blob: 289442e1cc5f6889282b91e5c21e4d2952cf070b [file] [log] [blame]
Cathal Corbett4952a3e2022-03-03 15:14:18 +00001//
2// Copyright © 2022 Arm Ltd and Contributors. All rights reserved.
3// SPDX-License-Identifier: MIT
4//
5
6#include "ClUnidirectionalSequenceLstmFloatWorkload.hpp"
7#include "ClWorkloadUtils.hpp"
8
9#include <aclCommon/ArmComputeUtils.hpp>
10#include <aclCommon/ArmComputeTensorUtils.hpp>
11
12#include <armnn/utility/NumericCast.hpp>
13#include <armnnUtils/Permute.hpp>
14#include <cl/test/ClWorkloadFactoryHelper.hpp>
15#include <backendsCommon/WorkloadUtils.hpp>
16
17#include "cl/ClTensorHandle.hpp"
18
19namespace
20{
21unsigned int CalcAclAxis(unsigned int numDimensions, unsigned int axis)
22{
23 return (numDimensions - axis) - 1;
24}
25} //namespace
26
27namespace armnn
28{
29using namespace armcomputetensorutils;
30
31ClUnidirectionalSequenceLstmFloatWorkload::ClUnidirectionalSequenceLstmFloatWorkload
32 (const UnidirectionalSequenceLstmQueueDescriptor& descriptor,
33 const WorkloadInfo& info,
34 const arm_compute::CLCompileContext& clCompileContext)
35 : FloatWorkload<UnidirectionalSequenceLstmQueueDescriptor>(descriptor, info)
36{
37 // Report Profiling Details
38 ARMNN_REPORT_PROFILING_WORKLOAD_DESC("ClUnidirectionalSequenceLstmFloatWorkload_Construct",
39 descriptor.m_Parameters,
40 info,
41 GetGuid());
42
43 const arm_compute::ICLTensor& input = static_cast<IClTensorHandle*>(m_Data.m_Inputs[0])->GetTensor();
Mike Kelly12994962022-04-21 11:57:09 +010044 arm_compute::ICLTensor& output = static_cast<IClTensorHandle*>(m_Data.m_Outputs[2])->GetTensor();
Cathal Corbett4952a3e2022-03-03 15:14:18 +000045
46 TensorInfo inputInfo = info.m_InputTensorInfos[0];
Mike Kelly12994962022-04-21 11:57:09 +010047 TensorInfo outputInfo = info.m_OutputTensorInfos[2];
Cathal Corbett4952a3e2022-03-03 15:14:18 +000048
49 arm_compute::DataType armComputeDataType = static_cast<IClTensorHandle*>(m_Data.m_Inputs[0])->GetDataType();
50 armnn::DataType armnnDataType = GetArmNNDataType(armComputeDataType);
51
52 TensorShape inputLayerShape = static_cast<IClTensorHandle*>(m_Data.m_Inputs[0])->GetShape();
53 TensorShape cellStateLayerShape = static_cast<IClTensorHandle*>(m_Data.m_Inputs[2])->GetShape();
Mike Kelly12994962022-04-21 11:57:09 +010054 TensorShape outputLayerShape = static_cast<IClTensorHandle*>(m_Data.m_Outputs[2])->GetShape();
Cathal Corbett4952a3e2022-03-03 15:14:18 +000055
56 unsigned int maxTime = m_Data.m_Parameters.m_TimeMajor ? inputLayerShape[0] : inputLayerShape[1];
57 unsigned int batchSize = m_Data.m_Parameters.m_TimeMajor ? inputLayerShape[1] : inputLayerShape[0];
58 unsigned int inputSize = inputLayerShape[2];
59 unsigned int outputSize = outputLayerShape[2];
60 unsigned int numUnits = cellStateLayerShape[1];
61
62 const TensorShape timeMajorShapeInput({maxTime, batchSize, inputSize});
63 const TensorShape timeMajorShapeOutput({maxTime, batchSize, outputSize});
64
65 //
66 // Permute: performed if Unidirectional Sequence Layer inputs/outputs are in batch major format.
67 //
68 if (!m_Data.m_Parameters.m_TimeMajor)
69 {
70 std::unique_ptr<arm_compute::CLPermute> layer(new arm_compute::CLPermute());
71
72 TensorInfo permuteOutInfo = inputInfo;
73 permuteOutInfo.SetShape(timeMajorShapeInput);
74 BuildArmComputeTensor(m_PermuteFirstOut, permuteOutInfo);
75 armcomputetensorutils::InitialiseArmComputeTensorEmpty(m_PermuteFirstOut);
76
77 // Permute to time major format.
78 layer->configure(clCompileContext, &input, &m_PermuteFirstOut, arm_compute::PermutationVector(0U,2U,1U));
79 m_Permute1.reset(layer.release());
80 }
81
82 //
83 // Split and Concat Tensors
84 //
85 for (unsigned int i = 0; i < maxTime; ++i)
86 {
87 arm_compute::CLTensor splitter_out;
88 arm_compute::CLTensor concat_in;
89
90 auto splitterTensorInfo = inputInfo;
91 auto concatTensorInfo = outputInfo;
92 splitterTensorInfo.SetShape({batchSize, inputSize});
93 concatTensorInfo.SetShape({batchSize, outputSize});
94 BuildArmComputeTensor(splitter_out, splitterTensorInfo);
95 BuildArmComputeTensor(concat_in, concatTensorInfo);
96
97 armcomputetensorutils::InitialiseArmComputeTensorEmpty(splitter_out);
98 armcomputetensorutils::InitialiseArmComputeTensorEmpty(concat_in);
99
100 // append to std::vector<arm_compute::CLTensor>
101 m_SplitterOutputsTensors.push_back(std::move(splitter_out));
102 m_ConcatInputsTensors.push_back(std::move(concat_in));
103 }
104
105 for (unsigned int i = 0; i < maxTime; ++i)
106 {
107 // append to std::vector<arm_compute::ICLTensor*>
108 m_SplitterOutputs.push_back(&m_SplitterOutputsTensors[i]);
109 m_ConcatInputs.push_back(&m_ConcatInputsTensors[i]);
110 }
111
112 //
113 // Split
114 //
115 unsigned int numberDimensions = 3;
116 unsigned int dimension = 0; // splitting on 0-dimension (i.e. maxTime dimension)
117
118 if (maxTime != 1) // ACL split does not work with only one element to split.
