MLECO-1252 ASR sample application using the public ArmNN C++ API.

Change-Id: I98cd505b8772a8c8fa88308121bc94135bb45068
Signed-off-by: Éanna Ó Catháin <eanna.ocathain@arm.com>
diff --git a/samples/SpeechRecognition/src/MFCC.cpp b/samples/SpeechRecognition/src/MFCC.cpp
new file mode 100644
index 0000000..234b14d
--- /dev/null
+++ b/samples/SpeechRecognition/src/MFCC.cpp
@@ -0,0 +1,397 @@
+//
+// Copyright © 2020 Arm Ltd and Contributors. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+
+#include <cstdio>
+#include <float.h>
+
+#include "MFCC.hpp"
+#include "MathUtils.hpp"
+
+
+MfccParams::MfccParams(
+        const float samplingFreq,
+        const int numFbankBins,
+        const float melLoFreq,
+        const float melHiFreq,
+        const int numMfccFeats,
+        const int frameLen,
+        const bool useHtkMethod,
+        const int numMfccVectors):
+        m_samplingFreq(samplingFreq),
+        m_numFbankBins(numFbankBins),
+        m_melLoFreq(melLoFreq),
+        m_melHiFreq(melHiFreq),
+        m_numMfccFeatures(numMfccFeats),
+        m_frameLen(frameLen),
+        m_numMfccVectors(numMfccVectors),
+
+        /* Smallest power of 2 >= frame length. */
+        m_frameLenPadded(pow(2, ceil((log(frameLen)/log(2))))),
+        m_useHtkMethod(useHtkMethod)
+{}
+
+std::string MfccParams::Str()
+{
+    char strC[1024];
+    snprintf(strC, sizeof(strC) - 1, "\n   \
+            \n\t Sampling frequency:         %f\
+            \n\t Number of filter banks:     %u\
+            \n\t Mel frequency limit (low):  %f\
+            \n\t Mel frequency limit (high): %f\
+            \n\t Number of MFCC features:    %u\
+            \n\t Frame length:               %u\
+            \n\t Padded frame length:        %u\
+            \n\t Using HTK for Mel scale:    %s\n",
+             this->m_samplingFreq, this->m_numFbankBins, this->m_melLoFreq,
+             this->m_melHiFreq, this->m_numMfccFeatures, this->m_frameLen,
+             this->m_frameLenPadded, this->m_useHtkMethod ? "yes" : "no");
+    return std::string{strC};
+}
+
+MFCC::MFCC(const MfccParams& params):
+        _m_params(params),
+        _m_filterBankInitialised(false)
+{
+    this->_m_buffer = std::vector<float>(
+            this->_m_params.m_frameLenPadded, 0.0);
+    this->_m_frame = std::vector<float>(
+            this->_m_params.m_frameLenPadded, 0.0);
+    this->_m_melEnergies = std::vector<float>(
+            this->_m_params.m_numFbankBins, 0.0);
+
+    this->_m_windowFunc = std::vector<float>(this->_m_params.m_frameLen);
+    const float multiplier = 2 * M_PI / this->_m_params.m_frameLen;
+
+    /* Create window function. */
+    for (size_t i = 0; i < this->_m_params.m_frameLen; i++)
+    {
+        this->_m_windowFunc[i] = (0.5 - (0.5 * cos(static_cast<float>(i) * multiplier)));
+    }
+}
+
+void MFCC::Init()
+{
+    this->_InitMelFilterBank();
+}
+
+float MFCC::MelScale(const float freq, const bool useHTKMethod)
+{
+    if (useHTKMethod)
+    {
+        return 1127.0f * logf (1.0f + freq / 700.0f);
+    }
+    else
+    {
+        /* Slaney formula for mel scale. */
+        float mel = freq / freqStep;
+
+        if (freq >= minLogHz)
+        {
+            mel = minLogMel + logf(freq / minLogHz) / logStep;
+        }
+        return mel;
+    }
+}
+
+float MFCC::InverseMelScale(const float melFreq, const bool useHTKMethod)
+{
+    if (useHTKMethod)
+    {
+        return 700.0f * (expf (melFreq / 1127.0f) - 1.0f);
+    }
+    else
+    {
+        /* Slaney formula for mel scale. */
+        float freq = freqStep * melFreq;
+
+        if (melFreq >= minLogMel)
+        {
+            freq = minLogHz * expf(logStep * (melFreq - minLogMel));
+        }
+        return freq;
+    }
+}
+
+
+bool MFCC::ApplyMelFilterBank(
+        std::vector<float>&                 fftVec,
+        std::vector<std::vector<float>>&    melFilterBank,
+        std::vector<int32_t>&               filterBankFilterFirst,
+        std::vector<int32_t>&               filterBankFilterLast,
+        std::vector<float>&                 melEnergies)
+{
+    const size_t numBanks = melEnergies.size();
+
+    if (numBanks != filterBankFilterFirst.size() ||
+        numBanks != filterBankFilterLast.size())
+    {
+        printf("unexpected filter bank lengths\n");
+        return false;
+    }
+
+    for (size_t bin = 0; bin < numBanks; ++bin)
+    {
+        auto filterBankIter = melFilterBank[bin].begin();
+        float melEnergy = 1e-10; /* Avoid log of zero at later stages */
+        const int32_t firstIndex = filterBankFilterFirst[bin];
+        const int32_t lastIndex = filterBankFilterLast[bin];
+
+        for (int32_t i = firstIndex; i <= lastIndex; ++i)
+        {
+            melEnergy += (*filterBankIter++ * fftVec[i]);
+        }
+
+        melEnergies[bin] = melEnergy;
+    }
+
+    return true;
+}
+
+void MFCC::ConvertToLogarithmicScale(std::vector<float>& melEnergies)
+{
+    float maxMelEnergy = -FLT_MAX;
+
+    /* Container for natural logarithms of mel energies */
+    std::vector <float> vecLogEnergies(melEnergies.size(), 0.f);
+
+    /* Because we are taking natural logs, we need to multiply by log10(e).
