned>((bits&0xFFFFFFFFFFFFF)!=0));

+			if(exp > 1038)

+			{

+				if(R == std::round_toward_infinity)

+					return hbits | 0x7C00 - (hbits>>15);

+				if(R == std::round_toward_neg_infinity)

+					return hbits | 0x7BFF + (hbits>>15);

+				return hbits | 0x7BFF + (R!=std::round_toward_zero);

+			}

+			int g, s = lo != 0;

+			if(exp > 1008)

+			{

+				g = (hi>>9) & 1;

+				s |= (hi&0x1FF) != 0;

+				hbits |= ((exp-1008)<<10) | ((hi>>10)&0x3FF);

+			}

+			else if(exp > 997)

+			{

+				int i = 1018 - exp;

+				hi = (hi&0xFFFFF) | 0x100000;

+				g = (hi>>i) & 1;

+				s |= (hi&((1L<<i)-1)) != 0;

+				hbits |= hi >> (i+1);

+			}

+			else

+			{

+				g = 0;

+				s |= hi != 0;

+			}

+			if(R == std::round_to_nearest)

+				#if HALF_ROUND_TIES_TO_EVEN

+					hbits += g & (s|hbits);

+				#else

+					hbits += g;

+				#endif

+			else if(R == std::round_toward_infinity)

+				hbits += ~(hbits>>15) & (s|g);

+			else if(R == std::round_toward_neg_infinity)

+				hbits += (hbits>>15) & (g|s);

+			return hbits;

+		}

+

+		/// Convert non-IEEE floating point to half-precision.

+		/// \tparam R rounding mode to use, `std::round_indeterminate` for fastest rounding

+		/// \tparam T source type (builtin floating point type)

+		/// \param value floating point value

+		/// \return binary representation of half-precision value

+		template<std::float_round_style R,typename T> uint16 float2half_impl(T value, ...)

+		{

+			uint16 hbits = static_cast<unsigned>(builtin_signbit(value)) << 15;

+			if(value == T())

+				return hbits;

+			if(builtin_isnan(value))

+				return hbits | 0x7FFF;

+			if(builtin_isinf(value))

+				return hbits | 0x7C00;

+			int exp;

+			std::frexp(value, &exp);

+			if(exp > 16)

+			{

+				if(R == std::round_toward_infinity)

+					return hbits | (0x7C00-(hbits>>15));

+				else if(R == std::round_toward_neg_infinity)

+					return hbits | (0x7BFF+(hbits>>15));

+				return hbits | (0x7BFF+(R!=std::round_toward_zero));

+			}

+			if(exp < -13)

+				value = std::ldexp(value, 24);

+			else

+			{

+				value = std::ldexp(value, 11-exp);

+				hbits |= ((exp+13)<<10);

+			}

+			T ival, frac = std::modf(value, &ival);

+			hbits += static_cast<uint16>(std::abs(static_cast<int>(ival)));

+			if(R == std::round_to_nearest)

+			{

+				frac = std::abs(frac);

+				#if HALF_ROUND_TIES_TO_EVEN

+					hbits += (frac>T(0.5)) | ((frac==T(0.5))&hbits);

+				#else

+					hbits += frac >= T(0.5);

+				#endif

+			}

+			else if(R == std::round_toward_infinity)

+				hbits += frac > T();

+			else if(R == std::round_toward_neg_infinity)

+				hbits += frac < T();

+			return hbits;

+		}

+

+		/// Convert floating point to half-precision.

+		/// \tparam R rounding mode to use, `std::round_indeterminate` for fastest rounding

+		/// \tparam T source type (builtin floating point type)

+		/// \param value floating point value

+		/// \return binary representation of half-precision value

+		template<std::float_round_style R,typename T> uint16 float2half(T value)

+		{

+			return float2half_impl<R>(value, bool_type<std::numeric_limits<T>::is_iec559&&sizeof(typename bits<T>::type)==sizeof(T)>());

+		}

+

+		/// Convert integer to half-precision floating point.

+		/// \tparam R rounding mode to use, `std::round_indeterminate` for fastest rounding

+		/// \tparam S `true` if value negative, `false` else

+		/// \tparam T type to convert (builtin integer type)

+		/// \param value non-negative integral value

+		/// \return binary representation of half-precision value

+		template<std::float_round_style R,bool S,typename T> uint16 int2half_impl(T value)

+		{

+		#if HALF_ENABLE_CPP11_STATIC_ASSERT && HALF_ENABLE_CPP11_TYPE_TRAITS

+			static_assert(std::is_integral<T>::value, "int to half conversion only supports builtin integer types");

+		#endif

+			if(S)

+				value = -value;

+			uint16 bits = S << 15;

+			if(value > 0xFFFF)

+			{

+				if(R == std::round_toward_infinity)

+					bits |= 0x7C00 - S;

+				else if(R == std::round_toward_neg_infinity)

+					bits |= 0x7BFF + S;

+				else

+					bits |= 0x7BFF + (R!=std::round_toward_zero);

+			}

+			else if(value)

+			{

+				unsigned int m = value, exp = 24;

+				for(; m<0x400; m<<=1,--exp) ;

+				for(; m>0x7FF; m>>=1,++exp) ;

+				bits |= (exp<<10) + m;

+				if(exp > 24)

+				{

+					if(R == std::round_to_nearest)

+						bits += (value>>(exp-25)) & 1

+						#if HALF_ROUND_TIES_TO_EVEN

+							& (((((1<<(exp-25))-1)&value)!=0)|bits)

+						#endif

+						;

+					else if(R == std::round_toward_infinity)

+						bits += ((value&((1<<(exp-24))-1))!=0) & !S;

+					else if(R == std::round_toward_neg_infinity)

+						bits += ((value&((1<<(exp-24))-1))!=0) & S;

+				}

+			}

+			return bits;

+		}

+

+		/// Convert integer to half-precision floating point.

+		/// \tparam R rounding mode to use, `std::round_indeterminate` for fastest rounding

+		/// \tparam T type to convert (builtin integer type)

+		/// \param value integral value

+		/// \return binary representation of half-precision value

+		template<std::float_round_style R,typename T> uint16 int2half(T value)

+		{

+			return (value<0) ? int2half_impl<R,true>(value) : int2half_impl<R,false>(value);

+		}

+

+		/// Convert half-precision to IEEE single-precision.

+		/// Credit for this goes to [Jeroen van der Zijp](ftp://ftp.fox-toolkit.org/pub/fasthalffloatconversion.pdf).

+		/// \param value binary representation of half-precision value

+		/// \return single-precision value

+		inline float half2float_impl(uint16 value, float, true_type)

+		{

+			typedef bits<float>::type uint32;

+/*			uint32 bits = static_cast<uint32>(value&0x8000) << 16;

+			int abs = value & 0x7FFF;

+			if(abs)

+			{

+				bits |= 0x38000000 << static_cast<unsigned>(abs>=0x7C00);

+				for(; abs<0x400; abs<<=1,bits-=0x800000) ;

+				bits += static_cast<uint32>(abs) << 13;

+			}

+*/			static const uint32 mantissa_table[2048] = { 

+				0x00000000, 0x33800000, 0x34000000, 0x34400000, 0x34800000, 0x34A00000, 0x34C00000, 0x34E00000, 0x35000000, 0x35100000, 0x35200000, 0x35300000, 0x35400000, 0x35500000, 0x35600000, 0x35700000, 

+				0x35800000, 0x35880000, 0x35900000, 0x35980000, 0x35A00000, 0x35A80000, 0x35B00000, 0x35B80000, 0x35C00000, 0x35C80000, 0x35D00000, 0x35D80000, 0x35E00000, 0x35E80000, 0x35F00000, 0x35F80000, 

+				0x36000000, 0x36040000, 0x36080000, 0x360C0000, 0x36100000, 0x36140000, 0x36180000, 0x361C0000, 0x36200000, 0x36240000, 0x36280000, 0x362C0000, 0x36300000, 0x36340000, 0x36380000, 0x363C0000, 

+				0x36400000, 0x36440000, 0x36480000, 0x364C0000, 0x36500000, 0x36540000, 0x36580000, 0x365C0000, 0x36600000, 0x36640000, 0x36680000, 0x366C0000, 0x36700000, 0x36740000, 0x36780000, 0x367C0000, 

+				0x36800000, 0x36820000, 0x36840000, 0x36860000, 0x36880000, 0x368A0000, 0x368C0000, 0x368E0000, 0x36900000, 0x36920000, 0x36940000, 0x36960000, 0x36980000, 0x369A0000, 0x369C0000, 0x369E0000, 

+				0x36A00000, 0x36A20000, 0x36A40000, 0x36A60000, 0x36A80000, 0x36AA0000, 0x36AC0000, 0x36AE0000, 0x36B00000, 0x36B20000, 0x36B40000, 0x36B60000, 0x36B80000, 0x36BA0000, 0x36BC0000, 0x36BE0000, 

+				0x36C00000, 0x36C20000, 0x36C40000, 0x36C60000, 0x36C80000, 0x36CA0000, 0x36CC0000, 0x36CE0000, 0x36D00000, 0x36D20000, 0x36D40000, 0x36D60000, 0x36D80000, 0x36DA0000, 0x36DC0000, 0x36DE0000, 

+				0x36E00000, 0x36E20000, 0x36E40000, 0x36E60000, 0x36E80000, 0x36EA0000, 0x36EC0000, 0x36EE0000, 0x36F00000, 0x36F20000, 0x36F40000, 0x36F60000, 0x36F80000, 0x36FA0000, 0x36FC0000, 0x36FE0000, 

+				0x37000000, 0x37010000, 0x37020000, 0x37030000, 0x37040000, 0x37050000, 0x37060000, 0x37070000, 0x37080000, 0x37090000, 0x370A0000, 0x370B0000, 0x370C0000, 0x370D0000, 0x370E0000, 0x370F0000, 

+				0x37100000, 0x37110000, 0x37120000, 0x37130000, 0x37140000, 0x37150000, 0x37160000, 0x37170000, 0x37180000, 0x37190000, 0x371A0000, 0x371B0000, 0x371C0000, 0x371D0000, 0x371E0000, 0x371F0000, 

+				0x37200000, 0x37210000, 0x37220000, 0x37230000, 0x37240000, 0x37250000, 0x37260000, 0x37270000, 0x37280000, 0x37290000, 0x372A0000, 0x372B0000, 0x372C0000, 0x372D0000, 0x372E0000, 0x372F0000, 

+				0x37300000, 0x37310000, 0x37320000, 0x37330000, 0x37340000, 0x37350000, 0x37360000, 0x37370000, 0x37380000, 0x37390000, 0x373A0000, 0x373B0000, 0x373C0000, 0x373D0000, 0x373E0000, 0x373F0000, 

+				0x37400000, 0x37410000, 0x37420000, 0x37430000, 0x37440000, 0x37450000, 0x37460000, 0x37470000, 0x37480000, 0x37490000, 0x374A0000, 0x374B0000, 0x374C0000, 0x374D0000, 0x374E0000, 0x374F0000, 

+				0x37500000, 0x37510000, 0x37520000, 0x37530000, 0x37540000, 0x37550000, 0x37560000, 0x37570000, 0x37580000, 0x37590000, 0x375A0000, 0x375B0000, 0x375C0000, 0x375D0000, 0x375E0000, 0x375F0000, 

+				0x37600000, 0x37610000, 0x37620000, 0x37630000, 0x37640000, 0x37650000, 0x37660000, 0x37670000, 0x37680000, 0x37690000, 0x376A0000, 0x376B0000, 0x376C0000, 0x376D0000, 0x376E0000, 0x376F0000, 

+				0x37700000, 0x37710000, 0x37720000, 0x37730000, 0x37740000, 0x37750000, 0x37760000, 0x37770000, 0x37780000, 0x37790000, 0x377A0000, 0x377B0000, 0x377C0000, 0x377D0000, 0x377E0000, 0x377F0000, 

+				0x37800000, 0x37808000, 0x37810000, 0x37818000, 0x37820000, 0x37828000, 0x37830000, 0x37838000, 0x37840000, 0x37848000, 0x37850000, 0x37858000, 0x37860000, 0x37868000, 0x37870000, 0x37878000, 

+				0x37880000, 0x37888000, 0x37890000, 0x37898000, 0x378A0000, 0x378A8000, 0x378B0000, 0x378B8000, 0x378C0000, 0x378C8000, 0x378D0000, 0x378D8000, 0x378E0000, 0x378E8000, 0x378F0000, 0x378F8000, 

+				0x37900000, 0x37908000, 0x37910000, 0x37918000, 0x37920000, 0x37928000, 0x37930000, 0x37938000, 0x37940000, 0x37948000, 0x37950000, 0x37958000, 0x37960000, 0x37968000, 0x37970000, 0x37978000, 

+				0x37980000, 0x37988000, 0x37990000, 0x37998000, 0x379A0000, 0x379A8000, 0x379B0000, 0x379B8000, 0x379C0000, 0x379C8000, 0x379D0000, 0x379D8000, 0x379E0000, 0x379E8000, 0x379F0000, 0x379F8000, 

+				0x37A00000, 0x37A08000, 0x37A10000, 0x37A18000, 0x37A20000, 0x37A28000, 0x37A30000, 0x37A38000, 0x37A40000, 0x37A48000, 0x37A50000, 0x37A58000, 0x37A60000, 0x37A68000, 0x37A70000, 0x37A78000, 

+				0x37A80000, 0x37A88000, 0x37A90000, 0x37A98000, 0x37AA0000, 0x37AA8000, 0x37AB0000, 0x37AB8000, 0x37AC0000, 0x37AC8000, 0x37AD0000, 0x37AD8000, 0x37AE0000, 0x37AE8000, 0x37AF0000, 0x37AF8000, 

+				0x37B00000, 0x37B08000, 0x37B10000, 0x37B18000, 0x37B20000, 0x37B28000, 0x37B30000, 0x37B38000, 0x37B40000, 0x37B48000, 0x37B50000, 0x37B58000, 0x37B60000, 0x37B68000, 0x37B70000, 0x37B78000, 

+				0x37B80000, 0x37B88000, 0x37B90000, 0x37B98000, 0x37BA0000, 0x37BA8000, 0x37BB0000, 0x37BB8000, 0x37BC0000, 0x37BC8000, 0x37BD0000, 0x37BD8000, 0x37BE0000, 0x37BE8000, 0x37BF0000, 0x37BF8000, 

+				0x37C00000, 0x37C08000, 0x37C10000, 0x37C18000, 0x37C20000, 0x37C28000, 0x37C30000, 0x37C38000, 0x37C40000, 0x37C48000, 0x37C50000, 0x37C58000, 0x37C60000, 0x37C68000, 0x37C70000, 0x37C78000, 

+				0x37C80000, 0x37C88000, 0x37C90000, 0x37C98000, 0x37CA0000, 0x37CA8000, 0x37CB0000, 0x37CB8000, 0x37CC0000, 0x37CC8000, 0x37CD0000, 0x37CD8000, 0x37CE0000, 0x37CE8000, 0x37CF0000, 0x37CF8000, 

+				0x37D00000, 0x37D08000, 0x37D10000, 0x37D18000, 0x37D20000, 0x37D28000, 0x37D30000, 0x37D38000, 0x37D40000, 0x37D48000, 0x37D50000, 0x37D58000, 0x37D60000, 0x37D68000, 0x37D70000, 0x37D78000, 

+				0x37D80000, 0x37D88000, 0x37D90000, 0x37D98000, 0x37DA0000, 0x37DA8000, 0x37DB0000, 0x37DB8000, 0x37DC0000, 0x37DC8000, 0x37DD0000, 0x37DD8000, 0x37DE0000, 0x37DE8000, 0x37DF0000, 0x37DF8000, 

+				0x37E00000, 0x37E08000, 0x37E10000, 0x37E18000, 0x37E20000, 0x37E28000, 0x37E30000, 0x37E38000, 0x37E40000, 0x37E48000, 0x37E50000, 0x37E58000, 0x37E60000, 0x37E68000, 0x37E70000, 0x37E78000, 

+				0x37E80000, 0x37E88000, 0x37E90000, 0x37E98000, 0x37EA0000, 0x37EA8000, 0x37EB0000, 0x37EB8000, 0x37EC0000, 0x37EC8000, 0x37ED0000, 0x37ED8000, 0x37EE0000, 0x37EE8000, 0x37EF0000, 0x37EF8000, 

+				0x37F00000, 0x37F08000, 0x37F10000, 0x37F18000, 0x37F20000, 0x37F28000, 0x37F30000, 0x37F38000, 0x37F40000, 0x37F48000, 0x37F50000, 0x37F58000, 0x37F60000, 0x37F68000, 0x37F70000, 0x37F78000, 

+				0x37F80000, 0x37F88000, 0x37F90000, 0x37F98000, 0x37FA0000, 0x37FA8000, 0x37FB0000, 0x37FB8000, 0x37FC0000, 0x37FC8000, 0x37FD0000, 0x37FD8000, 0x37FE0000, 0x37FE8000, 0x37FF0000, 0x37FF8000, 

+				0x38000000, 0x38004000, 0x38008000, 0x3800C000, 0x38010000, 0x38014000, 0x38018000, 0x3801C000, 0x38020000, 0x38024000, 0x38028000, 0x3802C000, 0x38030000, 0x38034000, 0x38038000, 0x3803C000, 

+				0x38040000, 0x38044000, 0x38048000, 0x3804C000, 0x38050000, 0x38054000, 0x38058000, 0x3805C000, 0x38060000, 0x38064000, 0x38068000, 0x3806C000, 0x38070000, 0x38074000, 0x38078000, 0x3807C000, 