119 {
120 ViewsDescriptor splitterDesc(maxTime, numberDimensions);
121 unsigned int splitterDimSizes[3] = {1, batchSize, inputSize};
122 for (unsigned int outputIdx = 0u; outputIdx < maxTime; ++outputIdx)
123 {
124 splitterDesc.SetViewOriginCoord(outputIdx, dimension, splitterDimSizes[dimension] * outputIdx);
125 for (unsigned int dimIdx = 0u; dimIdx < numberDimensions; ++dimIdx)
126 {
127 splitterDesc.SetViewSize(outputIdx, dimIdx, splitterDimSizes[dimIdx]);
128 }
129 }
130
131 std::set<unsigned int> splitAxis = ComputeSplitAxis(splitterDesc, timeMajorShapeInput);
132
133 std::unique_ptr<arm_compute::CLSplit> split_layer(new arm_compute::CLSplit());
134 unsigned int aclAxisSplit = CalcAclAxis(splitterDesc.GetNumDimensions(), *splitAxis.begin());
135 if (!m_Data.m_Parameters.m_TimeMajor)
136 {
137 split_layer->configure(&m_PermuteFirstOut, m_SplitterOutputs, aclAxisSplit);
138 }
139 else
140 {
141 split_layer->configure(&input, m_SplitterOutputs, aclAxisSplit);
142 }
143
144 split_layer->prepare();
145 m_Splitter.reset(split_layer.release());
146 }
147
148 //
149 // Lstm
150 //
151 arm_compute::LSTMParams<arm_compute::ICLTensor> lstm_param;
152
153 m_InputToForgetWeightsTensor = std::make_unique<arm_compute::CLTensor>();
154 BuildArmComputeTensor(*m_InputToForgetWeightsTensor, m_Data.m_InputToForgetWeights->GetTensorInfo());
155
156 m_InputToCellWeightsTensor = std::make_unique<arm_compute::CLTensor>();
157 BuildArmComputeTensor(*m_InputToCellWeightsTensor, m_Data.m_InputToCellWeights->GetTensorInfo());
158
159 m_InputToOutputWeightsTensor = std::make_unique<arm_compute::CLTensor>();
160 BuildArmComputeTensor(*m_InputToOutputWeightsTensor, m_Data.m_InputToOutputWeights->GetTensorInfo());
161
162 m_RecurrentToForgetWeightsTensor = std::make_unique<arm_compute::CLTensor>();
163 BuildArmComputeTensor(*m_RecurrentToForgetWeightsTensor, m_Data.m_RecurrentToForgetWeights->GetTensorInfo());
164
165 m_RecurrentToCellWeightsTensor = std::make_unique<arm_compute::CLTensor>();
166 BuildArmComputeTensor(*m_RecurrentToCellWeightsTensor, m_Data.m_RecurrentToCellWeights->GetTensorInfo());
167
168 m_RecurrentToOutputWeightsTensor = std::make_unique<arm_compute::CLTensor>();
169 BuildArmComputeTensor(*m_RecurrentToOutputWeightsTensor, m_Data.m_RecurrentToOutputWeights->GetTensorInfo());
170
171 m_ForgetGateBiasTensor = std::make_unique<arm_compute::CLTensor>();
172 BuildArmComputeTensor(*m_ForgetGateBiasTensor, m_Data.m_ForgetGateBias->GetTensorInfo());
173
174 m_CellBiasTensor = std::make_unique<arm_compute::CLTensor>();
175 BuildArmComputeTensor(*m_CellBiasTensor, m_Data.m_CellBias->GetTensorInfo());
176
177 m_OutputGateBiasTensor = std::make_unique<arm_compute::CLTensor>();
178 BuildArmComputeTensor(*m_OutputGateBiasTensor, m_Data.m_OutputGateBias->GetTensorInfo());
179
180 // for future reference: check the AndroidNN API for the logic here
181 if (!m_Data.m_Parameters.m_CifgEnabled)
182 {
183 m_InputToInputWeightsTensor = std::make_unique<arm_compute::CLTensor>();
184 BuildArmComputeTensor(*m_InputToInputWeightsTensor, m_Data.m_InputToInputWeights->GetTensorInfo());
185
186 m_RecurrentToInputWeightsTensor = std::make_unique<arm_compute::CLTensor>();
187 BuildArmComputeTensor(*m_RecurrentToInputWeightsTensor, m_Data.m_RecurrentToInputWeights->GetTensorInfo());
188
189 m_CellToInputWeightsTensor = std::make_unique<arm_compute::CLTensor>();
190 if (m_Data.m_CellToInputWeights != nullptr)
191 {
192 BuildArmComputeTensor(*m_CellToInputWeightsTensor, m_Data.m_CellToInputWeights->GetTensorInfo());
193 }
194
195 m_InputGateBiasTensor = std::make_unique<arm_compute::CLTensor>();
196 BuildArmComputeTensor(*m_InputGateBiasTensor, m_Data.m_InputGateBias->GetTensorInfo());
197
198 lstm_param.set_cifg_params(m_InputToInputWeightsTensor.get(),
199 m_RecurrentToInputWeightsTensor.get(),
200 m_Data.m_CellToInputWeights ? m_CellToInputWeightsTensor.get() : nullptr,