+     * Also, for wav2letter model, we scale our log10 values by 10 */
+    constexpr float multiplier = 10.0 * /* default scalar */
+                                 0.4342944819032518; /* log10f(std::exp(1.0))*/
+
+    /* Take log of the whole vector */
+    MathUtils::VecLogarithmF32(melEnergies, vecLogEnergies);
+
+    /* Scale the log values and get the max */
+    for (auto iterM = melEnergies.begin(), iterL = vecLogEnergies.begin();
+         iterM != melEnergies.end(); ++iterM, ++iterL)
+    {
+        *iterM = *iterL * multiplier;
+
+        /* Save the max mel energy. */
+        if (*iterM > maxMelEnergy)
+        {
+            maxMelEnergy = *iterM;
+        }
+    }
+
+    /* Clamp the mel energies */
+    constexpr float maxDb = 80.0;
+    const float clampLevelLowdB = maxMelEnergy - maxDb;
+    for (auto iter = melEnergies.begin(); iter != melEnergies.end(); ++iter)
+    {
+        *iter = std::max(*iter, clampLevelLowdB);
+    }
+}
+
+void MFCC::_ConvertToPowerSpectrum()
+{
+    const uint32_t halfDim = this->_m_params.m_frameLenPadded / 2;
+
+    /* Handle this special case. */
+    float firstEnergy = this->_m_buffer[0] * this->_m_buffer[0];
+    float lastEnergy = this->_m_buffer[1] * this->_m_buffer[1];
+
+    MathUtils::ComplexMagnitudeSquaredF32(
+            this->_m_buffer.data(),
+            this->_m_buffer.size(),
+            this->_m_buffer.data(),
+            this->_m_buffer.size()/2);
+
+    this->_m_buffer[0] = firstEnergy;
+    this->_m_buffer[halfDim] = lastEnergy;
+}
+
+std::vector<float> MFCC::CreateDCTMatrix(
+        const int32_t inputLength,
+        const int32_t coefficientCount)
+{
+    std::vector<float> dctMatix(inputLength * coefficientCount);
+
+    /* Orthonormal normalization. */
+    const float normalizerK0 = 2 * sqrt(1.0 / static_cast<float>(4*inputLength));
+    const float normalizer = 2 * sqrt(1.0 / static_cast<float>(2*inputLength));
+
+    const float angleIncr = M_PI/inputLength;
+    float angle = angleIncr; /* we start using it at k = 1 loop */
+
+    /* First row of DCT will use normalizer K0 */
+    for (int32_t n = 0; n < inputLength; ++n)
+    {
+        dctMatix[n] = normalizerK0;
+    }
+
+    /* Second row (index = 1) onwards, we use standard normalizer */
+    for (int32_t k = 1, m = inputLength; k < coefficientCount; ++k, m += inputLength)
+    {
+        for (int32_t n = 0; n < inputLength; ++n)
+        {
+            dctMatix[m+n] = normalizer *
+                            cos((n + 0.5) * angle);
+        }
+        angle += angleIncr;
+    }
+    return dctMatix;
+}
+
+float MFCC::GetMelFilterBankNormaliser(
+        const float&    leftMel,
+        const float&    rightMel,
+        const bool      useHTKMethod)
+{
+/* Slaney normalization for mel weights. */
+    return (2.0f / (MFCC::InverseMelScale(rightMel, useHTKMethod) -
+                    MFCC::InverseMelScale(leftMel, useHTKMethod)));
+}
+
+void MFCC::_InitMelFilterBank()
+{
+    if (!this->_IsMelFilterBankInited())
+    {
+        this->_m_melFilterBank = this->_CreateMelFilterBank();
+        this->_m_dctMatrix = this->CreateDCTMatrix(
+                this->_m_params.m_numFbankBins,
+                this->_m_params.m_numMfccFeatures);
+        this->_m_filterBankInitialised = true;
+    }
+}
+
+bool MFCC::_IsMelFilterBankInited()
+{
+    return this->_m_filterBankInitialised;
+}
+
+void MFCC::_MfccComputePreFeature(const std::vector<float>& audioData)
+{
+    this->_InitMelFilterBank();
+
+    /* TensorFlow way of normalizing .wav data to (-1, 1). */
+    constexpr float normaliser = 1.0;
+    for (size_t i = 0; i < this->_m_params.m_frameLen; i++)
+    {
+        this->_m_frame[i] = static_cast<float>(audioData[i]) * normaliser;
+    }
+
+    /* Apply window function to input frame. */
+    for(size_t i = 0; i < this->_m_params.m_frameLen; i++)
+    {
+        this->_m_frame[i] *= this->_m_windowFunc[i];
+    }
+
+    /* Set remaining frame values to 0. */
+    std::fill(this->_m_frame.begin() + this->_m_params.m_frameLen,this->_m_frame.end(), 0);