+				0x38080000, 0x38084000, 0x38088000, 0x3808C000, 0x38090000, 0x38094000, 0x38098000, 0x3809C000, 0x380A0000, 0x380A4000, 0x380A8000, 0x380AC000, 0x380B0000, 0x380B4000, 0x380B8000, 0x380BC000, 

+				0x380C0000, 0x380C4000, 0x380C8000, 0x380CC000, 0x380D0000, 0x380D4000, 0x380D8000, 0x380DC000, 0x380E0000, 0x380E4000, 0x380E8000, 0x380EC000, 0x380F0000, 0x380F4000, 0x380F8000, 0x380FC000, 

+				0x38100000, 0x38104000, 0x38108000, 0x3810C000, 0x38110000, 0x38114000, 0x38118000, 0x3811C000, 0x38120000, 0x38124000, 0x38128000, 0x3812C000, 0x38130000, 0x38134000, 0x38138000, 0x3813C000, 

+				0x38140000, 0x38144000, 0x38148000, 0x3814C000, 0x38150000, 0x38154000, 0x38158000, 0x3815C000, 0x38160000, 0x38164000, 0x38168000, 0x3816C000, 0x38170000, 0x38174000, 0x38178000, 0x3817C000, 

+				0x38180000, 0x38184000, 0x38188000, 0x3818C000, 0x38190000, 0x38194000, 0x38198000, 0x3819C000, 0x381A0000, 0x381A4000, 0x381A8000, 0x381AC000, 0x381B0000, 0x381B4000, 0x381B8000, 0x381BC000, 

+				0x381C0000, 0x381C4000, 0x381C8000, 0x381CC000, 0x381D0000, 0x381D4000, 0x381D8000, 0x381DC000, 0x381E0000, 0x381E4000, 0x381E8000, 0x381EC000, 0x381F0000, 0x381F4000, 0x381F8000, 0x381FC000, 

+				0x38200000, 0x38204000, 0x38208000, 0x3820C000, 0x38210000, 0x38214000, 0x38218000, 0x3821C000, 0x38220000, 0x38224000, 0x38228000, 0x3822C000, 0x38230000, 0x38234000, 0x38238000, 0x3823C000, 

+				0x38240000, 0x38244000, 0x38248000, 0x3824C000, 0x38250000, 0x38254000, 0x38258000, 0x3825C000, 0x38260000, 0x38264000, 0x38268000, 0x3826C000, 0x38270000, 0x38274000, 0x38278000, 0x3827C000, 

+				0x38280000, 0x38284000, 0x38288000, 0x3828C000, 0x38290000, 0x38294000, 0x38298000, 0x3829C000, 0x382A0000, 0x382A4000, 0x382A8000, 0x382AC000, 0x382B0000, 0x382B4000, 0x382B8000, 0x382BC000, 

+				0x382C0000, 0x382C4000, 0x382C8000, 0x382CC000, 0x382D0000, 0x382D4000, 0x382D8000, 0x382DC000, 0x382E0000, 0x382E4000, 0x382E8000, 0x382EC000, 0x382F0000, 0x382F4000, 0x382F8000, 0x382FC000, 

+				0x38300000, 0x38304000, 0x38308000, 0x3830C000, 0x38310000, 0x38314000, 0x38318000, 0x3831C000, 0x38320000, 0x38324000, 0x38328000, 0x3832C000, 0x38330000, 0x38334000, 0x38338000, 0x3833C000, 

+				0x38340000, 0x38344000, 0x38348000, 0x3834C000, 0x38350000, 0x38354000, 0x38358000, 0x3835C000, 0x38360000, 0x38364000, 0x38368000, 0x3836C000, 0x38370000, 0x38374000, 0x38378000, 0x3837C000, 

+				0x38380000, 0x38384000, 0x38388000, 0x3838C000, 0x38390000, 0x38394000, 0x38398000, 0x3839C000, 0x383A0000, 0x383A4000, 0x383A8000, 0x383AC000, 0x383B0000, 0x383B4000, 0x383B8000, 0x383BC000, 

+				0x383C0000, 0x383C4000, 0x383C8000, 0x383CC000, 0x383D0000, 0x383D4000, 0x383D8000, 0x383DC000, 0x383E0000, 0x383E4000, 0x383E8000, 0x383EC000, 0x383F0000, 0x383F4000, 0x383F8000, 0x383FC000, 

+				0x38400000, 0x38404000, 0x38408000, 0x3840C000, 0x38410000, 0x38414000, 0x38418000, 0x3841C000, 0x38420000, 0x38424000, 0x38428000, 0x3842C000, 0x38430000, 0x38434000, 0x38438000, 0x3843C000, 

+				0x38440000, 0x38444000, 0x38448000, 0x3844C000, 0x38450000, 0x38454000, 0x38458000, 0x3845C000, 0x38460000, 0x38464000, 0x38468000, 0x3846C000, 0x38470000, 0x38474000, 0x38478000, 0x3847C000, 

+				0x38480000, 0x38484000, 0x38488000, 0x3848C000, 0x38490000, 0x38494000, 0x38498000, 0x3849C000, 0x384A0000, 0x384A4000, 0x384A8000, 0x384AC000, 0x384B0000, 0x384B4000, 0x384B8000, 0x384BC000, 

+				0x384C0000, 0x384C4000, 0x384C8000, 0x384CC000, 0x384D0000, 0x384D4000, 0x384D8000, 0x384DC000, 0x384E0000, 0x384E4000, 0x384E8000, 0x384EC000, 0x384F0000, 0x384F4000, 0x384F8000, 0x384FC000, 

+				0x38500000, 0x38504000, 0x38508000, 0x3850C000, 0x38510000, 0x38514000, 0x38518000, 0x3851C000, 0x38520000, 0x38524000, 0x38528000, 0x3852C000, 0x38530000, 0x38534000, 0x38538000, 0x3853C000, 

+				0x38540000, 0x38544000, 0x38548000, 0x3854C000, 0x38550000, 0x38554000, 0x38558000, 0x3855C000, 0x38560000, 0x38564000, 0x38568000, 0x3856C000, 0x38570000, 0x38574000, 0x38578000, 0x3857C000, 

+				0x38580000, 0x38584000, 0x38588000, 0x3858C000, 0x38590000, 0x38594000, 0x38598000, 0x3859C000, 0x385A0000, 0x385A4000, 0x385A8000, 0x385AC000, 0x385B0000, 0x385B4000, 0x385B8000, 0x385BC000, 

+				0x385C0000, 0x385C4000, 0x385C8000, 0x385CC000, 0x385D0000, 0x385D4000, 0x385D8000, 0x385DC000, 0x385E0000, 0x385E4000, 0x385E8000, 0x385EC000, 0x385F0000, 0x385F4000, 0x385F8000, 0x385FC000, 

+				0x38600000, 0x38604000, 0x38608000, 0x3860C000, 0x38610000, 0x38614000, 0x38618000, 0x3861C000, 0x38620000, 0x38624000, 0x38628000, 0x3862C000, 0x38630000, 0x38634000, 0x38638000, 0x3863C000, 

+				0x38640000, 0x38644000, 0x38648000, 0x3864C000, 0x38650000, 0x38654000, 0x38658000, 0x3865C000, 0x38660000, 0x38664000, 0x38668000, 0x3866C000, 0x38670000, 0x38674000, 0x38678000, 0x3867C000, 

+				0x38680000, 0x38684000, 0x38688000, 0x3868C000, 0x38690000, 0x38694000, 0x38698000, 0x3869C000, 0x386A0000, 0x386A4000, 0x386A8000, 0x386AC000, 0x386B0000, 0x386B4000, 0x386B8000, 0x386BC000, 

+				0x386C0000, 0x386C4000, 0x386C8000, 0x386CC000, 0x386D0000, 0x386D4000, 0x386D8000, 0x386DC000, 0x386E0000, 0x386E4000, 0x386E8000, 0x386EC000, 0x386F0000, 0x386F4000, 0x386F8000, 0x386FC000, 

+				0x38700000, 0x38704000, 0x38708000, 0x3870C000, 0x38710000, 0x38714000, 0x38718000, 0x3871C000, 0x38720000, 0x38724000, 0x38728000, 0x3872C000, 0x38730000, 0x38734000, 0x38738000, 0x3873C000, 

+				0x38740000, 0x38744000, 0x38748000, 0x3874C000, 0x38750000, 0x38754000, 0x38758000, 0x3875C000, 0x38760000, 0x38764000, 0x38768000, 0x3876C000, 0x38770000, 0x38774000, 0x38778000, 0x3877C000, 

+				0x38780000, 0x38784000, 0x38788000, 0x3878C000, 0x38790000, 0x38794000, 0x38798000, 0x3879C000, 0x387A0000, 0x387A4000, 0x387A8000, 0x387AC000, 0x387B0000, 0x387B4000, 0x387B8000, 0x387BC000, 

+				0x387C0000, 0x387C4000, 0x387C8000, 0x387CC000, 0x387D0000, 0x387D4000, 0x387D8000, 0x387DC000, 0x387E0000, 0x387E4000, 0x387E8000, 0x387EC000, 0x387F0000, 0x387F4000, 0x387F8000, 0x387FC000, 

+				0x38000000, 0x38002000, 0x38004000, 0x38006000, 0x38008000, 0x3800A000, 0x3800C000, 0x3800E000, 0x38010000, 0x38012000, 0x38014000, 0x38016000, 0x38018000, 0x3801A000, 0x3801C000, 0x3801E000, 

+				0x38020000, 0x38022000, 0x38024000, 0x38026000, 0x38028000, 0x3802A000, 0x3802C000, 0x3802E000, 0x38030000, 0x38032000, 0x38034000, 0x38036000, 0x38038000, 0x3803A000, 0x3803C000, 0x3803E000, 

+				0x38040000, 0x38042000, 0x38044000, 0x38046000, 0x38048000, 0x3804A000, 0x3804C000, 0x3804E000, 0x38050000, 0x38052000, 0x38054000, 0x38056000, 0x38058000, 0x3805A000, 0x3805C000, 0x3805E000, 

+				0x38060000, 0x38062000, 0x38064000, 0x38066000, 0x38068000, 0x3806A000, 0x3806C000, 0x3806E000, 0x38070000, 0x38072000, 0x38074000, 0x38076000, 0x38078000, 0x3807A000, 0x3807C000, 0x3807E000, 

+				0x38080000, 0x38082000, 0x38084000, 0x38086000, 0x38088000, 0x3808A000, 0x3808C000, 0x3808E000, 0x38090000, 0x38092000, 0x38094000, 0x38096000, 0x38098000, 0x3809A000, 0x3809C000, 0x3809E000, 

+				0x380A0000, 0x380A2000, 0x380A4000, 0x380A6000, 0x380A8000, 0x380AA000, 0x380AC000, 0x380AE000, 0x380B0000, 0x380B2000, 0x380B4000, 0x380B6000, 0x380B8000, 0x380BA000, 0x380BC000, 0x380BE000, 

+				0x380C0000, 0x380C2000, 0x380C4000, 0x380C6000, 0x380C8000, 0x380CA000, 0x380CC000, 0x380CE000, 0x380D0000, 0x380D2000, 0x380D4000, 0x380D6000, 0x380D8000, 0x380DA000, 0x380DC000, 0x380DE000, 

+				0x380E0000, 0x380E2000, 0x380E4000, 0x380E6000, 0x380E8000, 0x380EA000, 0x380EC000, 0x380EE000, 0x380F0000, 0x380F2000, 0x380F4000, 0x380F6000, 0x380F8000, 0x380FA000, 0x380FC000, 0x380FE000, 

+				0x38100000, 0x38102000, 0x38104000, 0x38106000, 0x38108000, 0x3810A000, 0x3810C000, 0x3810E000, 0x38110000, 0x38112000, 0x38114000, 0x38116000, 0x38118000, 0x3811A000, 0x3811C000, 0x3811E000, 

+				0x38120000, 0x38122000, 0x38124000, 0x38126000, 0x38128000, 0x3812A000, 0x3812C000, 0x3812E000, 0x38130000, 0x38132000, 0x38134000, 0x38136000, 0x38138000, 0x3813A000, 0x3813C000, 0x3813E000, 

+				0x38140000, 0x38142000, 0x38144000, 0x38146000, 0x38148000, 0x3814A000, 0x3814C000, 0x3814E000, 0x38150000, 0x38152000, 0x38154000, 0x38156000, 0x38158000, 0x3815A000, 0x3815C000, 0x3815E000, 

+				0x38160000, 0x38162000, 0x38164000, 0x38166000, 0x38168000, 0x3816A000, 0x3816C000, 0x3816E000, 0x38170000, 0x38172000, 0x38174000, 0x38176000, 0x38178000, 0x3817A000, 0x3817C000, 0x3817E000, 

+				0x38180000, 0x38182000, 0x38184000, 0x38186000, 0x38188000, 0x3818A000, 0x3818C000, 0x3818E000, 0x38190000, 0x38192000, 0x38194000, 0x38196000, 0x38198000, 0x3819A000, 0x3819C000, 0x3819E000, 

+				0x381A0000, 0x381A2000, 0x381A4000, 0x381A6000, 0x381A8000, 0x381AA000, 0x381AC000, 0x381AE000, 0x381B0000, 0x381B2000, 0x381B4000, 0x381B6000, 0x381B8000, 0x381BA000, 0x381BC000, 0x381BE000, 

+				0x381C0000, 0x381C2000, 0x381C4000, 0x381C6000, 0x381C8000, 0x381CA000, 0x381CC000, 0x381CE000, 0x381D0000, 0x381D2000, 0x381D4000, 0x381D6000, 0x381D8000, 0x381DA000, 0x381DC000, 0x381DE000, 

+				0x381E0000, 0x381E2000, 0x381E4000, 0x381E6000, 0x381E8000, 0x381EA000, 0x381EC000, 0x381EE000, 0x381F0000, 0x381F2000, 0x381F4000, 0x381F6000, 0x381F8000, 0x381FA000, 0x381FC000, 0x381FE000, 

+				0x38200000, 0x38202000, 0x38204000, 0x38206000, 0x38208000, 0x3820A000, 0x3820C000, 0x3820E000, 0x38210000, 0x38212000, 0x38214000, 0x38216000, 0x38218000, 0x3821A000, 0x3821C000, 0x3821E000, 

+				0x38220000, 0x38222000, 0x38224000, 0x38226000, 0x38228000, 0x3822A000, 0x3822C000, 0x3822E000, 0x38230000, 0x38232000, 0x38234000, 0x38236000, 0x38238000, 0x3823A000, 0x3823C000, 0x3823E000, 

+				0x38240000, 0x38242000, 0x38244000, 0x38246000, 0x38248000, 0x3824A000, 0x3824C000, 0x3824E000, 0x38250000, 0x38252000, 0x38254000, 0x38256000, 0x38258000, 0x3825A000, 0x3825C000, 0x3825E000, 

+				0x38260000, 0x38262000, 0x38264000, 0x38266000, 0x38268000, 0x3826A000, 0x3826C000, 0x3826E000, 0x38270000, 0x38272000, 0x38274000, 0x38276000, 0x38278000, 0x3827A000, 0x3827C000, 0x3827E000, 

+				0x38280000, 0x38282000, 0x38284000, 0x38286000, 0x38288000, 0x3828A000, 0x3828C000, 0x3828E000, 0x38290000, 0x38292000, 0x38294000, 0x38296000, 0x38298000, 0x3829A000, 0x3829C000, 0x3829E000, 

+				0x382A0000, 0x382A2000, 0x382A4000, 0x382A6000, 0x382A8000, 0x382AA000, 0x382AC000, 0x382AE000, 0x382B0000, 0x382B2000, 0x382B4000, 0x382B6000, 0x382B8000, 0x382BA000, 0x382BC000, 0x382BE000, 

+				0x382C0000, 0x382C2000, 0x382C4000, 0x382C6000, 0x382C8000, 0x382CA000, 0x382CC000, 0x382CE000, 0x382D0000, 0x382D2000, 0x382D4000, 0x382D6000, 0x382D8000, 0x382DA000, 0x382DC000, 0x382DE000, 

+				0x382E0000, 0x382E2000, 0x382E4000, 0x382E6000, 0x382E8000, 0x382EA000, 0x382EC000, 0x382EE000, 0x382F0000, 0x382F2000, 0x382F4000, 0x382F6000, 0x382F8000, 0x382FA000, 0x382FC000, 0x382FE000, 

+				0x38300000, 0x38302000, 0x38304000, 0x38306000, 0x38308000, 0x3830A000, 0x3830C000, 0x3830E000, 0x38310000, 0x38312000, 0x38314000, 0x38316000, 0x38318000, 0x3831A000, 0x3831C000, 0x3831E000, 

+				0x38320000, 0x38322000, 0x38324000, 0x38326000, 0x38328000, 0x3832A000, 0x3832C000, 0x3832E000, 0x38330000, 0x38332000, 0x38334000, 0x38336000, 0x38338000, 0x3833A000, 0x3833C000, 0x3833E000, 

+				0x38340000, 0x38342000, 0x38344000, 0x38346000, 0x38348000, 0x3834A000, 0x3834C000, 0x3834E000, 0x38350000, 0x38352000, 0x38354000, 0x38356000, 0x38358000, 0x3835A000, 0x3835C000, 0x3835E000, 

+				0x38360000, 0x38362000, 0x38364000, 0x38366000, 0x38368000, 0x3836A000, 0x3836C000, 0x3836E000, 0x38370000, 0x38372000, 0x38374000, 0x38376000, 0x38378000, 0x3837A000, 0x3837C000, 0x3837E000, 

+				0x38380000, 0x38382000, 0x38384000, 0x38386000, 0x38388000, 0x3838A000, 0x3838C000, 0x3838E000, 0x38390000, 0x38392000, 0x38394000, 0x38396000, 0x38398000, 0x3839A000, 0x3839C000, 0x3839E000, 