201 m_InputGateBiasTensor.get());
202 }
203
204 if (m_Data.m_Parameters.m_ProjectionEnabled)
205 {
206 m_ProjectionWeightsTensor = std::make_unique<arm_compute::CLTensor>();
207 BuildArmComputeTensor(*m_ProjectionWeightsTensor, m_Data.m_ProjectionWeights->GetTensorInfo());
208
209 m_ProjectionBiasTensor = std::make_unique<arm_compute::CLTensor>();
210 if (m_Data.m_ProjectionBias != nullptr)
211 {
212 BuildArmComputeTensor(*m_ProjectionBiasTensor, m_Data.m_ProjectionBias->GetTensorInfo());
213 }
214
215 lstm_param.set_projection_params(m_ProjectionWeightsTensor.get(),
216 m_Data.m_ProjectionBias ? m_ProjectionBiasTensor.get() : nullptr);
217 }
218
219 if (m_Data.m_Parameters.m_PeepholeEnabled)
220 {
221 m_CellToForgetWeightsTensor = std::make_unique<arm_compute::CLTensor>();
222 BuildArmComputeTensor(*m_CellToForgetWeightsTensor, m_Data.m_CellToForgetWeights->GetTensorInfo());
223
224 m_CellToOutputWeightsTensor = std::make_unique<arm_compute::CLTensor>();
225 BuildArmComputeTensor(*m_CellToOutputWeightsTensor, m_Data.m_CellToOutputWeights->GetTensorInfo());
226
227 lstm_param.set_peephole_params(m_CellToForgetWeightsTensor.get(), m_CellToOutputWeightsTensor.get());
228 }
229
230 if (m_Data.m_Parameters.m_LayerNormEnabled)
231 {
232 m_InputLayerNormWeightsTensor = std::make_unique<arm_compute::CLTensor>();
233 if (!m_Data.m_Parameters.m_CifgEnabled)
234 {
235 BuildArmComputeTensor(*m_InputLayerNormWeightsTensor, m_Data.m_InputLayerNormWeights->GetTensorInfo());
236 }
237
238 m_ForgetLayerNormWeightsTensor = std::make_unique<arm_compute::CLTensor>();
239 BuildArmComputeTensor(*m_ForgetLayerNormWeightsTensor, m_Data.m_ForgetLayerNormWeights->GetTensorInfo());
240
241 m_CellLayerNormWeightsTensor = std::make_unique<arm_compute::CLTensor>();
242 BuildArmComputeTensor(*m_CellLayerNormWeightsTensor, m_Data.m_CellLayerNormWeights->GetTensorInfo());
243
244 m_OutputLayerNormWeightsTensor = std::make_unique<arm_compute::CLTensor>();
245 BuildArmComputeTensor(*m_OutputLayerNormWeightsTensor, m_Data.m_OutputLayerNormWeights->GetTensorInfo());
246
247 auto inputNormWeightTensor = m_Data.m_Parameters.m_CifgEnabled ? nullptr : m_InputLayerNormWeightsTensor.get();
248 lstm_param.set_layer_normalization_params(inputNormWeightTensor,
249 m_ForgetLayerNormWeightsTensor.get(),
250 m_CellLayerNormWeightsTensor.get(),
251 m_OutputLayerNormWeightsTensor.get());
252 }
253
254 arm_compute::ICLTensor& output_state_in = static_cast<IClTensorHandle*>(m_Data.m_Inputs[1])->GetTensor();
255 arm_compute::ICLTensor& cell_state_in = static_cast<IClTensorHandle*>(m_Data.m_Inputs[2])->GetTensor();
256
257 arm_compute::ICLTensor& output_state_out = static_cast<IClTensorHandle*>(m_Data.m_Inputs[1])->GetTensor();
258 arm_compute::ICLTensor& cell_state_out = static_cast<IClTensorHandle*>(m_Data.m_Inputs[2])->GetTensor();
259
260 m_ScratchBuffer = std::make_unique<arm_compute::CLTensor>();
261 if (m_Data.m_Parameters.m_CifgEnabled)
262 {
263 // scratch_buffer [num_units * 3, batch_size] with CIFG
264 BuildArmComputeTensor(*m_ScratchBuffer, TensorInfo({batchSize, numUnits * 3}, armnnDataType));
265 }
266 else
267 {
268 // scratch_buffer [num_units * 4, batch_size] without CIFG
269 BuildArmComputeTensor(*m_ScratchBuffer, TensorInfo({batchSize, numUnits * 4}, armnnDataType));
270 }
271
272 // Need to be set at negative threshold to be compatible for ACL
273 float cell_threshold = m_Data.m_Parameters.m_ClippingThresCell;
274 float projection_threshold = m_Data.m_Parameters.m_ClippingThresProj;
275
276 // For preparing the object for the class ActivationLayerInfo, consider 5 situations
277 arm_compute::ActivationLayerInfo activationLayerInfo =
278 ConvertLstmActivationFuncToAclLayerInfo(m_Data.m_Parameters.m_ActivationFunc);
279
280 for (unsigned int i = 0; i != maxTime; ++i)
281 {
282 // Set LSTM input and output ITensors depending on:
283 // input format (timeMajor) & number of LSTM batches (maxTime).