+
+    /* Compute FFT. */
+    MathUtils::FftF32(this->_m_frame, this->_m_buffer);
+
+    /* Convert to power spectrum. */
+    this->_ConvertToPowerSpectrum();
+
+    /* Apply mel filterbanks. */
+    if (!this->ApplyMelFilterBank(this->_m_buffer,
+                                  this->_m_melFilterBank,
+                                  this->_m_filterBankFilterFirst,
+                                  this->_m_filterBankFilterLast,
+                                  this->_m_melEnergies))
+    {
+        printf("Failed to apply MEL filter banks\n");
+    }
+
+    /* Convert to logarithmic scale */
+    this->ConvertToLogarithmicScale(this->_m_melEnergies);
+}
+
+std::vector<float> MFCC::MfccCompute(const std::vector<float>& audioData)
+{
+    this->_MfccComputePreFeature(audioData);
+
+    std::vector<float> mfccOut(this->_m_params.m_numMfccFeatures);
+
+    float * ptrMel = this->_m_melEnergies.data();
+    float * ptrDct = this->_m_dctMatrix.data();
+    float * ptrMfcc = mfccOut.data();
+
+    /* Take DCT. Uses matrix mul. */
+    for (size_t i = 0, j = 0; i < mfccOut.size();
+         ++i, j += this->_m_params.m_numFbankBins)
+    {
+        *ptrMfcc++ = MathUtils::DotProductF32(
+                ptrDct + j,
+                ptrMel,
+                this->_m_params.m_numFbankBins);
+    }
+
+    return mfccOut;
+}
+
+std::vector<std::vector<float>> MFCC::_CreateMelFilterBank()
+{
+    size_t numFftBins = this->_m_params.m_frameLenPadded / 2;
+    float fftBinWidth = static_cast<float>(this->_m_params.m_samplingFreq) / this->_m_params.m_frameLenPadded;
+
+    float melLowFreq = MFCC::MelScale(this->_m_params.m_melLoFreq,
+                                      this->_m_params.m_useHtkMethod);
+    float melHighFreq = MFCC::MelScale(this->_m_params.m_melHiFreq,
+                                       this->_m_params.m_useHtkMethod);
+    float melFreqDelta = (melHighFreq - melLowFreq) / (this->_m_params.m_numFbankBins + 1);
+
+    std::vector<float> thisBin = std::vector<float>(numFftBins);
+    std::vector<std::vector<float>> melFilterBank(
+            this->_m_params.m_numFbankBins);
+    this->_m_filterBankFilterFirst =
+            std::vector<int32_t>(this->_m_params.m_numFbankBins);
+    this->_m_filterBankFilterLast =
+            std::vector<int32_t>(this->_m_params.m_numFbankBins);
+
+    for (size_t bin = 0; bin < this->_m_params.m_numFbankBins; bin++)
+    {
+        float leftMel = melLowFreq + bin * melFreqDelta;
+        float centerMel = melLowFreq + (bin + 1) * melFreqDelta;
+        float rightMel = melLowFreq + (bin + 2) * melFreqDelta;
+
+        int32_t firstIndex = -1;
+        int32_t lastIndex = -1;
+        const float normaliser = this->GetMelFilterBankNormaliser(leftMel, rightMel, this->_m_params.m_useHtkMethod);
+
+        for (size_t i = 0; i < numFftBins; i++)
+        {
+            float freq = (fftBinWidth * i); /* Center freq of this fft bin. */
+            float mel = MFCC::MelScale(freq, this->_m_params.m_useHtkMethod);
+            thisBin[i] = 0.0;
+
+            if (mel > leftMel && mel < rightMel)
+            {
+                float weight;
+                if (mel <= centerMel)
+                {
+                    weight = (mel - leftMel) / (centerMel - leftMel);
+                }
+                else
+                {
+                    weight = (rightMel - mel) / (rightMel - centerMel);
+                }
+
+                thisBin[i] = weight * normaliser;
+                if (firstIndex == -1)
+                {
+                    firstIndex = i;
+                }
+                lastIndex = i;
+            }
+        }
+
+        this->_m_filterBankFilterFirst[bin] = firstIndex;
+        this->_m_filterBankFilterLast[bin] = lastIndex;
+
+        /* Copy the part we care about. */
+        for (int32_t i = firstIndex; i <= lastIndex; i++)
+        {
+            melFilterBank[bin].push_back(thisBin[i]);
+        }
+    }
+
+    return melFilterBank;
+}
+