+				0x383A0000, 0x383A2000, 0x383A4000, 0x383A6000, 0x383A8000, 0x383AA000, 0x383AC000, 0x383AE000, 0x383B0000, 0x383B2000, 0x383B4000, 0x383B6000, 0x383B8000, 0x383BA000, 0x383BC000, 0x383BE000, 

+				0x383C0000, 0x383C2000, 0x383C4000, 0x383C6000, 0x383C8000, 0x383CA000, 0x383CC000, 0x383CE000, 0x383D0000, 0x383D2000, 0x383D4000, 0x383D6000, 0x383D8000, 0x383DA000, 0x383DC000, 0x383DE000, 

+				0x383E0000, 0x383E2000, 0x383E4000, 0x383E6000, 0x383E8000, 0x383EA000, 0x383EC000, 0x383EE000, 0x383F0000, 0x383F2000, 0x383F4000, 0x383F6000, 0x383F8000, 0x383FA000, 0x383FC000, 0x383FE000, 

+				0x38400000, 0x38402000, 0x38404000, 0x38406000, 0x38408000, 0x3840A000, 0x3840C000, 0x3840E000, 0x38410000, 0x38412000, 0x38414000, 0x38416000, 0x38418000, 0x3841A000, 0x3841C000, 0x3841E000, 

+				0x38420000, 0x38422000, 0x38424000, 0x38426000, 0x38428000, 0x3842A000, 0x3842C000, 0x3842E000, 0x38430000, 0x38432000, 0x38434000, 0x38436000, 0x38438000, 0x3843A000, 0x3843C000, 0x3843E000, 

+				0x38440000, 0x38442000, 0x38444000, 0x38446000, 0x38448000, 0x3844A000, 0x3844C000, 0x3844E000, 0x38450000, 0x38452000, 0x38454000, 0x38456000, 0x38458000, 0x3845A000, 0x3845C000, 0x3845E000, 

+				0x38460000, 0x38462000, 0x38464000, 0x38466000, 0x38468000, 0x3846A000, 0x3846C000, 0x3846E000, 0x38470000, 0x38472000, 0x38474000, 0x38476000, 0x38478000, 0x3847A000, 0x3847C000, 0x3847E000, 

+				0x38480000, 0x38482000, 0x38484000, 0x38486000, 0x38488000, 0x3848A000, 0x3848C000, 0x3848E000, 0x38490000, 0x38492000, 0x38494000, 0x38496000, 0x38498000, 0x3849A000, 0x3849C000, 0x3849E000, 

+				0x384A0000, 0x384A2000, 0x384A4000, 0x384A6000, 0x384A8000, 0x384AA000, 0x384AC000, 0x384AE000, 0x384B0000, 0x384B2000, 0x384B4000, 0x384B6000, 0x384B8000, 0x384BA000, 0x384BC000, 0x384BE000, 

+				0x384C0000, 0x384C2000, 0x384C4000, 0x384C6000, 0x384C8000, 0x384CA000, 0x384CC000, 0x384CE000, 0x384D0000, 0x384D2000, 0x384D4000, 0x384D6000, 0x384D8000, 0x384DA000, 0x384DC000, 0x384DE000, 

+				0x384E0000, 0x384E2000, 0x384E4000, 0x384E6000, 0x384E8000, 0x384EA000, 0x384EC000, 0x384EE000, 0x384F0000, 0x384F2000, 0x384F4000, 0x384F6000, 0x384F8000, 0x384FA000, 0x384FC000, 0x384FE000, 

+				0x38500000, 0x38502000, 0x38504000, 0x38506000, 0x38508000, 0x3850A000, 0x3850C000, 0x3850E000, 0x38510000, 0x38512000, 0x38514000, 0x38516000, 0x38518000, 0x3851A000, 0x3851C000, 0x3851E000, 

+				0x38520000, 0x38522000, 0x38524000, 0x38526000, 0x38528000, 0x3852A000, 0x3852C000, 0x3852E000, 0x38530000, 0x38532000, 0x38534000, 0x38536000, 0x38538000, 0x3853A000, 0x3853C000, 0x3853E000, 

+				0x38540000, 0x38542000, 0x38544000, 0x38546000, 0x38548000, 0x3854A000, 0x3854C000, 0x3854E000, 0x38550000, 0x38552000, 0x38554000, 0x38556000, 0x38558000, 0x3855A000, 0x3855C000, 0x3855E000, 

+				0x38560000, 0x38562000, 0x38564000, 0x38566000, 0x38568000, 0x3856A000, 0x3856C000, 0x3856E000, 0x38570000, 0x38572000, 0x38574000, 0x38576000, 0x38578000, 0x3857A000, 0x3857C000, 0x3857E000, 

+				0x38580000, 0x38582000, 0x38584000, 0x38586000, 0x38588000, 0x3858A000, 0x3858C000, 0x3858E000, 0x38590000, 0x38592000, 0x38594000, 0x38596000, 0x38598000, 0x3859A000, 0x3859C000, 0x3859E000, 

+				0x385A0000, 0x385A2000, 0x385A4000, 0x385A6000, 0x385A8000, 0x385AA000, 0x385AC000, 0x385AE000, 0x385B0000, 0x385B2000, 0x385B4000, 0x385B6000, 0x385B8000, 0x385BA000, 0x385BC000, 0x385BE000, 

+				0x385C0000, 0x385C2000, 0x385C4000, 0x385C6000, 0x385C8000, 0x385CA000, 0x385CC000, 0x385CE000, 0x385D0000, 0x385D2000, 0x385D4000, 0x385D6000, 0x385D8000, 0x385DA000, 0x385DC000, 0x385DE000, 

+				0x385E0000, 0x385E2000, 0x385E4000, 0x385E6000, 0x385E8000, 0x385EA000, 0x385EC000, 0x385EE000, 0x385F0000, 0x385F2000, 0x385F4000, 0x385F6000, 0x385F8000, 0x385FA000, 0x385FC000, 0x385FE000, 

+				0x38600000, 0x38602000, 0x38604000, 0x38606000, 0x38608000, 0x3860A000, 0x3860C000, 0x3860E000, 0x38610000, 0x38612000, 0x38614000, 0x38616000, 0x38618000, 0x3861A000, 0x3861C000, 0x3861E000, 

+				0x38620000, 0x38622000, 0x38624000, 0x38626000, 0x38628000, 0x3862A000, 0x3862C000, 0x3862E000, 0x38630000, 0x38632000, 0x38634000, 0x38636000, 0x38638000, 0x3863A000, 0x3863C000, 0x3863E000, 

+				0x38640000, 0x38642000, 0x38644000, 0x38646000, 0x38648000, 0x3864A000, 0x3864C000, 0x3864E000, 0x38650000, 0x38652000, 0x38654000, 0x38656000, 0x38658000, 0x3865A000, 0x3865C000, 0x3865E000, 

+				0x38660000, 0x38662000, 0x38664000, 0x38666000, 0x38668000, 0x3866A000, 0x3866C000, 0x3866E000, 0x38670000, 0x38672000, 0x38674000, 0x38676000, 0x38678000, 0x3867A000, 0x3867C000, 0x3867E000, 

+				0x38680000, 0x38682000, 0x38684000, 0x38686000, 0x38688000, 0x3868A000, 0x3868C000, 0x3868E000, 0x38690000, 0x38692000, 0x38694000, 0x38696000, 0x38698000, 0x3869A000, 0x3869C000, 0x3869E000, 

+				0x386A0000, 0x386A2000, 0x386A4000, 0x386A6000, 0x386A8000, 0x386AA000, 0x386AC000, 0x386AE000, 0x386B0000, 0x386B2000, 0x386B4000, 0x386B6000, 0x386B8000, 0x386BA000, 0x386BC000, 0x386BE000, 

+				0x386C0000, 0x386C2000, 0x386C4000, 0x386C6000, 0x386C8000, 0x386CA000, 0x386CC000, 0x386CE000, 0x386D0000, 0x386D2000, 0x386D4000, 0x386D6000, 0x386D8000, 0x386DA000, 0x386DC000, 0x386DE000, 

+				0x386E0000, 0x386E2000, 0x386E4000, 0x386E6000, 0x386E8000, 0x386EA000, 0x386EC000, 0x386EE000, 0x386F0000, 0x386F2000, 0x386F4000, 0x386F6000, 0x386F8000, 0x386FA000, 0x386FC000, 0x386FE000, 

+				0x38700000, 0x38702000, 0x38704000, 0x38706000, 0x38708000, 0x3870A000, 0x3870C000, 0x3870E000, 0x38710000, 0x38712000, 0x38714000, 0x38716000, 0x38718000, 0x3871A000, 0x3871C000, 0x3871E000, 

+				0x38720000, 0x38722000, 0x38724000, 0x38726000, 0x38728000, 0x3872A000, 0x3872C000, 0x3872E000, 0x38730000, 0x38732000, 0x38734000, 0x38736000, 0x38738000, 0x3873A000, 0x3873C000, 0x3873E000, 

+				0x38740000, 0x38742000, 0x38744000, 0x38746000, 0x38748000, 0x3874A000, 0x3874C000, 0x3874E000, 0x38750000, 0x38752000, 0x38754000, 0x38756000, 0x38758000, 0x3875A000, 0x3875C000, 0x3875E000, 

+				0x38760000, 0x38762000, 0x38764000, 0x38766000, 0x38768000, 0x3876A000, 0x3876C000, 0x3876E000, 0x38770000, 0x38772000, 0x38774000, 0x38776000, 0x38778000, 0x3877A000, 0x3877C000, 0x3877E000, 

+				0x38780000, 0x38782000, 0x38784000, 0x38786000, 0x38788000, 0x3878A000, 0x3878C000, 0x3878E000, 0x38790000, 0x38792000, 0x38794000, 0x38796000, 0x38798000, 0x3879A000, 0x3879C000, 0x3879E000, 

+				0x387A0000, 0x387A2000, 0x387A4000, 0x387A6000, 0x387A8000, 0x387AA000, 0x387AC000, 0x387AE000, 0x387B0000, 0x387B2000, 0x387B4000, 0x387B6000, 0x387B8000, 0x387BA000, 0x387BC000, 0x387BE000, 

+				0x387C0000, 0x387C2000, 0x387C4000, 0x387C6000, 0x387C8000, 0x387CA000, 0x387CC000, 0x387CE000, 0x387D0000, 0x387D2000, 0x387D4000, 0x387D6000, 0x387D8000, 0x387DA000, 0x387DC000, 0x387DE000, 

+				0x387E0000, 0x387E2000, 0x387E4000, 0x387E6000, 0x387E8000, 0x387EA000, 0x387EC000, 0x387EE000, 0x387F0000, 0x387F2000, 0x387F4000, 0x387F6000, 0x387F8000, 0x387FA000, 0x387FC000, 0x387FE000 };

+			static const uint32 exponent_table[64] = { 

+				0x00000000, 0x00800000, 0x01000000, 0x01800000, 0x02000000, 0x02800000, 0x03000000, 0x03800000, 0x04000000, 0x04800000, 0x05000000, 0x05800000, 0x06000000, 0x06800000, 0x07000000, 0x07800000, 

+				0x08000000, 0x08800000, 0x09000000, 0x09800000, 0x0A000000, 0x0A800000, 0x0B000000, 0x0B800000, 0x0C000000, 0x0C800000, 0x0D000000, 0x0D800000, 0x0E000000, 0x0E800000, 0x0F000000, 0x47800000, 

+				0x80000000, 0x80800000, 0x81000000, 0x81800000, 0x82000000, 0x82800000, 0x83000000, 0x83800000, 0x84000000, 0x84800000, 0x85000000, 0x85800000, 0x86000000, 0x86800000, 0x87000000, 0x87800000, 

+				0x88000000, 0x88800000, 0x89000000, 0x89800000, 0x8A000000, 0x8A800000, 0x8B000000, 0x8B800000, 0x8C000000, 0x8C800000, 0x8D000000, 0x8D800000, 0x8E000000, 0x8E800000, 0x8F000000, 0xC7800000 };

+			static const unsigned short offset_table[64] = { 

+				   0, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 

+				   0, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024 };

+			uint32 bits = mantissa_table[offset_table[value>>10]+(value&0x3FF)] + exponent_table[value>>10];

+//			return *reinterpret_cast<float*>(&bits);			//violating strict aliasing!

+			float out;

+			std::memcpy(&out, &bits, sizeof(float));

+			return out;

+		}

+

+		/// Convert half-precision to IEEE double-precision.

+		/// \param value binary representation of half-precision value

+		/// \return double-precision value

+		inline double half2float_impl(uint16 value, double, true_type)

+		{

+			typedef bits<float>::type uint32;

+			typedef bits<double>::type uint64;

+			uint32 hi = static_cast<uint32>(value&0x8000) << 16;

+			int abs = value & 0x7FFF;

+			if(abs)

+			{

+				hi |= 0x3F000000 << static_cast<unsigned>(abs>=0x7C00);

+				for(; abs<0x400; abs<<=1,hi-=0x100000) ;

+				hi += static_cast<uint32>(abs) << 10;

+			}

+			uint64 bits = static_cast<uint64>(hi) << 32;

+//			return *reinterpret_cast<double*>(&bits);			//violating strict aliasing!

+			double out;

+			std::memcpy(&out, &bits, sizeof(double));

+			return out;

+		}

+

+		/// Convert half-precision to non-IEEE floating point.

+		/// \tparam T type to convert to (builtin integer type)

+		/// \param value binary representation of half-precision value

+		/// \return floating point value

+		template<typename T> T half2float_impl(uint16 value, T, ...)

+		{

+			T out;

+			int abs = value & 0x7FFF;

+			if(abs > 0x7C00)

+				out = std::numeric_limits<T>::has_quiet_NaN ? std::numeric_limits<T>::quiet_NaN() : T();

+			else if(abs == 0x7C00)

+				out = std::numeric_limits<T>::has_infinity ? std::numeric_limits<T>::infinity() : std::numeric_limits<T>::max();

+			else if(abs > 0x3FF)

+				out = std::ldexp(static_cast<T>((abs&0x3FF)|0x400), (abs>>10)-25);

+			else

+				out = std::ldexp(static_cast<T>(abs), -24);

+			return (value&0x8000) ? -out : out;

+		}

+

+		/// Convert half-precision to floating point.

+		/// \tparam T type to convert to (builtin integer type)

+		/// \param value binary representation of half-precision value

+		/// \return floating point value

+		template<typename T> T half2float(uint16 value)

+		{

+			return half2float_impl(value, T(), bool_type<std::numeric_limits<T>::is_iec559&&sizeof(typename bits<T>::type)==sizeof(T)>());

+		}

+

+		/// Convert half-precision floating point to integer.

+		/// \tparam R rounding mode to use, `std::round_indeterminate` for fastest rounding

+		/// \tparam E `true` for round to even, `false` for round away from zero

+		/// \tparam T type to convert to (buitlin integer type with at least 16 bits precision, excluding any implicit sign bits)

+		/// \param value binary representation of half-precision value

+		/// \return integral value

+		template<std::float_round_style R,bool E,typename T> T half2int_impl(uint16 value)

+		{

+		#if HALF_ENABLE_CPP11_STATIC_ASSERT && HALF_ENABLE_CPP11_TYPE_TRAITS

+			static_assert(std::is_integral<T>::value, "half to int conversion only supports builtin integer types");

+		#endif

+			unsigned int e = value & 0x7FFF;

+			if(e >= 0x7C00)

+				return (value&0x8000) ? std::numeric_limits<T>::min() : std::numeric_limits<T>::max();

+			if(e < 0x3800)

+			{

+				if(R == std::round_toward_infinity)

+					return T(~(value>>15)&(e!=0));

+				else if(R == std::round_toward_neg_infinity)

+					return -T(value>0x8000);

+				return T();

+			}

+			unsigned int m = (value&0x3FF) | 0x400;

+			e >>= 10;

+			if(e < 25)

+			{

+				if(R == std::round_to_nearest)

+					m += (1<<(24-e)) - (~(m>>(25-e))&E);

+				else if(R == std::round_toward_infinity)

+					m += ((value>>15)-1) & ((1<<(25-e))-1U);

+				else if(R == std::round_toward_neg_infinity)

+					m += -(value>>15) & ((1<<(25-e))-1U);

+				m >>= 25 - e;

+			}

+			else

+				m <<= e - 25;

+			return (value&0x8000) ? -static_cast<T>(m) : static_cast<T>(m);

+		}

+

+		/// Convert half-precision floating point to integer.

+		/// \tparam R rounding mode to use, `std::round_indeterminate` for fastest rounding

+		/// \tparam T type to convert to (buitlin integer type with at least 16 bits precision, excluding any implicit sign bits)

+		/// \param value binary representation of half-precision value

+		/// \return integral value

+		template<std::float_round_style R,typename T> T half2int(uint16 value) { return half2int_impl<R,HALF_ROUND_TIES_TO_EVEN,T>(value); }

+

+		/// Convert half-precision floating point to integer using round-to-nearest-away-from-zero.

+		/// \tparam T type to convert to (buitlin integer type with at least 16 bits precision, excluding any implicit sign bits)

+		/// \param value binary representation of half-precision value

+		/// \return integral value

+		template<typename T> T half2int_up(uint16 value) { return half2int_impl<std::round_to_nearest,0,T>(value); }

+

+		/// Round half-precision number to nearest integer value.