284 arm_compute::ICLTensor* outputLSTM;
285 arm_compute::ICLTensor* inputLSTM;
286 // If there is only one LSTM time major batch, we will not concat OR permute.
287 // Set input of LSTM to be first input ITensor.
288 // Set output of LSTM to be final output ITensor.
289 // LSTM input/output cannot be > 2 dimensions so need to resize its TensorInfo.
290 if (maxTime == 1 && m_Data.m_Parameters.m_TimeMajor)
291 {
292 TensorShape inputShape = GetTensorShape((&input)->info()->tensor_shape(), 1U);
293 TensorShape outputShape = GetTensorShape((&output)->info()->tensor_shape(), 1U);
294 TensorShape inputShapeShrink({inputShape[1], inputShape[2]});
295 TensorShape outputShapeShrink({outputShape[1], outputShape[2]});
296 auto acl_input_shape_shrink = BuildArmComputeTensorShape(inputShapeShrink);
297 auto acl_output_shape_shrink = BuildArmComputeTensorShape(outputShapeShrink);
298 (&input)->info()->set_tensor_shape(acl_input_shape_shrink);
299 inputLSTM = const_cast<arm_compute::ICLTensor*>(&input);
300 (&output)->info()->set_tensor_shape(acl_output_shape_shrink);
301 outputLSTM = &output;
302 }
303 // If there is only one LSTM batch major batch, we will not concat, only permute.
304 // Set input of LSTM to be output of initial permute.
305 // Set output of LSTM to be first element of m_ConcatInputs & use that value later in permute.
306 // LSTM output cannot be > 2 dimensions so need to resize its TensorInfo.
307 else if (maxTime == 1 && !m_Data.m_Parameters.m_TimeMajor)
308 {
309 TensorShape inputShape = GetTensorShape(m_PermuteFirstOut.info()->tensor_shape(), 1U);
310 TensorShape inputShapeShrink({inputShape[1], inputShape[2]});
311 auto acl_input_shape_shrink = BuildArmComputeTensorShape(inputShapeShrink);
312 m_PermuteFirstOut.info()->set_tensor_shape(acl_input_shape_shrink);
313 inputLSTM = &m_PermuteFirstOut;
314 outputLSTM = const_cast<arm_compute::ICLTensor*>(m_ConcatInputs[i]);
315 }
316 // Batch major AND/OR 2+ LSTM batches so will use concat AND/OR permute later on.
317 else
318 {
319 inputLSTM = m_SplitterOutputs[i];
320 outputLSTM = const_cast<arm_compute::ICLTensor*>(m_ConcatInputs[i]);
321 }
322
323 std::unique_ptr<arm_compute::CLLSTMLayer> lstm_layer(new arm_compute::CLLSTMLayer());
324 lstm_layer->configure(clCompileContext,
325 inputLSTM,
326 m_InputToForgetWeightsTensor.get(),
327 m_InputToCellWeightsTensor.get(),
328 m_InputToOutputWeightsTensor.get(),
329 m_RecurrentToForgetWeightsTensor.get(),
330 m_RecurrentToCellWeightsTensor.get(),
331 m_RecurrentToOutputWeightsTensor.get(),
332 m_ForgetGateBiasTensor.get(),
333 m_CellBiasTensor.get(),
334 m_OutputGateBiasTensor.get(),
335 &output_state_in,
336 &cell_state_in,
337 m_ScratchBuffer.get(),
338 &output_state_out,
339 &cell_state_out,
340 outputLSTM,
341 lstm_param,
342 activationLayerInfo,
343 cell_threshold,
344 projection_threshold);
345
346 m_Layers.emplace_back(std::move(lstm_layer));
347 }
348
349 armcomputetensorutils::InitialiseArmComputeTensorEmpty(*m_ScratchBuffer);
350
351 InitializeArmComputeClTensorData(*m_InputToForgetWeightsTensor, m_Data.m_InputToForgetWeights);
352 InitializeArmComputeClTensorData(*m_InputToCellWeightsTensor, m_Data.m_InputToCellWeights);
353 InitializeArmComputeClTensorData(*m_InputToOutputWeightsTensor, m_Data.m_InputToOutputWeights);
354 InitializeArmComputeClTensorData(*m_RecurrentToForgetWeightsTensor, m_Data.m_RecurrentToForgetWeights);
355 InitializeArmComputeClTensorData(*m_RecurrentToCellWeightsTensor, m_Data.m_RecurrentToCellWeights);
356 InitializeArmComputeClTensorData(*m_RecurrentToOutputWeightsTensor, m_Data.m_RecurrentToOutputWeights);
357 InitializeArmComputeClTensorData(*m_ForgetGateBiasTensor, m_Data.m_ForgetGateBias);
358 InitializeArmComputeClTensorData(*m_CellBiasTensor, m_Data.m_CellBias);
359 InitializeArmComputeClTensorData(*m_OutputGateBiasTensor, m_Data.m_OutputGateBias);
360
361 if (!m_Data.m_Parameters.m_CifgEnabled)
362 {
363 InitializeArmComputeClTensorData(*m_InputToInputWeightsTensor, m_Data.m_InputToInputWeights);
364 InitializeArmComputeClTensorData(*m_RecurrentToInputWeightsTensor, m_Data.m_RecurrentToInputWeights);
365 if (m_Data.m_CellToInputWeights != nullptr)
366 {
367 InitializeArmComputeClTensorData(*m_CellToInputWeightsTensor, m_Data.m_CellToInputWeights);
368 }
369 InitializeArmComputeClTensorData(*m_InputGateBiasTensor, m_Data.m_InputGateBias);
370 }
371
372 if (m_Data.m_Parameters.m_ProjectionEnabled)
373 {
374 InitializeArmComputeClTensorData(*m_ProjectionWeightsTensor, m_Data.m_ProjectionWeights);
375 if (m_Data.m_ProjectionBias != nullptr)
376 {
377 InitializeArmComputeClTensorData(*m_ProjectionBiasTensor, m_Data.m_ProjectionBias);
378 }
379 }
380
381 if (m_Data.m_Parameters.m_PeepholeEnabled)
382 {
383 InitializeArmComputeClTensorData(*m_CellToForgetWeightsTensor, m_Data.m_CellToForgetWeights);
384 InitializeArmComputeClTensorData(*m_CellToOutputWeightsTensor, m_Data.m_CellToOutputWeights);
385 }
386
387 if (m_Data.m_Parameters.m_LayerNormEnabled)
388 {
389 if (!m_Data.m_Parameters.m_CifgEnabled)
390 {
391 InitializeArmComputeClTensorData(*m_InputLayerNormWeightsTensor, m_Data.m_InputLayerNormWeights);
392 }
393 InitializeArmComputeClTensorData(*m_ForgetLayerNormWeightsTensor, m_Data.m_ForgetLayerNormWeights);
394 InitializeArmComputeClTensorData(*m_CellLayerNormWeightsTensor, m_Data.m_CellLayerNormWeights);
395 InitializeArmComputeClTensorData(*m_OutputLayerNormWeightsTensor, m_Data.m_OutputLayerNormWeights);
396 }
397
398 // Force Compute Library to perform the necessary copying and reshaping.
399 // After which delete all the input tensors that will no longer be needed.
400 for (uint32_t i = 0; i < m_Layers.size(); ++i)
401 {
402 m_Layers[i]->prepare();
403 }
404
405 //
406 // Concat
407 //
408
409 // Expand dimensions of LSTM outputs adding one empty dimension to fit concatenate inputs.
410 TensorShape shape = GetTensorShape(m_ConcatInputs[0]->info()->tensor_shape(), 1U);
411 TensorShape shapeExpandTimeMajor({1, shape[0], shape[1]});
412 TensorShape shapeExpandBatchMajor({shape[0], 1, shape[1]});
413
414 if (maxTime != 1) // ACL concat does not work with only one element to concatenate.
415 {
416 for (unsigned int i = 0; i < maxTime; ++i)
417 {
418 m_ConcatInputs[i]->info()->set_tensor_shape(BuildArmComputeTensorShape(shapeExpandTimeMajor));
419 }
420
421 ConcatDescriptor concatDescriptor(maxTime, numberDimensions); // maxTime = num inputs (aka. number of views).
422 for (unsigned int inputIdx = 0u; inputIdx < maxTime; ++inputIdx)
423 {
424 concatDescriptor.SetViewOriginCoord(inputIdx, dimension, inputIdx);
425 concatDescriptor.SetConcatAxis(dimension);
426 }
427
428 m_Concat.reset(new arm_compute::CLConcatenateLayer());
429 unsigned int aclAxisConcat = CalcAclAxis(concatDescriptor.GetNumDimensions(),
430 concatDescriptor.GetConcatAxis());
431 if (!m_Data.m_Parameters.m_TimeMajor)
432 {
433 TensorInfo concatOuputTensorInfo = outputInfo;
434 concatOuputTensorInfo.SetShape(timeMajorShapeOutput);
435 BuildArmComputeTensor(concat_out, concatOuputTensorInfo);
436 armcomputetensorutils::InitialiseArmComputeTensorEmpty(concat_out);
437
438 m_Concat->configure(m_ConcatInputs, &concat_out, aclAxisConcat);
439 }
440 else
441 {
442 m_Concat->configure(m_ConcatInputs, &output, aclAxisConcat);
443 }
444
445 m_Concat->prepare();
446 }
447 // If only one LSTM batch, we do not concat and/or permute.
448 // Must ensure final output info is expanded to correct batch major dimensions.
449 else
450 {
451 if (!m_Data.m_Parameters.m_TimeMajor)
452 {
453 (&output)->info()->set_tensor_shape(BuildArmComputeTensorShape(shapeExpandBatchMajor));
454 }
455 else
456 {
457 (&output)->info()->set_tensor_shape(BuildArmComputeTensorShape(shapeExpandTimeMajor));
458 }
459 }
460
461 //
462 // Permute: only done if input/output are in batch major format.
463 //
464 if (!m_Data.m_Parameters.m_TimeMajor)
465 {
466 // Output now time major. Permute output back to batch major.