+		/// \tparam R rounding mode to use, `std::round_indeterminate` for fastest rounding

+		/// \tparam E `true` for round to even, `false` for round away from zero

+		/// \param value binary representation of half-precision value

+		/// \return half-precision bits for nearest integral value

+		template<std::float_round_style R,bool E> uint16 round_half_impl(uint16 value)

+		{

+			unsigned int e = value & 0x7FFF;

+			uint16 result = value;

+			if(e < 0x3C00)

+			{

+				result &= 0x8000;

+				if(R == std::round_to_nearest)

+					result |= 0x3C00U & -(e>=(0x3800+E));

+				else if(R == std::round_toward_infinity)

+					result |= 0x3C00U & -(~(value>>15)&(e!=0));

+				else if(R == std::round_toward_neg_infinity)

+					result |= 0x3C00U & -(value>0x8000);

+			}

+			else if(e < 0x6400)

+			{

+				e = 25 - (e>>10);

+				unsigned int mask = (1<<e) - 1;

+				if(R == std::round_to_nearest)

+					result += (1<<(e-1)) - (~(result>>e)&E);

+				else if(R == std::round_toward_infinity)

+					result += mask & ((value>>15)-1);

+				else if(R == std::round_toward_neg_infinity)

+					result += mask & -(value>>15);

+				result &= ~mask;

+			}

+			return result;

+		}

+

+		/// Round half-precision number to nearest integer value.

+		/// \tparam R rounding mode to use, `std::round_indeterminate` for fastest rounding

+		/// \param value binary representation of half-precision value

+		/// \return half-precision bits for nearest integral value

+		template<std::float_round_style R> uint16 round_half(uint16 value) { return round_half_impl<R,HALF_ROUND_TIES_TO_EVEN>(value); }

+

+		/// Round half-precision number to nearest integer value using round-to-nearest-away-from-zero.

+		/// \param value binary representation of half-precision value

+		/// \return half-precision bits for nearest integral value

+		inline uint16 round_half_up(uint16 value) { return round_half_impl<std::round_to_nearest,0>(value); }

+		/// \}

+

+		struct functions;

+		template<typename> struct unary_specialized;

+		template<typename,typename> struct binary_specialized;

+		template<typename,typename,std::float_round_style> struct half_caster;

+	}

+

+	/// Half-precision floating point type.

+	/// This class implements an IEEE-conformant half-precision floating point type with the usual arithmetic operators and 

+	/// conversions. It is implicitly convertible to single-precision floating point, which makes artihmetic expressions and 

+	/// functions with mixed-type operands to be of the most precise operand type. Additionally all arithmetic operations 

+	/// (and many mathematical functions) are carried out in single-precision internally. All conversions from single- to 

+	/// half-precision are done using the library's default rounding mode, but temporary results inside chained arithmetic 

+	/// expressions are kept in single-precision as long as possible (while of course still maintaining a strong half-precision type).

+	///

+	/// According to the C++98/03 definition, the half type is not a POD type. But according to C++11's less strict and 

+	/// extended definitions it is both a standard layout type and a trivially copyable type (even if not a POD type), which 

+	/// means it can be standard-conformantly copied using raw binary copies. But in this context some more words about the 

+	/// actual size of the type. Although the half is representing an IEEE 16-bit type, it does not neccessarily have to be of 

+	/// exactly 16-bits size. But on any reasonable implementation the actual binary representation of this type will most 

+	/// probably not ivolve any additional "magic" or padding beyond the simple binary representation of the underlying 16-bit 

+	/// IEEE number, even if not strictly guaranteed by the standard. But even then it only has an actual size of 16 bits if 

+	/// your C++ implementation supports an unsigned integer type of exactly 16 bits width. But this should be the case on 

+	/// nearly any reasonable platform.

+	///

+	/// So if your C++ implementation is not totally exotic or imposes special alignment requirements, it is a reasonable 

+	/// assumption that the data of a half is just comprised of the 2 bytes of the underlying IEEE representation.

+	class half

+	{

+		friend struct detail::functions;

+		friend struct detail::unary_specialized<half>;

+		friend struct detail::binary_specialized<half,half>;

+		template<typename,typename,std::float_round_style> friend struct detail::half_caster;

+		friend class std::numeric_limits<half>;

+	#if HALF_ENABLE_CPP11_HASH

+		friend struct std::hash<half>;

+	#endif

+	#if HALF_ENABLE_CPP11_USER_LITERALS

+		friend half literal::operator""_h(long double);

+	#endif

+

+	public:

+		/// Default constructor.

+		/// This initializes the half to 0. Although this does not match the builtin types' default-initialization semantics 

+		/// and may be less efficient than no initialization, it is needed to provide proper value-initialization semantics.

+		HALF_CONSTEXPR half() HALF_NOEXCEPT : data_() {}

+

+		/// Copy constructor.

+		/// \tparam T type of concrete half expression

+		/// \param rhs half expression to copy from

+		half(detail::expr rhs) : data_(detail::float2half<round_style>(static_cast<float>(rhs))) {}

+

+		/// Conversion constructor.

+		/// \param rhs float to convert

+		explicit half(float rhs) : data_(detail::float2half<round_style>(rhs)) {}

+	

+		/// Conversion to single-precision.

+		/// \return single precision value representing expression value

+		operator float() const { return detail::half2float<float>(data_); }

+

+		/// Assignment operator.

+		/// \tparam T type of concrete half expression

+		/// \param rhs half expression to copy from

+		/// \return reference to this half

+		half& operator=(detail::expr rhs) { return *this = static_cast<float>(rhs); }

+

+		/// Arithmetic assignment.

+		/// \tparam T type of concrete half expression

+		/// \param rhs half expression to add

+		/// \return reference to this half

+		template<typename T> typename detail::enable<half&,T>::type operator+=(T rhs) { return *this += static_cast<float>(rhs); }

+

+		/// Arithmetic assignment.

+		/// \tparam T type of concrete half expression

+		/// \param rhs half expression to subtract

+		/// \return reference to this half

+		template<typename T> typename detail::enable<half&,T>::type operator-=(T rhs) { return *this -= static_cast<float>(rhs); }

+

+		/// Arithmetic assignment.

+		/// \tparam T type of concrete half expression

+		/// \param rhs half expression to multiply with

+		/// \return reference to this half

+		template<typename T> typename detail::enable<half&,T>::type operator*=(T rhs) { return *this *= static_cast<float>(rhs); }

+

+		/// Arithmetic assignment.

+		/// \tparam T type of concrete half expression

+		/// \param rhs half expression to divide by

+		/// \return reference to this half

+		template<typename T> typename detail::enable<half&,T>::type operator/=(T rhs) { return *this /= static_cast<float>(rhs); }

+

+		/// Assignment operator.

+		/// \param rhs single-precision value to copy from

+		/// \return reference to this half

+		half& operator=(float rhs) { data_ = detail::float2half<round_style>(rhs); return *this; }

+

+		/// Arithmetic assignment.

+		/// \param rhs single-precision value to add

+		/// \return reference to this half

+		half& operator+=(float rhs) { data_ = detail::float2half<round_style>(detail::half2float<float>(data_)+rhs); return *this; }

+

+		/// Arithmetic assignment.

+		/// \param rhs single-precision value to subtract

+		/// \return reference to this half

+		half& operator-=(float rhs) { data_ = detail::float2half<round_style>(detail::half2float<float>(data_)-rhs); return *this; }

+

+		/// Arithmetic assignment.

+		/// \param rhs single-precision value to multiply with

+		/// \return reference to this half

+		half& operator*=(float rhs) { data_ = detail::float2half<round_style>(detail::half2float<float>(data_)*rhs); return *this; }

+

+		/// Arithmetic assignment.

+		/// \param rhs single-precision value to divide by

+		/// \return reference to this half

+		half& operator/=(float rhs) { data_ = detail::float2half<round_style>(detail::half2float<float>(data_)/rhs); return *this; }

+

+		/// Prefix increment.

+		/// \return incremented half value

+		half& operator++() { return *this += 1.0f; }

+

+		/// Prefix decrement.

+		/// \return decremented half value

+		half& operator--() { return *this -= 1.0f; }

+

+		/// Postfix increment.

+		/// \return non-incremented half value

+		half operator++(int) { half out(*this); ++*this; return out; }

+

+		/// Postfix decrement.

+		/// \return non-decremented half value

+		half operator--(int) { half out(*this); --*this; return out; }

+	

+	private:

+		/// Rounding mode to use

+		static const std::float_round_style round_style = (std::float_round_style)(HALF_ROUND_STYLE);

+

+		/// Constructor.

+		/// \param bits binary representation to set half to

+		HALF_CONSTEXPR half(detail::binary_t, detail::uint16 bits) HALF_NOEXCEPT : data_(bits) {}

+

+		/// Internal binary representation

+		detail::uint16 data_;

+	};

+

+#if HALF_ENABLE_CPP11_USER_LITERALS

+	namespace literal

+	{

+		/// Half literal.

+		/// While this returns an actual half-precision value, half literals can unfortunately not be constant expressions due 

+		/// to rather involved conversions.

+		/// \param value literal value

+		/// \return half with given value (if representable)

+		inline half operator""_h(long double value) { return half(detail::binary, detail::float2half<half::round_style>(value)); }

+	}

+#endif

+

+	namespace detail

+	{

+		/// Wrapper implementing unspecialized half-precision functions.

+		struct functions

+		{

+			/// Addition implementation.

+			/// \param x first operand

+			/// \param y second operand

+			/// \return Half-precision sum stored in single-precision

+			static expr plus(float x, float y) { return expr(x+y); }

+

+			/// Subtraction implementation.

+			/// \param x first operand

+			/// \param y second operand

+			/// \return Half-precision difference stored in single-precision

+			static expr minus(float x, float y) { return expr(x-y); }

+

+			/// Multiplication implementation.

+			/// \param x first operand

+			/// \param y second operand

+			/// \return Half-precision product stored in single-precision

+			static expr multiplies(float x, float y) { return expr(x*y); }

+

+			/// Division implementation.

+			/// \param x first operand

+			/// \param y second operand

+			/// \return Half-precision quotient stored in single-precision

+			static expr divides(float x, float y) { return expr(x/y); }

+

+			/// Output implementation.

+			/// \param out stream to write to

+			/// \param arg value to write

+			/// \return reference to stream

+			template<typename charT,typename traits> static std::basic_ostream<charT,traits>& write(std::basic_ostream<charT,traits> &out, float arg) { return out << arg; }

+

+			/// Input implementation.

+			/// \param in stream to read from

+			/// \param arg half to read into

+			/// \return reference to stream

+			template<typename charT,typename traits> static std::basic_istream<charT,traits>& read(std::basic_istream<charT,traits> &in, half &arg)

+			{

+				float f;

+				if(in >> f)

+					arg = f;

+				return in;

+			}

+

+			/// Modulo implementation.

+			/// \param x first operand

+			/// \param y second operand

+			/// \return Half-precision division remainder stored in single-precision

+			static expr fmod(float x, float y) { return expr(std::fmod(x, y)); }

+

+			/// Remainder implementation.

+			/// \param x first operand

+			/// \param y second operand

+			/// \return Half-precision division remainder stored in single-precision

+			static expr remainder(float x, float y)

+			{

+			#if HALF_ENABLE_CPP11_CMATH

+				return expr(std::remainder(x, y));

+			#else

+				if(builtin_isnan(x) || builtin_isnan(y))

+					return expr(std::numeric_limits<float>::quiet_NaN());

+				float ax = std::fabs(x), ay = std::fabs(y);

+				if(ax >= 65536.0f || ay < std::ldexp(1.0f, -24))

+					return expr(std::numeric_limits<float>::quiet_NaN());

+				if(ay >= 65536.0f)

+					return expr(x);

+				if(ax == ay)

+					return expr(builtin_signbit(x) ? -0.0f : 0.0f);

+				ax = std::fmod(ax, ay+ay);

+				float y2 = 0.5f * ay;

+				if(ax > y2)

+				{

+					ax -= ay;

+					if(ax >= y2)

+						ax -= ay;

+				}

+				return expr(builtin_signbit(x) ? -ax : ax);

+			#endif

+			}

+

+			/// Remainder implementation.

+			/// \param x first operand

+			/// \param y second operand

+			/// \param quo address to store quotient bits at

+			/// \return Half-precision division remainder stored in single-precision

+			static expr remquo(float x, float y, int *quo)

+			{

+			#if HALF_ENABLE_CPP11_CMATH

+				return expr(std::remquo(x, y, quo));

+			#else

+				if(builtin_isnan(x) || builtin_isnan(y))

+					return expr(std::numeric_limits<float>::quiet_NaN());

+				bool sign = builtin_signbit(x), qsign = static_cast<bool>(sign^builtin_signbit(y));

+				float ax = std::fabs(x), ay = std::fabs(y);

+				if(ax >= 65536.0f || ay < std::ldexp(1.0f, -24))

+					return expr(std::numeric_limits<float>::quiet_NaN());

+				if(ay >= 65536.0f)

+					return expr(x);

+				if(ax == ay)

+					return *quo = qsign ? -1 : 1, expr(sign ? -0.0f : 0.0f);

+				ax = std::fmod(ax, 8.0f*ay);

+				int cquo = 0;

+				if(ax >= 4.0f * ay)

+				{

+					ax -= 4.0f * ay;

+					cquo += 4;

+				}

+				if(ax >= 2.0f * ay)

+				{

+					ax -= 2.0f * ay;

+					cquo += 2;

+				}

+				float y2 = 0.5f * ay;

+				if(ax > y2)

+				{

+					ax -= ay;

+					++cquo;

+					if(ax >= y2)

+					{

+						ax -= ay;

+						++cquo;

+					}

+				}

+				return *quo = qsign ? -cquo : cquo, expr(sign ? -ax : ax);

+			#endif

+			}

+

+			/// Positive difference implementation.

+			/// \param x first operand

+			/// \param y second operand

+			/// \return Positive difference stored in single-precision

+			static expr fdim(float x, float y)

+			{

+			#if HALF_ENABLE_CPP11_CMATH

+				return expr(std::fdim(x, y));

+			#else

+				return expr((x<=y) ? 0.0f : (x-y));

+			#endif

+			}

+

+			/// Fused multiply-add implementation.

+			/// \param x first operand

+			/// \param y second operand

+			/// \param z third operand

+			/// \return \a x * \a y + \a z stored in single-precision

+			static expr fma(float x, float y, float z)

+			{

+			#if HALF_ENABLE_CPP11_CMATH && defined(FP_FAST_FMAF)

+				return expr(std::fma(x, y, z));

+			#else

+				return expr(x*y+z);

+			#endif

+			}

+

+			/// Get NaN.

+			/// \return Half-precision quiet NaN

+			static half nanh() { return half(binary, 0x7FFF); }

+

+			/// Exponential implementation.

+			/// \param arg function argument

+			/// \return function value stored in single-preicision

+			static expr exp(float arg) { return expr(std::exp(arg)); }

+

+			/// Exponential implementation.

+			/// \param arg function argument

+			/// \return function value stored in single-preicision

+			static expr expm1(float arg)

+			{

+			#if HALF_ENABLE_CPP11_CMATH

+				return expr(std::expm1(arg));

+			#else

+				return expr(static_cast<float>(std::exp(static_cast<double>(arg))-1.0));

+			#endif

+			}

+

+			/// Binary exponential implementation.

+			/// \param arg function argument

+			/// \return function value stored in single-preicision

+			static expr exp2(float arg)

+			{

+			#if HALF_ENABLE_CPP11_CMATH

+				return expr(std::exp2(arg));

+			#else

+				return expr(static_cast<float>(std::exp(arg*0.69314718055994530941723212145818)));

+			#endif

+			}

+

+			/// Logarithm implementation.

+			/// \param arg function argument

+			/// \return function value stored in single-preicision

+			static expr log(float arg) { return expr(std::log(arg)); }

+

+			/// Common logarithm implementation.

+			/// \param arg function argument

+			/// \return function value stored in single-preicision

+			static expr log10(float arg) { return expr(std::log10(arg)); }

+

+			/// Logarithm implementation.

+			/// \param arg function argument

+			/// \return function value stored in single-preicision

+			static expr log1p(float arg)

+			{

+			#if HALF_ENABLE_CPP11_CMATH

+				return expr(std::log1p(arg));

+			#else

+				return expr(static_cast<float>(std::log(1.0+arg)));

+			#endif

+			}

+

+			/// Binary logarithm implementation.

+			/// \param arg function argument

+			/// \return function value stored in single-preicision

+			static expr log2(float arg)

+			{

+			#if HALF_ENABLE_CPP11_CMATH

+				return expr(std::log2(arg));

+			#else

+				return expr(static_cast<float>(std::log(static_cast<double>(arg))*1.4426950408889634073599246810019));

+			#endif

+			}

+

+			/// Square root implementation.

+			/// \param arg function argument

+			/// \return function value stored in single-preicision

+			static expr sqrt(float arg) { return expr(std::sqrt(arg)); }

+

+			/// Cubic root implementation.

+			/// \param arg function argument

+			/// \return function value stored in single-preicision

+			static expr cbrt(float arg)

+			{

+			#if HALF_ENABLE_CPP11_CMATH

+				return expr(std::cbrt(arg));

+			#else

+				if(builtin_isnan(arg) || builtin_isinf(arg))

+					return expr(arg);

+				return expr(builtin_signbit(arg) ? -static_cast<float>(std::pow(-static_cast<double>(arg), 1.0/3.0)) : 

+					static_cast<float>(std::pow(static_cast<double>(arg), 1.0/3.0)));

+			#endif

+			}

+

+			/// Hypotenuse implementation.

+			/// \param x first argument

+			/// \param y second argument

+			/// \return function value stored in single-preicision

+			static expr hypot(float x, float y)

+			{

+			#if HALF_ENABLE_CPP11_CMATH

+				return expr(std::hypot(x, y));

+			#else

+				return expr((builtin_isinf(x) || builtin_isinf(y)) ? std::numeric_limits<float>::infinity() : 

+					static_cast<float>(std::sqrt(static_cast<double>(x)*x+static_cast<double>(y)*y)));

+			#endif

+			}

+

+			/// Power implementation.

+			/// \param base value to exponentiate

+			/// \param exp power to expontiate to

+			/// \return function value stored in single-preicision

+			static expr pow(float base, float exp) { return expr(std::pow(base, exp)); }

+

+			/// Sine implementation.

+			/// \param arg function argument

+			/// \return function value stored in single-preicision

+			static expr sin(float arg) { return expr(std::sin(arg)); }

+

+			/// Cosine implementation.

+			/// \param arg function argument

+			/// \return function value stored in single-preicision

+			static expr cos(float arg) { return expr(std::cos(arg)); }

+

+			/// Tan implementation.

+			/// \param arg function argument

+			/// \return function value stored in single-preicision

+			static expr tan(float arg) { return expr(std::tan(arg)); }

+

+			/// Arc sine implementation.

+			/// \param arg function argument

+			/// \return function value stored in single-preicision

+			static expr asin(float arg) { return expr(std::asin(arg)); }

+

+			/// Arc cosine implementation.

+			/// \param arg function argument

+			/// \return function value stored in single-preicision

+			static expr acos(float arg) { return expr(std::acos(arg)); }

+

+			/// Arc tangent implementation.

+			/// \param arg function argument

+			/// \return function value stored in single-preicision

+			static expr atan(float arg) { return expr(std::atan(arg)); }

+

+			/// Arc tangent implementation.

+			/// \param x first argument

+			/// \param y second argument

+			/// \return function value stored in single-preicision

+			static expr atan2(float x, float y) { return expr(std::atan2(x, y)); }

+

+			/// Hyperbolic sine implementation.

+			/// \param arg function argument

+			/// \return function value stored in single-preicision

+			static expr sinh(float arg) { return expr(std::sinh(arg)); }

+

+			/// Hyperbolic cosine implementation.

+			/// \param arg function argument

+			/// \return function value stored in single-preicision

+			static expr cosh(float arg) { return expr(std::cosh(arg)); }

+

+			/// Hyperbolic tangent implementation.

+			/// \param arg function argument

+			/// \return function value stored in single-preicision

+			static expr tanh(float arg) { return expr(std::tanh(arg)); }

+

+			/// Hyperbolic area sine implementation.

+			/// \param arg function argument

+			/// \return function value stored in single-preicision

+			static expr asinh(float arg)

+			{

+			#if HALF_ENABLE_CPP11_CMATH

+				return expr(std::asinh(arg));

+			#else

+				return expr((arg==-std::numeric_limits<float>::infinity()) ? arg : static_cast<float>(std::log(arg+std::sqrt(arg*arg+1.0))));

+			#endif

+			}

+

+			/// Hyperbolic area cosine implementation.

+			/// \param arg function argument

+			/// \return function value stored in single-preicision

+			static expr acosh(float arg)

+			{

+			#if HALF_ENABLE_CPP11_CMATH

+				return expr(std::acosh(arg));

+			#else

+				return expr((arg<-1.0f) ? std::numeric_limits<float>::quiet_NaN() : static_cast<float>(std::log(arg+std::sqrt(arg*arg-1.0))));

+			#endif

+			}

+

+			/// Hyperbolic area tangent implementation.

+			/// \param arg function argument

+			/// \return function value stored in single-preicision

+			static expr atanh(float arg)

+			{

+			#if HALF_ENABLE_CPP11_CMATH

+				return expr(std::atanh(arg));

+			#else

+				return expr(static_cast<float>(0.5*std::log((1.0+arg)/(1.0-arg))));

+			#endif

+			}

+

+			/// Error function implementation.

+			/// \param arg function argument

+			/// \return function value stored in single-preicision

+			static expr erf(float arg)

+			{

+			#if HALF_ENABLE_CPP11_CMATH

+				return expr(std::erf(arg));

+			#else

+				return expr(static_cast<float>(erf(static_cast<double>(arg))));

+			#endif

+			}

+

+			/// Complementary implementation.

+			/// \param arg function argument

+			/// \return function value stored in single-preicision

+			static expr erfc(float arg)

+			{

+			#if HALF_ENABLE_CPP11_CMATH

+				return expr(std::erfc(arg));

+			#else

+				return expr(static_cast<float>(1.0-erf(static_cast<double>(arg))));

+			#endif

+			}

+

+			/// Gamma logarithm implementation.

+			/// \param arg function argument

+			/// \return function value stored in single-preicision

+			static expr lgamma(float arg)

+			{

+			#if HALF_ENABLE_CPP11_CMATH

+				return expr(std::lgamma(arg));

+			#else

+				if(builtin_isinf(arg))

+					return expr(std::numeric_limits<float>::infinity());

+				if(arg < 0.0f)

+				{

+					float i, f = std::modf(-arg, &i);

+					if(f == 0.0f)

+						return expr(std::numeric_limits<float>::infinity());

+					return expr(static_cast<float>(1.1447298858494001741434273513531-

+						std::log(std::abs(std::sin(3.1415926535897932384626433832795*f)))-lgamma(1.0-arg)));

+				}

+				return expr(static_cast<float>(lgamma(static_cast<double>(arg))));

+			#endif

+			}

+

+			/// Gamma implementation.

+			/// \param arg function argument

+			/// \return function value stored in single-preicision

+			static expr tgamma(float arg)

+			{

+			#if HALF_ENABLE_CPP11_CMATH

+				return expr(std::tgamma(arg));

+			#else

+				if(arg == 0.0f)

+					return builtin_signbit(arg) ? expr(-std::numeric_limits<float>::infinity()) : expr(std::numeric_limits<float>::infinity());

+				if(arg < 0.0f)

+				{

+					float i, f = std::modf(-arg, &i);

+					if(f == 0.0f)

+						return expr(std::numeric_limits<float>::quiet_NaN());

+					double value = 3.1415926535897932384626433832795 / (std::sin(3.1415926535897932384626433832795*f)*std::exp(lgamma(1.0-arg)));

+					return expr(static_cast<float>((std::fmod(i, 2.0f)==0.0f) ? -value : value));

+				}

+				if(builtin_isinf(arg))

+					return expr(arg);

+				return expr(static_cast<float>(std::exp(lgamma(static_cast<double>(arg)))));

+			#endif

+			}

+

+			/// Floor implementation.

+			/// \param arg value to round

+			/// \return rounded value

+			static half floor(half arg) { return half(binary, round_half<std::round_toward_neg_infinity>(arg.data_)); }

+

+			/// Ceiling implementation.

+			/// \param arg value to round

+			/// \return rounded value

+			static half ceil(half arg) { return half(binary, round_half<std::round_toward_infinity>(arg.data_)); }

+

+			/// Truncation implementation.

+			/// \param arg value to round

+			/// \return rounded value

+			static half trunc(half arg) { return half(binary, round_half<std::round_toward_zero>(arg.data_)); }

+

+			/// Nearest integer implementation.

+			/// \param arg value to round

+			/// \return rounded value

+			static half round(half arg) { return half(binary, round_half_up(arg.data_)); }

+

+			/// Nearest integer implementation.

+			/// \param arg value to round

+			/// \return rounded value

+			static long lround(half arg) { return detail::half2int_up<long>(arg.data_); }

+

+			/// Nearest integer implementation.

+			/// \param arg value to round

+			/// \return rounded value

+			static half rint(half arg) { return half(binary, round_half<half::round_style>(arg.data_)); }

+

+			/// Nearest integer implementation.

+			/// \param arg value to round

+			/// \return rounded value

+			static long lrint(half arg) { return detail::half2int<half::round_style,long>(arg.data_); }

+

+		#if HALF_ENABLE_CPP11_LONG_LONG

+			/// Nearest integer implementation.

+			/// \param arg value to round

+			/// \return rounded value

+			static long long llround(half arg) { return detail::half2int_up<long long>(arg.data_); }

+

+			/// Nearest integer implementation.

+			/// \param arg value to round

+			/// \return rounded value

+			static long long llrint(half arg) { return detail::half2int<half::round_style,long long>(arg.data_); }

+		#endif

+

+			/// Decompression implementation.

+			/// \param arg number to decompress

+			/// \param exp address to store exponent at

+			/// \return normalized significant

+			static half frexp(half arg, int *exp)

+			{

+				int m = arg.data_ & 0x7FFF, e = -14;

+				if(m >= 0x7C00 || !m)

+					return *exp = 0, arg;

+				for(; m<0x400; m<<=1,--e) ;

+				return *exp = e+(m>>10), half(binary, (arg.data_&0x8000)|0x3800|(m&0x3FF));

+			}

+

+			/// Decompression implementation.

+			/// \param arg number to decompress

+			/// \param iptr address to store integer part at

+			/// \return fractional part

+			static half modf(half arg, half *iptr)

+			{

+				unsigned int e = arg.data_ & 0x7FFF;

+				if(e >= 0x6400)

+					return *iptr = arg, half(binary, arg.data_&(0x8000U|-(e>0x7C00)));

+				if(e < 0x3C00)

+					return iptr->data_ = arg.data_ & 0x8000, arg;

+				e >>= 10;

+				unsigned int mask = (1<<(25-e)) - 1, m = arg.data_ & mask;

+				iptr->data_ = arg.data_ & ~mask;

+				if(!m)

+					return half(binary, arg.data_&0x8000);

+				for(; m<0x400; m<<=1,--e) ;

+				return half(binary, static_cast<uint16>((arg.data_&0x8000)|(e<<10)|(m&0x3FF)));

+			}

+

+			/// Scaling implementation.

+			/// \param arg number to scale

+			/// \param exp power of two to scale by

+			/// \return scaled number

+			static half scalbln(half arg, long exp)

+			{

+				unsigned int m = arg.data_ & 0x7FFF;

+				if(m >= 0x7C00 || !m)

+					return arg;

+				for(; m<0x400; m<<=1,--exp) ;

+				exp += m >> 10;

+				uint16 value = arg.data_ & 0x8000;

+				if(exp > 30)

+				{

+					if(half::round_style == std::round_toward_zero)

+						value |= 0x7BFF;

+					else if(half::round_style == std::round_toward_infinity)

+						value |= 0x7C00 - (value>>15);

+					else if(half::round_style == std::round_toward_neg_infinity)

+						value |= 0x7BFF + (value>>15);

+					else

+						value |= 0x7C00;

+				}

+				else if(exp > 0)

+					value |= (exp<<10) | (m&0x3FF);

+				else if(exp > -11)

+				{

+					m = (m&0x3FF) | 0x400;

+					if(half::round_style == std::round_to_nearest)

+					{

+						m += 1 << -exp;

+					#if HALF_ROUND_TIES_TO_EVEN

+						m -= (m>>(1-exp)) & 1;

+					#endif

+					}

+					else if(half::round_style == std::round_toward_infinity)

+						m += ((value>>15)-1) & ((1<<(1-exp))-1U);

+					else if(half::round_style == std::round_toward_neg_infinity)

+						m += -(value>>15) & ((1<<(1-exp))-1U);

+					value |= m >> (1-exp);

+				}

+				else if(half::round_style == std::round_toward_infinity)

+					value -= (value>>15) - 1;

+				else if(half::round_style == std::round_toward_neg_infinity)

+					value += value >> 15;

+				return half(binary, value);

+			}

+

+			/// Exponent implementation.

+			/// \param arg number to query

+			/// \return floating point exponent

+			static int ilogb(half arg)

+			{

+				int abs = arg.data_ & 0x7FFF;

+				if(!abs)

+					return FP_ILOGB0;

+				if(abs < 0x7C00)

+				{

+					int exp = (abs>>10) - 15;

+					if(abs < 0x400)

+						for(; abs<0x200; abs<<=1,--exp) ;

+					return exp;

+				}

+				if(abs > 0x7C00)

+					return FP_ILOGBNAN;

+				return INT_MAX;

+			}

+

+			/// Exponent implementation.

+			/// \param arg number to query

+			/// \return floating point exponent

+			static half logb(half arg)

+			{

+				int abs = arg.data_ & 0x7FFF;

+				if(!abs)

+					return half(binary, 0xFC00);

+				if(abs < 0x7C00)

+				{

+					int exp = (abs>>10) - 15;

+					if(abs < 0x400)

+						for(; abs<0x200; abs<<=1,--exp) ;

+					uint16 bits = (exp<0) << 15;

+					if(exp)

+					{

+						unsigned int m = std::abs(exp) << 6, e = 18;

+						for(; m<0x400; m<<=1,--e) ;

+						bits |= (e<<10) + m;

+					}

+					return half(binary, bits);

+				}

+				if(abs > 0x7C00)

+					return arg;

+				return half(binary, 0x7C00);

+			}

+

+			/// Enumeration implementation.

+			/// \param from number to increase/decrease

+			/// \param to direction to enumerate into

+			/// \return next representable number

+			static half nextafter(half from, half to)

+			{

+				uint16 fabs = from.data_ & 0x7FFF, tabs = to.data_ & 0x7FFF;

+				if(fabs > 0x7C00)

+					return from;

+				if(tabs > 0x7C00 || from.data_ == to.data_ || !(fabs|tabs))

+					return to;

+				if(!fabs)

+					return half(binary, (to.data_&0x8000)+1);

+				bool lt = ((fabs==from.data_) ? static_cast<int>(fabs) : -static_cast<int>(fabs)) < 

+					((tabs==to.data_) ? static_cast<int>(tabs) : -static_cast<int>(tabs));

+				return half(binary, from.data_+(((from.data_>>15)^static_cast<unsigned>(lt))<<1)-1);

+			}

+

+			/// Enumeration implementation.

+			/// \param from number to increase/decrease

+			/// \param to direction to enumerate into

+			/// \return next representable number

+			static half nexttoward(half from, long double to)

+			{

+				if(isnan(from))

+					return from;

+				long double lfrom = static_cast<long double>(from);

+				if(builtin_isnan(to) || lfrom == to)

+					return half(static_cast<float>(to));

+				if(!(from.data_&0x7FFF))

+					return half(binary, (static_cast<detail::uint16>(builtin_signbit(to))<<15)+1);

+				return half(binary, from.data_+(((from.data_>>15)^static_cast<unsigned>(lfrom<to))<<1)-1);

+			}

+

+			/// Sign implementation

+			/// \param x first operand

+			/// \param y second operand

+			/// \return composed value

+			static half copysign(half x, half y) { return half(binary, x.data_^((x.data_^y.data_)&0x8000)); }

+

+			/// Classification implementation.

+			/// \param arg value to classify

+			/// \retval true if infinite number

+			/// \retval false else

+			static int fpclassify(half arg)

+			{

+				unsigned int abs = arg.data_ & 0x7FFF;

+				return abs ? ((abs>0x3FF) ? ((abs>=0x7C00) ? ((abs>0x7C00) ? FP_NAN : FP_INFINITE) : FP_NORMAL) :FP_SUBNORMAL) : FP_ZERO;

+			}

+

+			/// Classification implementation.

+			/// \param arg value to classify

+			/// \retval true if finite number

+			/// \retval false else

+			static bool isfinite(half arg) { return (arg.data_&0x7C00) != 0x7C00; }

+

+			/// Classification implementation.

+			/// \param arg value to classify

+			/// \retval true if infinite number

+			/// \retval false else

+			static bool isinf(half arg) { return (arg.data_&0x7FFF) == 0x7C00; }

+

+			/// Classification implementation.

+			/// \param arg value to classify

+			/// \retval true if not a number

+			/// \retval false else

+			static bool isnan(half arg) { return (arg.data_&0x7FFF) > 0x7C00; }

+

+			/// Classification implementation.

+			/// \param arg value to classify

+			/// \retval true if normal number

+			/// \retval false else

+			static bool isnormal(half arg) { return ((arg.data_&0x7C00)!=0) & ((arg.data_&0x7C00)!=0x7C00); }

+

+			/// Sign bit implementation.

+			/// \param arg value to check

+			/// \retval true if signed

+			/// \retval false if unsigned

+			static bool signbit(half arg) { return (arg.data_&0x8000) != 0; }

+

+			/// Comparison implementation.

+			/// \param x first operand

+			/// \param y second operand

+			/// \retval true if operands equal

+			/// \retval false else

+			static bool isequal(half x, half y) { return (x.data_==y.data_ || !((x.data_|y.data_)&0x7FFF)) && !isnan(x); }

+

+			/// Comparison implementation.

+			/// \param x first operand

+			/// \param y second operand

+			/// \retval true if operands not equal

+			/// \retval false else

+			static bool isnotequal(half x, half y) { return (x.data_!=y.data_ && ((x.data_|y.data_)&0x7FFF)) || isnan(x); }

+

+			/// Comparison implementation.

+			/// \param x first operand

+			/// \param y second operand

+			/// \retval true if \a x > \a y

+			/// \retval false else

+			static bool isgreater(half x, half y)

+			{

+				int xabs = x.data_ & 0x7FFF, yabs = y.data_ & 0x7FFF;

+				return xabs<=0x7C00 && yabs<=0x7C00 && (((xabs==x.data_) ? xabs : -xabs) > ((yabs==y.data_) ? yabs : -yabs));

+			}

+

+			/// Comparison implementation.

+			/// \param x first operand

+			/// \param y second operand

+			/// \retval true if \a x >= \a y

+			/// \retval false else

+			static bool isgreaterequal(half x, half y)

+			{

+				int xabs = x.data_ & 0x7FFF, yabs = y.data_ & 0x7FFF;

+				return xabs<=0x7C00 && yabs<=0x7C00 && (((xabs==x.data_) ? xabs : -xabs) >= ((yabs==y.data_) ? yabs : -yabs));

+			}

+

+			/// Comparison implementation.