467 std::unique_ptr<arm_compute::CLPermute> layer(new arm_compute::CLPermute());
468 if (maxTime != 1)
469 {
470 layer->configure(clCompileContext, &concat_out, &output, arm_compute::PermutationVector(0U, 2U, 1U));
471 }
472 else
473 {
474 layer->configure(clCompileContext, m_ConcatInputs[0], &output, arm_compute::PermutationVector(0U, 2U, 1U));
475 }
476 m_Permute2.reset(layer.release());
477 }
478
479 FreeUnusedTensors();
480}
481
482void ClUnidirectionalSequenceLstmFloatWorkload::Execute() const
483{
484 ARMNN_SCOPED_PROFILING_EVENT_CL_GUID("ClUnidirectionalSequenceLstmFloatWorkload_Execute", GetGuid());
485 if (m_Permute1)
486 {
487 m_Permute1->run();
488 }
489 if (m_Splitter)
490 {
491 m_Splitter->run();
492 }
493 for (uint32_t i = 0; i < m_Layers.size(); ++i)
494 {
495 m_Layers[i]->run();
496 }
497 if (m_Concat)
498 {
499 m_Concat->run();
500 }
501 if (m_Permute2)
502 {
503 m_Permute2->run();
504 }
505}
506
507arm_compute::Status
508ClUnidirectionalSequenceLstmFloatWorkloadValidate(const TensorInfo& input,
509 const TensorInfo& outputStateIn,
510 const TensorInfo& cellStateIn,
511 const TensorInfo& output,
512 const Optional<TensorInfo>& hiddenStateOutput,
513 const Optional<TensorInfo>& cellStateOutput,
514 const UnidirectionalSequenceLstmDescriptor& descriptor,
515 const LstmInputParamsInfo& paramsInfo)
516{
517 IgnoreUnused(hiddenStateOutput, cellStateOutput);
518
519 TensorShape inputLayerShape = input.GetShape();
Narumol Prangnawarat270641b2023-05-22 10:57:47 +0100520 TensorShape outputLayerShape = output.GetShape();
Cathal Corbett4952a3e2022-03-03 15:14:18 +0000521
522 unsigned int maxTime = descriptor.m_TimeMajor?inputLayerShape[0]:inputLayerShape[1];
523 unsigned int batchSize = descriptor.m_TimeMajor?inputLayerShape[1]:inputLayerShape[0];
524 unsigned int inputSize = inputLayerShape[2];
525 unsigned int outputSize = outputLayerShape[2];
526
527 const TensorShape timeMajorShapeInput({maxTime, batchSize, inputSize});
528 const TensorShape timeMajorShapeOutput({maxTime, batchSize, outputSize});
529
530 arm_compute::Status statusPermute1 = arm_compute::Status(arm_compute::ErrorCode::OK,
531 "Permute1 status");
532 arm_compute::Status statusSplit = arm_compute::Status(arm_compute::ErrorCode::OK,
533 "Split status");
534 arm_compute::Status statusLSTM = arm_compute::Status(arm_compute::ErrorCode::OK,
535 "LSTM status");
536 arm_compute::Status statusConcat = arm_compute::Status(arm_compute::ErrorCode::OK,
537 "Concat status");
538 arm_compute::Status statusPermute2 = arm_compute::Status(arm_compute::ErrorCode::OK,
539 "Permute2 status");
540
541 const arm_compute::TensorInfo aclInputInfo = armcomputetensorutils::BuildArmComputeTensorInfo(input);
542 const arm_compute::TensorInfo aclOutputInfo = armcomputetensorutils::BuildArmComputeTensorInfo(output);
543
544 //
545 // Permute validate
546 //
547 TensorInfo permuteOutInfo = TensorInfo(input);
548 arm_compute::TensorInfo aclPermuteOutInfo = armcomputetensorutils::BuildArmComputeTensorInfo(permuteOutInfo);
549 if (!descriptor.m_TimeMajor)
550 {
551 statusPermute1 = arm_compute::CLPermute::validate(&aclInputInfo,
552 &aclPermuteOutInfo,
553 arm_compute::PermutationVector(0U, 2U, 1U));
554 }
555
556 //
557 // Split and Concat Tensors validate
558 //
559 std::vector<arm_compute::TensorInfo> splitterOutputsTensorInfos;
560 std::vector<arm_compute::TensorInfo> concatInputsTensorInfos;
561 std::vector<arm_compute::ITensorInfo*> splitterOutputsTensorInfosPtr;
562 std::vector<const arm_compute::ITensorInfo*> concatInputsTensorInfosPtr;
563 splitterOutputsTensorInfos.reserve(maxTime);
564 concatInputsTensorInfos.reserve(maxTime);
565 for (unsigned int i = 0; i < maxTime; ++i)
566 {
567 arm_compute::TensorInfo splitter_out;
568 arm_compute::TensorInfo concat_in;
569
570 auto splitterTensorInfo = TensorInfo(input);
571 auto concatTensorInfo = TensorInfo(output);
572 splitterTensorInfo.SetShape({batchSize, inputSize});
573 concatTensorInfo.SetShape({batchSize, outputSize});
574
575 arm_compute::TensorInfo aclSplitterTensorInfo
576 = armcomputetensorutils::BuildArmComputeTensorInfo(splitterTensorInfo);
577 arm_compute::TensorInfo aclConcatTensorInfo
578 = armcomputetensorutils::BuildArmComputeTensorInfo(concatTensorInfo);
579
580 splitterOutputsTensorInfos.emplace_back(aclSplitterTensorInfo);
581 concatInputsTensorInfos.emplace_back(aclConcatTensorInfo);
582 splitterOutputsTensorInfosPtr.emplace_back(&splitterOutputsTensorInfos[i]);
583 concatInputsTensorInfosPtr.emplace_back(&concatInputsTensorInfos[i]);
584 }
585
586 //
587 // Split validate
588 //
589 unsigned int numberDimensions = 3;
590 unsigned int dimension = 0; // splitting on 0-dimension (i.e. maxTime dimension)
591 unsigned int aclAxisSplit = CalcAclAxis(numberDimensions, dimension);
592
593 if (maxTime != 1) // ACL split does not work with only one element to split.