+			/// \param x first operand

+			/// \param y second operand

+			/// \retval true if \a x < \a y

+			/// \retval false else

+			static bool isless(half x, half y)

+			{

+				int xabs = x.data_ & 0x7FFF, yabs = y.data_ & 0x7FFF;

+				return xabs<=0x7C00 && yabs<=0x7C00 && (((xabs==x.data_) ? xabs : -xabs) < ((yabs==y.data_) ? yabs : -yabs));

+			}

+

+			/// Comparison implementation.

+			/// \param x first operand

+			/// \param y second operand

+			/// \retval true if \a x <= \a y

+			/// \retval false else

+			static bool islessequal(half x, half y)

+			{

+				int xabs = x.data_ & 0x7FFF, yabs = y.data_ & 0x7FFF;

+				return xabs<=0x7C00 && yabs<=0x7C00 && (((xabs==x.data_) ? xabs : -xabs) <= ((yabs==y.data_) ? yabs : -yabs));

+			}

+

+			/// Comparison implementation.

+			/// \param x first operand

+			/// \param y second operand

+			/// \retval true if either \a x > \a y nor \a x < \a y

+			/// \retval false else

+			static bool islessgreater(half x, half y)

+			{

+				int xabs = x.data_ & 0x7FFF, yabs = y.data_ & 0x7FFF;

+				if(xabs > 0x7C00 || yabs > 0x7C00)

+					return false;

+				int a = (xabs==x.data_) ? xabs : -xabs, b = (yabs==y.data_) ? yabs : -yabs;

+				return a < b || a > b;

+			}

+

+			/// Comparison implementation.

+			/// \param x first operand

+			/// \param y second operand

+			/// \retval true if operand unordered

+			/// \retval false else

+			static bool isunordered(half x, half y) { return isnan(x) || isnan(y); }

+

+		private:

+			static double erf(double arg)

+			{

+				if(builtin_isinf(arg))

+					return (arg<0.0) ? -1.0 : 1.0;

+				double x2 = arg * arg, ax2 = 0.147 * x2, value = std::sqrt(1.0-std::exp(-x2*(1.2732395447351626861510701069801+ax2)/(1.0+ax2)));

+				return builtin_signbit(arg) ? -value : value;

+			}

+

+			static double lgamma(double arg)

+			{

+				double v = 1.0;

+				for(; arg<8.0; ++arg) v *= arg;

+				double w = 1.0 / (arg*arg);

+				return (((((((-0.02955065359477124183006535947712*w+0.00641025641025641025641025641026)*w+

+					-0.00191752691752691752691752691753)*w+8.4175084175084175084175084175084e-4)*w+

+					-5.952380952380952380952380952381e-4)*w+7.9365079365079365079365079365079e-4)*w+

+					-0.00277777777777777777777777777778)*w+0.08333333333333333333333333333333)/arg + 

+					0.91893853320467274178032973640562 - std::log(v) - arg + (arg-0.5) * std::log(arg);

+			}

+		};

+

+		/// Wrapper for unary half-precision functions needing specialization for individual argument types.

+		/// \tparam T argument type

+		template<typename T> struct unary_specialized

+		{

+			/// Negation implementation.

+			/// \param arg value to negate

+			/// \return negated value

+			static HALF_CONSTEXPR half negate(half arg) { return half(binary, arg.data_^0x8000); }

+

+			/// Absolute value implementation.

+			/// \param arg function argument

+			/// \return absolute value

+			static half fabs(half arg) { return half(binary, arg.data_&0x7FFF); }

+		};

+		template<> struct unary_specialized<expr>

+		{

+			static HALF_CONSTEXPR expr negate(float arg) { return expr(-arg); }

+			static expr fabs(float arg) { return expr(std::fabs(arg)); }

+		};

+

+		/// Wrapper for binary half-precision functions needing specialization for individual argument types.

+		/// \tparam T first argument type

+		/// \tparam U first argument type

+		template<typename T,typename U> struct binary_specialized

+		{

+			/// Minimum implementation.

+			/// \param x first operand

+			/// \param y second operand

+			/// \return minimum value

+			static expr fmin(float x, float y)

+			{

+			#if HALF_ENABLE_CPP11_CMATH

+				return expr(std::fmin(x, y));

+			#else

+				if(builtin_isnan(x))

+					return expr(y);

+				if(builtin_isnan(y))

+					return expr(x);

+				return expr(std::min(x, y));

+			#endif

+			}

+

+			/// Maximum implementation.

+			/// \param x first operand

+			/// \param y second operand

+			/// \return maximum value

+			static expr fmax(float x, float y)

+			{

+			#if HALF_ENABLE_CPP11_CMATH

+				return expr(std::fmax(x, y));

+			#else

+				if(builtin_isnan(x))

+					return expr(y);

+				if(builtin_isnan(y))

+					return expr(x);

+				return expr(std::max(x, y));

+			#endif

+			}

+		};

+		template<> struct binary_specialized<half,half>

+		{

+			static half fmin(half x, half y)

+			{

+				int xabs = x.data_ & 0x7FFF, yabs = y.data_ & 0x7FFF;

+				if(xabs > 0x7C00)

+					return y;

+				if(yabs > 0x7C00)

+					return x;

+				return (((xabs==x.data_) ? xabs : -xabs) > ((yabs==y.data_) ? yabs : -yabs)) ? y : x;

+			}

+			static half fmax(half x, half y)

+			{

+				int xabs = x.data_ & 0x7FFF, yabs = y.data_ & 0x7FFF;

+				if(xabs > 0x7C00)

+					return y;

+				if(yabs > 0x7C00)

+					return x;

+				return (((xabs==x.data_) ? xabs : -xabs) < ((yabs==y.data_) ? yabs : -yabs)) ? y : x;

+			}

+		};

+

+		/// Helper class for half casts.

+		/// This class template has to be specialized for all valid cast argument to define an appropriate static `cast` member 

+		/// function and a corresponding `type` member denoting its return type.

+		/// \tparam T destination type

+		/// \tparam U source type

+		/// \tparam R rounding mode to use

+		template<typename T,typename U,std::float_round_style R=(std::float_round_style)(HALF_ROUND_STYLE)> struct half_caster {};

+		template<typename U,std::float_round_style R> struct half_caster<half,U,R>

+		{

+		#if HALF_ENABLE_CPP11_STATIC_ASSERT && HALF_ENABLE_CPP11_TYPE_TRAITS

+			static_assert(std::is_arithmetic<U>::value, "half_cast from non-arithmetic type unsupported");

+		#endif

+

+			static half cast(U arg) { return cast_impl(arg, is_float<U>()); };

+

+		private:

+			static half cast_impl(U arg, true_type) { return half(binary, float2half<R>(arg)); }

+			static half cast_impl(U arg, false_type) { return half(binary, int2half<R>(arg)); }

+		};

+		template<typename T,std::float_round_style R> struct half_caster<T,half,R>

+		{

+		#if HALF_ENABLE_CPP11_STATIC_ASSERT && HALF_ENABLE_CPP11_TYPE_TRAITS

+			static_assert(std::is_arithmetic<T>::value, "half_cast to non-arithmetic type unsupported");

+		#endif

+

+			static T cast(half arg) { return cast_impl(arg, is_float<T>()); }

+

+		private:

+			static T cast_impl(half arg, true_type) { return half2float<T>(arg.data_); }

+			static T cast_impl(half arg, false_type) { return half2int<R,T>(arg.data_); }

+		};

+		template<typename T,std::float_round_style R> struct half_caster<T,expr,R>

+		{

+		#if HALF_ENABLE_CPP11_STATIC_ASSERT && HALF_ENABLE_CPP11_TYPE_TRAITS

+			static_assert(std::is_arithmetic<T>::value, "half_cast to non-arithmetic type unsupported");

+		#endif

+

+			static T cast(expr arg) { return cast_impl(arg, is_float<T>()); }

+

+		private:

+			static T cast_impl(float arg, true_type) { return static_cast<T>(arg); }

+			static T cast_impl(half arg, false_type) { return half2int<R,T>(arg.data_); }

+		};

+		template<std::float_round_style R> struct half_caster<half,half,R>

+		{

+			static half cast(half arg) { return arg; }

+		};

+		template<std::float_round_style R> struct half_caster<half,expr,R> : half_caster<half,half,R> {};

+

+		/// \name Comparison operators

+		/// \{

+

+		/// Comparison for equality.

+		/// \param x first operand

+		/// \param y second operand

+		/// \retval true if operands equal

+		/// \retval false else

+		template<typename T,typename U> typename enable<bool,T,U>::type operator==(T x, U y) { return functions::isequal(x, y); }

+

+		/// Comparison for inequality.

+		/// \param x first operand

+		/// \param y second operand

+		/// \retval true if operands not equal

+		/// \retval false else

+		template<typename T,typename U> typename enable<bool,T,U>::type operator!=(T x, U y) { return functions::isnotequal(x, y); }

+

+		/// Comparison for less than.

+		/// \param x first operand

+		/// \param y second operand

+		/// \retval true if \a x less than \a y

+		/// \retval false else

+		template<typename T,typename U> typename enable<bool,T,U>::type operator<(T x, U y) { return functions::isless(x, y); }

+

+		/// Comparison for greater than.

+		/// \param x first operand

+		/// \param y second operand

+		/// \retval true if \a x greater than \a y

+		/// \retval false else

+		template<typename T,typename U> typename enable<bool,T,U>::type operator>(T x, U y) { return functions::isgreater(x, y); }

+

+		/// Comparison for less equal.

+		/// \param x first operand

+		/// \param y second operand

+		/// \retval true if \a x less equal \a y

+		/// \retval false else

+		template<typename T,typename U> typename enable<bool,T,U>::type operator<=(T x, U y) { return functions::islessequal(x, y); }

+

+		/// Comparison for greater equal.

+		/// \param x first operand

+		/// \param y second operand

+		/// \retval true if \a x greater equal \a y

+		/// \retval false else

+		template<typename T,typename U> typename enable<bool,T,U>::type operator>=(T x, U y) { return functions::isgreaterequal(x, y); }

+

+		/// \}

+		/// \name Arithmetic operators

+		/// \{

+

+		/// Add halfs.

+		/// \param x left operand

+		/// \param y right operand

+		/// \return sum of half expressions

+		template<typename T,typename U> typename enable<expr,T,U>::type operator+(T x, U y) { return functions::plus(x, y); }

+

+		/// Subtract halfs.

+		/// \param x left operand

+		/// \param y right operand

+		/// \return difference of half expressions

+		template<typename T,typename U> typename enable<expr,T,U>::type operator-(T x, U y) { return functions::minus(x, y); }

+

+		/// Multiply halfs.

+		/// \param x left operand

+		/// \param y right operand

+		/// \return product of half expressions

+		template<typename T,typename U> typename enable<expr,T,U>::type operator*(T x, U y) { return functions::multiplies(x, y); }

+

+		/// Divide halfs.

+		/// \param x left operand

+		/// \param y right operand

+		/// \return quotient of half expressions

+		template<typename T,typename U> typename enable<expr,T,U>::type operator/(T x, U y) { return functions::divides(x, y); }

+

+		/// Identity.

+		/// \param arg operand

+		/// \return uncahnged operand

+		template<typename T> HALF_CONSTEXPR typename enable<T,T>::type operator+(T arg) { return arg; }

+

+		/// Negation.

+		/// \param arg operand

+		/// \return negated operand

+		template<typename T> HALF_CONSTEXPR typename enable<T,T>::type operator-(T arg) { return unary_specialized<T>::negate(arg); }

+

+		/// \}

+		/// \name Input and output

+		/// \{

+

+		/// Output operator.

+		/// \param out output stream to write into

+		/// \param arg half expression to write

+		/// \return reference to output stream

+		template<typename T,typename charT,typename traits> typename enable<std::basic_ostream<charT,traits>&,T>::type

+			operator<<(std::basic_ostream<charT,traits> &out, T arg) { return functions::write(out, arg); }

+

+		/// Input operator.

+		/// \param in input stream to read from

+		/// \param arg half to read into

+		/// \return reference to input stream

+		template<typename charT,typename traits> std::basic_istream<charT,traits>&

+			operator>>(std::basic_istream<charT,traits> &in, half &arg) { return functions::read(in, arg); }

+

+		/// \}

+		/// \name Basic mathematical operations

+		/// \{

+

+		/// Absolute value.

+		/// \param arg operand

+		/// \return absolute value of \a arg

+//		template<typename T> typename enable<T,T>::type abs(T arg) { return unary_specialized<T>::fabs(arg); }

+		inline half abs(half arg) { return unary_specialized<half>::fabs(arg); }

+		inline expr abs(expr arg) { return unary_specialized<expr>::fabs(arg); }

+

+		/// Absolute value.

+		/// \param arg operand

+		/// \return absolute value of \a arg

+//		template<typename T> typename enable<T,T>::type fabs(T arg) { return unary_specialized<T>::fabs(arg); }

+		inline half fabs(half arg) { return unary_specialized<half>::fabs(arg); }

+		inline expr fabs(expr arg) { return unary_specialized<expr>::fabs(arg); }

+

+		/// Remainder of division.

+		/// \param x first operand

+		/// \param y second operand

+		/// \return remainder of floating point division.

+//		template<typename T,typename U> typename enable<expr,T,U>::type fmod(T x, U y) { return functions::fmod(x, y); }

+		inline expr fmod(half x, half y) { return functions::fmod(x, y); }

+		inline expr fmod(half x, expr y) { return functions::fmod(x, y); }

+		inline expr fmod(expr x, half y) { return functions::fmod(x, y); }

+		inline expr fmod(expr x, expr y) { return functions::fmod(x, y); }

+

+		/// Remainder of division.

+		/// \param x first operand

+		/// \param y second operand

+		/// \return remainder of floating point division.

+//		template<typename T,typename U> typename enable<expr,T,U>::type remainder(T x, U y) { return functions::remainder(x, y); }

+		inline expr remainder(half x, half y) { return functions::remainder(x, y); }

+		inline expr remainder(half x, expr y) { return functions::remainder(x, y); }

+		inline expr remainder(expr x, half y) { return functions::remainder(x, y); }

+		inline expr remainder(expr x, expr y) { return functions::remainder(x, y); }

+

+		/// Remainder of division.

+		/// \param x first operand

+		/// \param y second operand

+		/// \param quo address to store some bits of quotient at

+		/// \return remainder of floating point division.

+//		template<typename T,typename U> typename enable<expr,T,U>::type remquo(T x, U y, int *quo) { return functions::remquo(x, y, quo); }

+		inline expr remquo(half x, half y, int *quo) { return functions::remquo(x, y, quo); }

+		inline expr remquo(half x, expr y, int *quo) { return functions::remquo(x, y, quo); }

+		inline expr remquo(expr x, half y, int *quo) { return functions::remquo(x, y, quo); }

+		inline expr remquo(expr x, expr y, int *quo) { return functions::remquo(x, y, quo); }

+

+		/// Fused multiply add.

+		/// \param x first operand

+		/// \param y second operand

+		/// \param z third operand

+		/// \return ( \a x * \a y ) + \a z rounded as one operation.

+//		template<typename T,typename U,typename V> typename enable<expr,T,U,V>::type fma(T x, U y, V z) { return functions::fma(x, y, z); }

+		inline expr fma(half x, half y, half z) { return functions::fma(x, y, z); }

+		inline expr fma(half x, half y, expr z) { return functions::fma(x, y, z); }

+		inline expr fma(half x, expr y, half z) { return functions::fma(x, y, z); }

+		inline expr fma(half x, expr y, expr z) { return functions::fma(x, y, z); }

+		inline expr fma(expr x, half y, half z) { return functions::fma(x, y, z); }

+		inline expr fma(expr x, half y, expr z) { return functions::fma(x, y, z); }

+		inline expr fma(expr x, expr y, half z) { return functions::fma(x, y, z); }

+		inline expr fma(expr x, expr y, expr z) { return functions::fma(x, y, z); }

+

+		/// Maximum of half expressions.

+		/// \param x first operand

+		/// \param y second operand

+		/// \return maximum of operands

+//		template<typename T,typename U> typename result<T,U>::type fmax(T x, U y) { return binary_specialized<T,U>::fmax(x, y); }

+		inline half fmax(half x, half y) { return binary_specialized<half,half>::fmax(x, y); }

+		inline expr fmax(half x, expr y) { return binary_specialized<half,expr>::fmax(x, y); }

+		inline expr fmax(expr x, half y) { return binary_specialized<expr,half>::fmax(x, y); }

+		inline expr fmax(expr x, expr y) { return binary_specialized<expr,expr>::fmax(x, y); }

+

+		/// Minimum of half expressions.

+		/// \param x first operand

+		/// \param y second operand

+		/// \return minimum of operands

+//		template<typename T,typename U> typename result<T,U>::type fmin(T x, U y) { return binary_specialized<T,U>::fmin(x, y); }

+		inline half fmin(half x, half y) { return binary_specialized<half,half>::fmin(x, y); }

+		inline expr fmin(half x, expr y) { return binary_specialized<half,expr>::fmin(x, y); }

+		inline expr fmin(expr x, half y) { return binary_specialized<expr,half>::fmin(x, y); }

+		inline expr fmin(expr x, expr y) { return binary_specialized<expr,expr>::fmin(x, y); }

+

+		/// Positive difference.

+		/// \param x first operand

+		/// \param y second operand

+		/// \return \a x - \a y or 0 if difference negative

+//		template<typename T,typename U> typename enable<expr,T,U>::type fdim(T x, U y) { return functions::fdim(x, y); }

+		inline expr fdim(half x, half y) { return functions::fdim(x, y); }

+		inline expr fdim(half x, expr y) { return functions::fdim(x, y); }

+		inline expr fdim(expr x, half y) { return functions::fdim(x, y); }

+		inline expr fdim(expr x, expr y) { return functions::fdim(x, y); }

+

+		/// Get NaN value.

+		/// \return quiet NaN

+		inline half nanh(const char*) { return functions::nanh(); }

+

+		/// \}

+		/// \name Exponential functions

+		/// \{

+

+		/// Exponential function.

+		/// \param arg function argument

+		/// \return e raised to \a arg

+//		template<typename T> typename enable<expr,T>::type exp(T arg) { return functions::exp(arg); }

+		inline expr exp(half arg) { return functions::exp(arg); }

+		inline expr exp(expr arg) { return functions::exp(arg); }

+

+		/// Exponential minus one.

+		/// \param arg function argument

+		/// \return e raised to \a arg subtracted by 1

+//		template<typename T> typename enable<expr,T>::type expm1(T arg) { return functions::expm1(arg); }

+		inline expr expm1(half arg) { return functions::expm1(arg); }

+		inline expr expm1(expr arg) { return functions::expm1(arg); }

+

+		/// Binary exponential.

+		/// \param arg function argument

+		/// \return 2 raised to \a arg

+//		template<typename T> typename enable<expr,T>::type exp2(T arg) { return functions::exp2(arg); }

+		inline expr exp2(half arg) { return functions::exp2(arg); }

+		inline expr exp2(expr arg) { return functions::exp2(arg); }

+

+		/// Natural logorithm.

+		/// \param arg function argument

+		/// \return logarithm of \a arg to base e

+//		template<typename T> typename enable<expr,T>::type log(T arg) { return functions::log(arg); }

+		inline expr log(half arg) { return functions::log(arg); }

+		inline expr log(expr arg) { return functions::log(arg); }

+

+		/// Common logorithm.

+		/// \param arg function argument

+		/// \return logarithm of \a arg to base 10

+//		template<typename T> typename enable<expr,T>::type log10(T arg) { return functions::log10(arg); }

+		inline expr log10(half arg) { return functions::log10(arg); }

+		inline expr log10(expr arg) { return functions::log10(arg); }

+

+		/// Natural logorithm.

+		/// \param arg function argument

+		/// \return logarithm of \a arg plus 1 to base e

+//		template<typename T> typename enable<expr,T>::type log1p(T arg) { return functions::log1p(arg); }

+		inline expr log1p(half arg) { return functions::log1p(arg); }

+		inline expr log1p(expr arg) { return functions::log1p(arg); }

+

+		/// Binary logorithm.

+		/// \param arg function argument

+		/// \return logarithm of \a arg to base 2

+//		template<typename T> typename enable<expr,T>::type log2(T arg) { return functions::log2(arg); }

+		inline expr log2(half arg) { return functions::log2(arg); }

+		inline expr log2(expr arg) { return functions::log2(arg); }

+

+		/// \}

+		/// \name Power functions

+		/// \{

+

+		/// Square root.

+		/// \param arg function argument

+		/// \return square root of \a arg

+//		template<typename T> typename enable<expr,T>::type sqrt(T arg) { return functions::sqrt(arg); }

+		inline expr sqrt(half arg) { return functions::sqrt(arg); }

+		inline expr sqrt(expr arg) { return functions::sqrt(arg); }

+

+		/// Cubic root.

+		/// \param arg function argument

+		/// \return cubic root of \a arg

+//		template<typename T> typename enable<expr,T>::type cbrt(T arg) { return functions::cbrt(arg); }

+		inline expr cbrt(half arg) { return functions::cbrt(arg); }

+		inline expr cbrt(expr arg) { return functions::cbrt(arg); }

+

+		/// Hypotenuse function.

+		/// \param x first argument

+		/// \param y second argument

+		/// \return square root of sum of squares without internal over- or underflows

+//		template<typename T,typename U> typename enable<expr,T,U>::type hypot(T x, U y) { return functions::hypot(x, y); }

+		inline expr hypot(half x, half y) { return functions::hypot(x, y); }

+		inline expr hypot(half x, expr y) { return functions::hypot(x, y); }

+		inline expr hypot(expr x, half y) { return functions::hypot(x, y); }

+		inline expr hypot(expr x, expr y) { return functions::hypot(x, y); }

+

+		/// Power function.

+		/// \param base first argument

+		/// \param exp second argument

+		/// \return \a base raised to \a exp

+//		template<typename T,typename U> typename enable<expr,T,U>::type pow(T base, U exp) { return functions::pow(base, exp); }

+		inline expr pow(half base, half exp) { return functions::pow(base, exp); }

+		inline expr pow(half base, expr exp) { return functions::pow(base, exp); }

+		inline expr pow(expr base, half exp) { return functions::pow(base, exp); }

+		inline expr pow(expr base, expr exp) { return functions::pow(base, exp); }

+

+		/// \}

+		/// \name Trigonometric functions

+		/// \{

+

+		/// Sine function.

+		/// \param arg function argument

+		/// \return sine value of \a arg

+//		template<typename T> typename enable<expr,T>::type sin(T arg) { return functions::sin(arg); }

+		inline expr sin(half arg) { return functions::sin(arg); }

+		inline expr sin(expr arg) { return functions::sin(arg); }

+

+		/// Cosine function.

+		/// \param arg function argument

+		/// \return cosine value of \a arg

+//		template<typename T> typename enable<expr,T>::type cos(T arg) { return functions::cos(arg); }

+		inline expr cos(half arg) { return functions::cos(arg); }

+		inline expr cos(expr arg) { return functions::cos(arg); }

+

+		/// Tangent function.

+		/// \param arg function argument

+		/// \return tangent value of \a arg

+//		template<typename T> typename enable<expr,T>::type tan(T arg) { return functions::tan(arg); }

+		inline expr tan(half arg) { return functions::tan(arg); }

+		inline expr tan(expr arg) { return functions::tan(arg); }

+

+		/// Arc sine.

+		/// \param arg function argument

+		/// \return arc sine value of \a arg

+//		template<typename T> typename enable<expr,T>::type asin(T arg) { return functions::asin(arg); }

+		inline expr asin(half arg) { return functions::asin(arg); }

+		inline expr asin(expr arg) { return functions::asin(arg); }

+

+		/// Arc cosine function.

+		/// \param arg function argument

+		/// \return arc cosine value of \a arg

+//		template<typename T> typename enable<expr,T>::type acos(T arg) { return functions::acos(arg); }

+		inline expr acos(half arg) { return functions::acos(arg); }

+		inline expr acos(expr arg) { return functions::acos(arg); }

+

+		/// Arc tangent function.

+		/// \param arg function argument

+		/// \return arc tangent value of \a arg

+//		template<typename T> typename enable<expr,T>::type atan(T arg) { return functions::atan(arg); }

+		inline expr atan(half arg) { return functions::atan(arg); }

+		inline expr atan(expr arg) { return functions::atan(arg); }

+

+		/// Arc tangent function.

+		/// \param x first argument

+		/// \param y second argument

+		/// \return arc tangent value

+//		template<typename T,typename U> typename enable<expr,T,U>::type atan2(T x, U y) { return functions::atan2(x, y); }

+		inline expr atan2(half x, half y) { return functions::atan2(x, y); }

+		inline expr atan2(half x, expr y) { return functions::atan2(x, y); }

+		inline expr atan2(expr x, half y) { return functions::atan2(x, y); }

+		inline expr atan2(expr x, expr y) { return functions::atan2(x, y); }

+

+		/// \}

+		/// \name Hyperbolic functions

+		/// \{

+

+		/// Hyperbolic sine.

+		/// \param arg function argument

+		/// \return hyperbolic sine value of \a arg

+//		template<typename T> typename enable<expr,T>::type sinh(T arg) { return functions::sinh(arg); }

+		inline expr sinh(half arg) { return functions::sinh(arg); }

+		inline expr sinh(expr arg) { return functions::sinh(arg); }

+

+		/// Hyperbolic cosine.

+		/// \param arg function argument

+		/// \return hyperbolic cosine value of \a arg

+//		template<typename T> typename enable<expr,T>::type cosh(T arg) { return functions::cosh(arg); }

+		inline expr cosh(half arg) { return functions::cosh(arg); }

+		inline expr cosh(expr arg) { return functions::cosh(arg); }

+

+		/// Hyperbolic tangent.

+		/// \param arg function argument

+		/// \return hyperbolic tangent value of \a arg

+//		template<typename T> typename enable<expr,T>::type tanh(T arg) { return functions::tanh(arg); }

+		inline expr tanh(half arg) { return functions::tanh(arg); }

+		inline expr tanh(expr arg) { return functions::tanh(arg); }

+

+		/// Hyperbolic area sine.

+		/// \param arg function argument

+		/// \return area sine value of \a arg

+//		template<typename T> typename enable<expr,T>::type asinh(T arg) { return functions::asinh(arg); }

+		inline expr asinh(half arg) { return functions::asinh(arg); }

+		inline expr asinh(expr arg) { return functions::asinh(arg); }

+

+		/// Hyperbolic area cosine.

+		/// \param arg function argument

+		/// \return area cosine value of \a arg

+//		template<typename T> typename enable<expr,T>::type acosh(T arg) { return functions::acosh(arg); }

+		inline expr acosh(half arg) { return functions::acosh(arg); }

+		inline expr acosh(expr arg) { return functions::acosh(arg); }

+

+		/// Hyperbolic area tangent.

+		/// \param arg function argument

+		/// \return area tangent value of \a arg

+//		template<typename T> typename enable<expr,T>::type atanh(T arg) { return functions::atanh(arg); }

+		inline expr atanh(half arg) { return functions::atanh(arg); }

+		inline expr atanh(expr arg) { return functions::atanh(arg); }

+

+		/// \}

+		/// \name Error and gamma functions

+		/// \{

+

+		/// Error function.

+		/// \param arg function argument

+		/// \return error function value of \a arg

+//		template<typename T> typename enable<expr,T>::type erf(T arg) { return functions::erf(arg); }

+		inline expr erf(half arg) { return functions::erf(arg); }

+		inline expr erf(expr arg) { return functions::erf(arg); }

+

+		/// Complementary error function.

+		/// \param arg function argument

+		/// \return 1 minus error function value of \a arg

+//		template<typename T> typename enable<expr,T>::type erfc(T arg) { return functions::erfc(arg); }

+		inline expr erfc(half arg) { return functions::erfc(arg); }

+		inline expr erfc(expr arg) { return functions::erfc(arg); }

+

+		/// Natural logarithm of gamma function.

+		/// \param arg function argument

+		/// \return natural logarith of gamma function for \a arg

+//		template<typename T> typename enable<expr,T>::type lgamma(T arg) { return functions::lgamma(arg); }

+		inline expr lgamma(half arg) { return functions::lgamma(arg); }

+		inline expr lgamma(expr arg) { return functions::lgamma(arg); }

+

+		/// Gamma function.

+		/// \param arg function argument

+		/// \return gamma function value of \a arg

+//		template<typename T> typename enable<expr,T>::type tgamma(T arg) { return functions::tgamma(arg); }

+		inline expr tgamma(half arg) { return functions::tgamma(arg); }

+		inline expr tgamma(expr arg) { return functions::tgamma(arg); }

+

+		/// \}

+		/// \name Rounding

+		/// \{

+

+		/// Nearest integer not less than half value.

+		/// \param arg half to round

+		/// \return nearest integer not less than \a arg

+//		template<typename T> typename enable<half,T>::type ceil(T arg) { return functions::ceil(arg); }

+		inline half ceil(half arg) { return functions::ceil(arg); }

+		inline half ceil(expr arg) { return functions::ceil(arg); }

+

+		/// Nearest integer not greater than half value.

+		/// \param arg half to round

+		/// \return nearest integer not greater than \a arg

+//		template<typename T> typename enable<half,T>::type floor(T arg) { return functions::floor(arg); }

+		inline half floor(half arg) { return functions::floor(arg); }

+		inline half floor(expr arg) { return functions::floor(arg); }

+

+		/// Nearest integer not greater in magnitude than half value.

+		/// \param arg half to round

+		/// \return nearest integer not greater in magnitude than \a arg

+//		template<typename T> typename enable<half,T>::type trunc(T arg) { return functions::trunc(arg); }

+		inline half trunc(half arg) { return functions::trunc(arg); }

+		inline half trunc(expr arg) { return functions::trunc(arg); }

+

+		/// Nearest integer.

+		/// \param arg half to round

+		/// \return nearest integer, rounded away from zero in half-way cases

+//		template<typename T> typename enable<half,T>::type round(T arg) { return functions::round(arg); }

+		inline half round(half arg) { return functions::round(arg); }

+		inline half round(expr arg) { return functions::round(arg); }

+

+		/// Nearest integer.

+		/// \param arg half to round

+		/// \return nearest integer, rounded away from zero in half-way cases

+//		template<typename T> typename enable<long,T>::type lround(T arg) { return functions::lround(arg); }

+		inline long lround(half arg) { return functions::lround(arg); }

+		inline long lround(expr arg) { return functions::lround(arg); }

+

+		/// Nearest integer using half's internal rounding mode.

+		/// \param arg half expression to round

+		/// \return nearest integer using default rounding mode

+//		template<typename T> typename enable<half,T>::type nearbyint(T arg) { return functions::nearbyint(arg); }

+		inline half nearbyint(half arg) { return functions::rint(arg); }

+		inline half nearbyint(expr arg) { return functions::rint(arg); }

+

+		/// Nearest integer using half's internal rounding mode.

+		/// \param arg half expression to round

+		/// \return nearest integer using default rounding mode

+//		template<typename T> typename enable<half,T>::type rint(T arg) { return functions::rint(arg); }

+		inline half rint(half arg) { return functions::rint(arg); }

+		inline half rint(expr arg) { return functions::rint(arg); }

+

+		/// Nearest integer using half's internal rounding mode.

+		/// \param arg half expression to round

+		/// \return nearest integer using default rounding mode

+//		template<typename T> typename enable<long,T>::type lrint(T arg) { return functions::lrint(arg); }

+		inline long lrint(half arg) { return functions::lrint(arg); }

+		inline long lrint(expr arg) { return functions::lrint(arg); }

+	#if HALF_ENABLE_CPP11_LONG_LONG

+		/// Nearest integer.

+		/// \param arg half to round

+		/// \return nearest integer, rounded away from zero in half-way cases

+//		template<typename T> typename enable<long long,T>::type llround(T arg) { return functions::llround(arg); }

+		inline long long llround(half arg) { return functions::llround(arg); }

+		inline long long llround(expr arg) { return functions::llround(arg); }

+

+		/// Nearest integer using half's internal rounding mode.

+		/// \param arg half expression to round

+		/// \return nearest integer using default rounding mode

+//		template<typename T> typename enable<long long,T>::type llrint(T arg) { return functions::llrint(arg); }

+		inline long long llrint(half arg) { return functions::llrint(arg); }

+		inline long long llrint(expr arg) { return functions::llrint(arg); }

+	#endif

+

+		/// \}

+		/// \name Floating point manipulation

+		/// \{

+

+		/// Decompress floating point number.

+		/// \param arg number to decompress

+		/// \param exp address to store exponent at

+		/// \return significant in range [0.5, 1)

+//		template<typename T> typename enable<half,T>::type frexp(T arg, int *exp) { return functions::frexp(arg, exp); }

+		inline half frexp(half arg, int *exp) { return functions::frexp(arg, exp); }

+		inline half frexp(expr arg, int *exp) { return functions::frexp(arg, exp); }

+

+		/// Multiply by power of two.

+		/// \param arg number to modify

+		/// \param exp power of two to multiply with

+		/// \return \a arg multplied by 2 raised to \a exp

+//		template<typename T> typename enable<half,T>::type ldexp(T arg, int exp) { return functions::scalbln(arg, exp); }

+		inline half ldexp(half arg, int exp) { return functions::scalbln(arg, exp); }

+		inline half ldexp(expr arg, int exp) { return functions::scalbln(arg, exp); }

+

+		/// Extract integer and fractional parts.

+		/// \param arg number to decompress

+		/// \param iptr address to store integer part at

+		/// \return fractional part

+//		template<typename T> typename enable<half,T>::type modf(T arg, half *iptr) { return functions::modf(arg, iptr); }

+		inline half modf(half arg, half *iptr) { return functions::modf(arg, iptr); }

+		inline half modf(expr arg, half *iptr) { return functions::modf(arg, iptr); }

+

+		/// Multiply by power of two.

+		/// \param arg number to modify

+		/// \param exp power of two to multiply with

+		/// \return \a arg multplied by 2 raised to \a exp

+//		template<typename T> typename enable<half,T>::type scalbn(T arg, int exp) { return functions::scalbln(arg, exp); }

+		inline half scalbn(half arg, int exp) { return functions::scalbln(arg, exp); }

+		inline half scalbn(expr arg, int exp) { return functions::scalbln(arg, exp); }

+

+		/// Multiply by power of two.

+		/// \param arg number to modify

+		/// \param exp power of two to multiply with

+		/// \return \a arg multplied by 2 raised to \a exp	

+//		template<typename T> typename enable<half,T>::type scalbln(T arg, long exp) { return functions::scalbln(arg, exp); }

+		inline half scalbln(half arg, long exp) { return functions::scalbln(arg, exp); }

+		inline half scalbln(expr arg, long exp) { return functions::scalbln(arg, exp); }

+

+		/// Extract exponent.

+		/// \param arg number to query

+		/// \return floating point exponent

+		/// \retval FP_ILOGB0 for zero

+		/// \retval FP_ILOGBNAN for NaN

+		/// \retval MAX_INT for infinity

+//		template<typename T> typename enable<int,T>::type ilogb(T arg) { return functions::ilogb(arg); }

+		inline int ilogb(half arg) { return functions::ilogb(arg); }

+		inline int ilogb(expr arg) { return functions::ilogb(arg); }

+

+		/// Extract exponent.