594 {
595 if (!descriptor.m_TimeMajor)
596 {
597 statusSplit = arm_compute::CLSplit::validate(&aclPermuteOutInfo,
598 splitterOutputsTensorInfosPtr,
599 aclAxisSplit);
600 }
601 else
602 {
603 statusSplit = arm_compute::CLSplit::validate(&aclInputInfo, splitterOutputsTensorInfosPtr, aclAxisSplit);
604 }
605 }
606
607 //
608 // LSTM validate
609 //
610
611 arm_compute::LSTMParams<arm_compute::ITensorInfo> lstm_params_info;
612
613 const TensorInfo& scratchBuffer = TensorInfo(cellStateIn.GetShape(), input.GetDataType());
614 const TensorInfo& outputStateOut = TensorInfo(outputStateIn.GetShape(), input.GetDataType());
615 const TensorInfo& cellStateOut = TensorInfo(cellStateIn.GetShape(), input.GetDataType());
616
617 // The inputs and outputs
618 const arm_compute::TensorInfo aclOutputStateInInfo = BuildArmComputeTensorInfo(outputStateIn);
619 const arm_compute::TensorInfo aclCellStateInInfo = BuildArmComputeTensorInfo(cellStateIn);
620 const arm_compute::TensorInfo aclScratchBufferInfo = BuildArmComputeTensorInfo(scratchBuffer);
621 const arm_compute::TensorInfo aclOutputStateOutInfo = BuildArmComputeTensorInfo(outputStateOut);
622 const arm_compute::TensorInfo aclCellStateOutInfo = BuildArmComputeTensorInfo(cellStateOut);
623
624 // Basic parameters
625 const arm_compute::TensorInfo aclInputToForgetWeightsInfo
626 = BuildArmComputeTensorInfo(paramsInfo.GetInputToForgetWeights());
627 const arm_compute::TensorInfo aclInputToCellWeightsInfo
628 = BuildArmComputeTensorInfo(paramsInfo.GetInputToCellWeights());
629 const arm_compute::TensorInfo aclInputToOutputWeightsInfo
630 = BuildArmComputeTensorInfo(paramsInfo.GetInputToOutputWeights());
631 const arm_compute::TensorInfo aclRecurrentToForgetWeightsInfo
632 = BuildArmComputeTensorInfo(paramsInfo.GetRecurrentToForgetWeights());
633 const arm_compute::TensorInfo aclRecurrentToCellWeightsInfo
634 = BuildArmComputeTensorInfo(paramsInfo.GetRecurrentToCellWeights());
635 const arm_compute::TensorInfo aclRecurrentToOutputWeightsInfo
636 = BuildArmComputeTensorInfo(paramsInfo.GetRecurrentToOutputWeights());
637 const arm_compute::TensorInfo aclForgetGateBiasInfo
638 = BuildArmComputeTensorInfo(paramsInfo.GetForgetGateBias());
639 const arm_compute::TensorInfo aclCellBiasInfo
640 = BuildArmComputeTensorInfo(paramsInfo.GetCellBias());
641 const arm_compute::TensorInfo aclOutputGateBiasInfo
642 = BuildArmComputeTensorInfo(paramsInfo.GetOutputGateBias());
643
644 arm_compute::TensorInfo aclInputToInputWeightsInfo;
645 arm_compute::TensorInfo aclRecurrentToInputWeightsInfo;
646 arm_compute::TensorInfo aclCellToInputWeightsInfo;
647 arm_compute::TensorInfo aclInputGateBiasInfo;
648 arm_compute::TensorInfo aclProjectionWeightsInfo;
649 arm_compute::TensorInfo aclProjectionBiasInfo;
650 arm_compute::TensorInfo aclCellToForgetWeightsInfo;
651 arm_compute::TensorInfo aclCellToOutputWeightsInfo;
652
653 arm_compute::TensorInfo aclInputLayerNormWeightsInfo;
654 arm_compute::TensorInfo aclForgetLayerNormWeightsInfo;
655 arm_compute::TensorInfo aclCellLayerNormWeightsInfo;
656 arm_compute::TensorInfo aclOutputLayerNormWeightsInfo;
657
658
659 if (!descriptor.m_CifgEnabled)
660 {
661 if (descriptor.m_PeepholeEnabled)
662 {
663 aclCellToInputWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetCellToInputWeights());
664 }
665 aclInputToInputWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetInputToInputWeights());
666 aclRecurrentToInputWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetRecurrentToInputWeights());
667 aclInputGateBiasInfo = BuildArmComputeTensorInfo(paramsInfo.GetInputGateBias());
668
669 lstm_params_info.set_cifg_params(&aclInputToInputWeightsInfo,
670 &aclRecurrentToInputWeightsInfo,
671 descriptor.m_PeepholeEnabled ? &aclCellToInputWeightsInfo : nullptr,
672 &aclInputGateBiasInfo);
673 }
674
675 if (descriptor.m_ProjectionEnabled)
676 {
677 if (paramsInfo.m_ProjectionBias != nullptr)
678 {
679 aclProjectionBiasInfo = BuildArmComputeTensorInfo(paramsInfo.GetProjectionBias());
680 }
681 aclProjectionWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetProjectionWeights());
682
683 lstm_params_info.set_projection_params(&aclProjectionWeightsInfo,
684 paramsInfo.m_ProjectionBias ? &aclProjectionBiasInfo : nullptr);
685 }
686
687 if (descriptor.m_PeepholeEnabled)
688 {
689 aclCellToForgetWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetCellToForgetWeights());
690 aclCellToOutputWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetCellToOutputWeights());
691
692 lstm_params_info.set_peephole_params(&aclCellToForgetWeightsInfo, &aclCellToOutputWeightsInfo);
693 }
694
695 if (descriptor.m_LayerNormEnabled)
696 {
697 if (!descriptor.m_CifgEnabled)
698 {
699 aclInputLayerNormWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetInputLayerNormWeights());
700 }
701 aclForgetLayerNormWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetForgetLayerNormWeights());
702 aclCellLayerNormWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetCellLayerNormWeights());
703 aclOutputLayerNormWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetOutputLayerNormWeights());
704
705 lstm_params_info.set_layer_normalization_params(descriptor.m_CifgEnabled ? nullptr :
706 &aclInputLayerNormWeightsInfo,
707 &aclForgetLayerNormWeightsInfo,
708 &aclCellLayerNormWeightsInfo,
709 &aclOutputLayerNormWeightsInfo);
710 }
711
712 // Need to be set at negative threshold to be compatible for ACL
713 float cell_threshold = descriptor.m_ClippingThresCell;
714 float projection_threshold = descriptor.m_ClippingThresProj;
715
716 arm_compute::ActivationLayerInfo activationLayerInfo =
717 ConvertLstmActivationFuncToAclLayerInfo(descriptor.m_ActivationFunc);
718
719 for (unsigned int i = 0; i != maxTime; ++i)
720 {
721
722 // Set LSTM input and output ITensors depending on:
723 // input format (timeMajor) & number of LSTM batches (maxTime).