+		/// \param arg number to query

+		/// \return floating point exponent

+//		template<typename T> typename enable<half,T>::type logb(T arg) { return functions::logb(arg); }

+		inline half logb(half arg) { return functions::logb(arg); }

+		inline half logb(expr arg) { return functions::logb(arg); }

+

+		/// Next representable value.

+		/// \param from value to compute next representable value for

+		/// \param to direction towards which to compute next value

+		/// \return next representable value after \a from in direction towards \a to

+//		template<typename T,typename U> typename enable<half,T,U>::type nextafter(T from, U to) { return functions::nextafter(from, to); }

+		inline half nextafter(half from, half to) { return functions::nextafter(from, to); }

+		inline half nextafter(half from, expr to) { return functions::nextafter(from, to); }

+		inline half nextafter(expr from, half to) { return functions::nextafter(from, to); }

+		inline half nextafter(expr from, expr to) { return functions::nextafter(from, to); }

+

+		/// Next representable value.

+		/// \param from value to compute next representable value for

+		/// \param to direction towards which to compute next value

+		/// \return next representable value after \a from in direction towards \a to

+//		template<typename T> typename enable<half,T>::type nexttoward(T from, long double to) { return functions::nexttoward(from, to); }

+		inline half nexttoward(half from, long double to) { return functions::nexttoward(from, to); }

+		inline half nexttoward(expr from, long double to) { return functions::nexttoward(from, to); }

+

+		/// Take sign.

+		/// \param x value to change sign for

+		/// \param y value to take sign from

+		/// \return value equal to \a x in magnitude and to \a y in sign

+//		template<typename T,typename U> typename enable<half,T,U>::type copysign(T x, U y) { return functions::copysign(x, y); }

+		inline half copysign(half x, half y) { return functions::copysign(x, y); }

+		inline half copysign(half x, expr y) { return functions::copysign(x, y); }

+		inline half copysign(expr x, half y) { return functions::copysign(x, y); }

+		inline half copysign(expr x, expr y) { return functions::copysign(x, y); }

+

+		/// \}

+		/// \name Floating point classification

+		/// \{

+

+

+		/// Classify floating point value.

+		/// \param arg number to classify

+		/// \retval FP_ZERO for positive and negative zero

+		/// \retval FP_SUBNORMAL for subnormal numbers

+		/// \retval FP_INFINITY for positive and negative infinity

+		/// \retval FP_NAN for NaNs

+		/// \retval FP_NORMAL for all other (normal) values

+//		template<typename T> typename enable<int,T>::type fpclassify(T arg) { return functions::fpclassify(arg); }

+		inline int fpclassify(half arg) { return functions::fpclassify(arg); }

+		inline int fpclassify(expr arg) { return functions::fpclassify(arg); }

+

+		/// Check if finite number.

+		/// \param arg number to check

+		/// \retval true if neither infinity nor NaN

+		/// \retval false else

+//		template<typename T> typename enable<bool,T>::type isfinite(T arg) { return functions::isfinite(arg); }

+		inline bool isfinite(half arg) { return functions::isfinite(arg); }

+		inline bool isfinite(expr arg) { return functions::isfinite(arg); }

+

+		/// Check for infinity.

+		/// \param arg number to check

+		/// \retval true for positive or negative infinity

+		/// \retval false else

+//		template<typename T> typename enable<bool,T>::type isinf(T arg) { return functions::isinf(arg); }

+		inline bool isinf(half arg) { return functions::isinf(arg); }

+		inline bool isinf(expr arg) { return functions::isinf(arg); }

+

+		/// Check for NaN.

+		/// \param arg number to check

+		/// \retval true for NaNs

+		/// \retval false else

+//		template<typename T> typename enable<bool,T>::type isnan(T arg) { return functions::isnan(arg); }

+		inline bool isnan(half arg) { return functions::isnan(arg); }

+		inline bool isnan(expr arg) { return functions::isnan(arg); }

+

+		/// Check if normal number.

+		/// \param arg number to check

+		/// \retval true if normal number

+		/// \retval false if either subnormal, zero, infinity or NaN

+//		template<typename T> typename enable<bool,T>::type isnormal(T arg) { return functions::isnormal(arg); }

+		inline bool isnormal(half arg) { return functions::isnormal(arg); }

+		inline bool isnormal(expr arg) { return functions::isnormal(arg); }

+

+		/// Check sign.

+		/// \param arg number to check

+		/// \retval true for negative number

+		/// \retval false for positive number

+//		template<typename T> typename enable<bool,T>::type signbit(T arg) { return functions::signbit(arg); }

+		inline bool signbit(half arg) { return functions::signbit(arg); }

+		inline bool signbit(expr arg) { return functions::signbit(arg); }

+

+		/// \}

+		/// \name Comparison

+		/// \{

+

+		/// Comparison for greater than.

+		/// \param x first operand

+		/// \param y second operand

+		/// \retval true if \a x greater than \a y

+		/// \retval false else

+//		template<typename T,typename U> typename enable<bool,T,U>::type isgreater(T x, U y) { return functions::isgreater(x, y); }

+		inline bool isgreater(half x, half y) { return functions::isgreater(x, y); }

+		inline bool isgreater(half x, expr y) { return functions::isgreater(x, y); }

+		inline bool isgreater(expr x, half y) { return functions::isgreater(x, y); }

+		inline bool isgreater(expr x, expr y) { return functions::isgreater(x, y); }

+

+		/// Comparison for greater equal.

+		/// \param x first operand

+		/// \param y second operand

+		/// \retval true if \a x greater equal \a y

+		/// \retval false else

+//		template<typename T,typename U> typename enable<bool,T,U>::type isgreaterequal(T x, U y) { return functions::isgreaterequal(x, y); }

+		inline bool isgreaterequal(half x, half y) { return functions::isgreaterequal(x, y); }

+		inline bool isgreaterequal(half x, expr y) { return functions::isgreaterequal(x, y); }

+		inline bool isgreaterequal(expr x, half y) { return functions::isgreaterequal(x, y); }

+		inline bool isgreaterequal(expr x, expr y) { return functions::isgreaterequal(x, y); }

+

+		/// Comparison for less than.

+		/// \param x first operand

+		/// \param y second operand

+		/// \retval true if \a x less than \a y

+		/// \retval false else

+//		template<typename T,typename U> typename enable<bool,T,U>::type isless(T x, U y) { return functions::isless(x, y); }

+		inline bool isless(half x, half y) { return functions::isless(x, y); }

+		inline bool isless(half x, expr y) { return functions::isless(x, y); }

+		inline bool isless(expr x, half y) { return functions::isless(x, y); }

+		inline bool isless(expr x, expr y) { return functions::isless(x, y); }

+

+		/// Comparison for less equal.

+		/// \param x first operand

+		/// \param y second operand

+		/// \retval true if \a x less equal \a y

+		/// \retval false else

+//		template<typename T,typename U> typename enable<bool,T,U>::type islessequal(T x, U y) { return functions::islessequal(x, y); }

+		inline bool islessequal(half x, half y) { return functions::islessequal(x, y); }

+		inline bool islessequal(half x, expr y) { return functions::islessequal(x, y); }

+		inline bool islessequal(expr x, half y) { return functions::islessequal(x, y); }

+		inline bool islessequal(expr x, expr y) { return functions::islessequal(x, y); }

+

+		/// Comarison for less or greater.

+		/// \param x first operand

+		/// \param y second operand

+		/// \retval true if either less or greater

+		/// \retval false else

+//		template<typename T,typename U> typename enable<bool,T,U>::type islessgreater(T x, U y) { return functions::islessgreater(x, y); }

+		inline bool islessgreater(half x, half y) { return functions::islessgreater(x, y); }

+		inline bool islessgreater(half x, expr y) { return functions::islessgreater(x, y); }

+		inline bool islessgreater(expr x, half y) { return functions::islessgreater(x, y); }

+		inline bool islessgreater(expr x, expr y) { return functions::islessgreater(x, y); }

+

+		/// Check if unordered.

+		/// \param x first operand

+		/// \param y second operand

+		/// \retval true if unordered (one or two NaN operands)

+		/// \retval false else

+//		template<typename T,typename U> typename enable<bool,T,U>::type isunordered(T x, U y) { return functions::isunordered(x, y); }

+		inline bool isunordered(half x, half y) { return functions::isunordered(x, y); }

+		inline bool isunordered(half x, expr y) { return functions::isunordered(x, y); }

+		inline bool isunordered(expr x, half y) { return functions::isunordered(x, y); }

+		inline bool isunordered(expr x, expr y) { return functions::isunordered(x, y); }

+

+		/// \name Casting

+		/// \{

+

+		/// Cast to or from half-precision floating point number.

+		/// This casts between [half](\ref half_float::half) and any built-in arithmetic type. The values are converted 

+		/// directly using the given rounding mode, without any roundtrip over `float` that a `static_cast` would otherwise do. 

+		/// It uses the default rounding mode.

+		///

+		/// Using this cast with neither of the two types being a [half](\ref half_float::half) or with any of the two types 

+		/// not being a built-in arithmetic type (apart from [half](\ref half_float::half), of course) results in a compiler 

+		/// error and casting between [half](\ref half_float::half)s is just a no-op.

+		/// \tparam T destination type (half or built-in arithmetic type)

+		/// \tparam U source type (half or built-in arithmetic type)

+		/// \param arg value to cast

+		/// \return \a arg converted to destination type

+		template<typename T,typename U> T half_cast(U arg) { return half_caster<T,U>::cast(arg); }

+

+		/// Cast to or from half-precision floating point number.

+		/// This casts between [half](\ref half_float::half) and any built-in arithmetic type. The values are converted 

+		/// directly using the given rounding mode, without any roundtrip over `float` that a `static_cast` would otherwise do.

+		///

+		/// Using this cast with neither of the two types being a [half](\ref half_float::half) or with any of the two types 

+		/// not being a built-in arithmetic type (apart from [half](\ref half_float::half), of course) results in a compiler 

+		/// error and casting between [half](\ref half_float::half)s is just a no-op.

+		/// \tparam T destination type (half or built-in arithmetic type)

+		/// \tparam R rounding mode to use.

+		/// \tparam U source type (half or built-in arithmetic type)

+		/// \param arg value to cast

+		/// \return \a arg converted to destination type

+		template<typename T,std::float_round_style R,typename U> T half_cast(U arg) { return half_caster<T,U,R>::cast(arg); }

+		/// \}

+	}

+

+	using detail::operator==;

+	using detail::operator!=;

+	using detail::operator<;

+	using detail::operator>;

+	using detail::operator<=;

+	using detail::operator>=;

+	using detail::operator+;

+	using detail::operator-;

+	using detail::operator*;

+	using detail::operator/;

+	using detail::operator<<;

+	using detail::operator>>;

+

+	using detail::abs;

+	using detail::fabs;

+	using detail::fmod;

+	using detail::remainder;

+	using detail::remquo;

+	using detail::fma;

+	using detail::fmax;

+	using detail::fmin;

+	using detail::fdim;

+	using detail::nanh;

+	using detail::exp;

+	using detail::expm1;

+	using detail::exp2;

+	using detail::log;

+	using detail::log10;

+	using detail::log1p;

+	using detail::log2;

+	using detail::sqrt;

+	using detail::cbrt;

+	using detail::hypot;

+	using detail::pow;

+	using detail::sin;

+	using detail::cos;

+	using detail::tan;

+	using detail::asin;

+	using detail::acos;

+	using detail::atan;

+	using detail::atan2;

+	using detail::sinh;

+	using detail::cosh;

+	using detail::tanh;

+	using detail::asinh;

+	using detail::acosh;

+	using detail::atanh;

+	using detail::erf;

+	using detail::erfc;

+	using detail::lgamma;

+	using detail::tgamma;

+	using detail::ceil;

+	using detail::floor;

+	using detail::trunc;

+	using detail::round;

+	using detail::lround;

+	using detail::nearbyint;

+	using detail::rint;

+	using detail::lrint;

+#if HALF_ENABLE_CPP11_LONG_LONG

+	using detail::llround;

+	using detail::llrint;

+#endif

+	using detail::frexp;

+	using detail::ldexp;

+	using detail::modf;

+	using detail::scalbn;

+	using detail::scalbln;

+	using detail::ilogb;

+	using detail::logb;

+	using detail::nextafter;

+	using detail::nexttoward;

+	using detail::copysign;

+	using detail::fpclassify;

+	using detail::isfinite;

+	using detail::isinf;

+	using detail::isnan;

+	using detail::isnormal;

+	using detail::signbit;

+	using detail::isgreater;

+	using detail::isgreaterequal;

+	using detail::isless;

+	using detail::islessequal;

+	using detail::islessgreater;

+	using detail::isunordered;

+

+	using detail::half_cast;

+}

+

+

+/// Extensions to the C++ standard library.

+namespace std

+{

+	/// Numeric limits for half-precision floats.

+	/// Because of the underlying single-precision implementation of many operations, it inherits some properties from 

+	/// `std::numeric_limits<float>`.

+	template<> class numeric_limits<half_float::half> : public numeric_limits<float>

+	{

+	public:

+		/// Supports signed values.

+		static HALF_CONSTEXPR_CONST bool is_signed = true;

+

+		/// Is not exact.

+		static HALF_CONSTEXPR_CONST bool is_exact = false;

+

+		/// Doesn't provide modulo arithmetic.

+		static HALF_CONSTEXPR_CONST bool is_modulo = false;

+

+		/// IEEE conformant.

+		static HALF_CONSTEXPR_CONST bool is_iec559 = true;

+

+		/// Supports infinity.

+		static HALF_CONSTEXPR_CONST bool has_infinity = true;

+

+		/// Supports quiet NaNs.

+		static HALF_CONSTEXPR_CONST bool has_quiet_NaN = true;

+

+		/// Supports subnormal values.

+		static HALF_CONSTEXPR_CONST float_denorm_style has_denorm = denorm_present;

+

+		/// Rounding mode.

+		/// Due to the mix of internal single-precision computations (using the rounding mode of the underlying 

+		/// single-precision implementation) with the rounding mode of the single-to-half conversions, the actual rounding 

+		/// mode might be `std::round_indeterminate` if the default half-precision rounding mode doesn't match the 

+		/// single-precision rounding mode.

+		static HALF_CONSTEXPR_CONST float_round_style round_style = (std::numeric_limits<float>::round_style==

+			half_float::half::round_style) ? half_float::half::round_style : round_indeterminate;

+

+		/// Significant digits.

+		static HALF_CONSTEXPR_CONST int digits = 11;

+

+		/// Significant decimal digits.

+		static HALF_CONSTEXPR_CONST int digits10 = 3;

+

+		/// Required decimal digits to represent all possible values.

+		static HALF_CONSTEXPR_CONST int max_digits10 = 5;

+

+		/// Number base.

+		static HALF_CONSTEXPR_CONST int radix = 2;

+

+		/// One more than smallest exponent.

+		static HALF_CONSTEXPR_CONST int min_exponent = -13;

+

+		/// Smallest normalized representable power of 10.

+		static HALF_CONSTEXPR_CONST int min_exponent10 = -4;

+

+		/// One more than largest exponent

+		static HALF_CONSTEXPR_CONST int max_exponent = 16;

+

+		/// Largest finitely representable power of 10.

+		static HALF_CONSTEXPR_CONST int max_exponent10 = 4;

+

+		/// Smallest positive normal value.

+		static HALF_CONSTEXPR half_float::half min() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0x0400); }

+

+		/// Smallest finite value.

+		static HALF_CONSTEXPR half_float::half lowest() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0xFBFF); }

+

+		/// Largest finite value.

+		static HALF_CONSTEXPR half_float::half max() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0x7BFF); }

+

+		/// Difference between one and next representable value.

+		static HALF_CONSTEXPR half_float::half epsilon() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0x1400); }

+

+		/// Maximum rounding error.

+		static HALF_CONSTEXPR half_float::half round_error() HALF_NOTHROW

+			{ return half_float::half(half_float::detail::binary, (round_style==std::round_to_nearest) ? 0x3800 : 0x3C00); }

+

+		/// Positive infinity.

+		static HALF_CONSTEXPR half_float::half infinity() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0x7C00); }

+

+		/// Quiet NaN.

+		static HALF_CONSTEXPR half_float::half quiet_NaN() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0x7FFF); }

+

+		/// Signalling NaN.

+		static HALF_CONSTEXPR half_float::half signaling_NaN() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0x7DFF); }

+

+		/// Smallest positive subnormal value.

+		static HALF_CONSTEXPR half_float::half denorm_min() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0x0001); }

+	};

+

+#if HALF_ENABLE_CPP11_HASH

+	/// Hash function for half-precision floats.

+	/// This is only defined if C++11 `std::hash` is supported and enabled.

+	template<> struct hash<half_float::half> //: unary_function<half_float::half,size_t>

+	{

+		/// Type of function argument.

+		typedef half_float::half argument_type;

+

+		/// Function return type.

+		typedef size_t result_type;

+

+		/// Compute hash function.

+		/// \param arg half to hash

+		/// \return hash value

+		result_type operator()(argument_type arg) const

+			{ return hash<half_float::detail::uint16>()(static_cast<unsigned>(arg.data_)&-(arg.data_!=0x8000)); }

+	};

+#endif

+}

+

+

+#undef HALF_CONSTEXPR

+#undef HALF_CONSTEXPR_CONST

+#undef HALF_NOEXCEPT

+#undef HALF_NOTHROW

+#ifdef HALF_POP_WARNINGS

+	#pragma warning(pop)

+	#undef HALF_POP_WARNINGS

+#endif

+

+#endif