724 arm_compute::ITensorInfo* outputLSTM;
725 arm_compute::ITensorInfo* inputLSTM;
726 // If there is only one LSTM time major batch, we will not concat OR permute.
727 // Set input of LSTM to be first input ITensor.
728 // Set output of LSTM to be final output ITensor.
729 // LSTM input/output cannot be > 2 dimensions so need to resize its TensorInfo.
730 if (maxTime == 1 && !descriptor.m_TimeMajor)
731 {
732 TensorShape inputShape = GetTensorShape(aclInputInfo.tensor_shape(), 1U);
733 TensorShape outputShape = GetTensorShape(aclOutputInfo.tensor_shape(), 1U);
734 TensorShape inputShapeShrink({inputShape[1], inputShape[2]});
735 TensorShape outputShapeShrink({outputShape[1], outputShape[2]});
736 auto acl_input_shape_shrink = BuildArmComputeTensorShape(inputShapeShrink);
737 auto acl_output_shape_shrink = BuildArmComputeTensorShape(outputShapeShrink);
738 const_cast<arm_compute::TensorInfo*>(&aclInputInfo)->set_tensor_shape(acl_input_shape_shrink);
739 inputLSTM = const_cast<arm_compute::TensorInfo*>(&aclInputInfo);
740 const_cast<arm_compute::TensorInfo*>(&aclOutputInfo)->set_tensor_shape(acl_output_shape_shrink);
741 outputLSTM = const_cast<arm_compute::TensorInfo*>(&aclOutputInfo);
742 }
743 // If there is only one LSTM batch major batch, we will not concat, only permute.
744 // Set input of LSTM to be output of initial permute.
745 // Set output of LSTM to be first element of m_ConcatInputs & use that value later in permute.
746 // LSTM output cannot be > 2 dimensions so need to resize its TensorInfo.
747 else if (maxTime == 1 && !descriptor.m_TimeMajor)
748 {
749 TensorShape inputShape = GetTensorShape(aclPermuteOutInfo.tensor_shape(), 1U);
750 TensorShape inputShapeShrink({inputShape[1], inputShape[2]});
751 auto acl_input_shape_shrink = BuildArmComputeTensorShape(inputShapeShrink);
752 aclPermuteOutInfo.set_tensor_shape(acl_input_shape_shrink);
753 inputLSTM = &aclPermuteOutInfo;
754 outputLSTM = const_cast<arm_compute::ITensorInfo*>(concatInputsTensorInfosPtr[i]);
755 }
756 // Batch major AND/OR 2+ LSTM batches so will use concat AND/OR permute later on.
757 else
758 {
759 inputLSTM = splitterOutputsTensorInfosPtr[i];
760 outputLSTM = const_cast<arm_compute::ITensorInfo*>(concatInputsTensorInfosPtr[i]);
761 }
762
763 statusLSTM = arm_compute::CLLSTMLayer::validate(inputLSTM,
764 &aclInputToForgetWeightsInfo,
765 &aclInputToCellWeightsInfo,
766 &aclInputToOutputWeightsInfo,
767 &aclRecurrentToForgetWeightsInfo,
768 &aclRecurrentToCellWeightsInfo,
769 &aclRecurrentToOutputWeightsInfo,
770 &aclForgetGateBiasInfo,
771 &aclCellBiasInfo,
772 &aclOutputGateBiasInfo,
773 &aclOutputStateInInfo,
774 &aclCellStateInInfo,
775 &aclScratchBufferInfo,
776 &aclOutputStateOutInfo,
777 &aclCellStateOutInfo,
778 outputLSTM,
779 lstm_params_info,
780 activationLayerInfo,
781 cell_threshold,
782 projection_threshold);
783
784 if (statusLSTM.error_code() != arm_compute::ErrorCode::OK)
785 {
786 break;
787 }
788 }
789
790 //
791 // Concat validate
792 //
793
794 // Expand dimensions of LSTM outputs adding one empty dimension to fit concatenate inputs.
795 TensorShape shape = GetTensorShape(concatInputsTensorInfosPtr[0]->tensor_shape(), 1U);
796 TensorShape shapeExpandTimeMajor({1, shape[0], shape[1]});
797 TensorShape shapeExpandBatchMajor({shape[0], 1, shape[1]});
798
799 TensorInfo concatOuputTensorInfo = TensorInfo(output);
800 concatOuputTensorInfo.SetShape(timeMajorShapeOutput);
801 arm_compute::TensorInfo aclConcatOuputTensorInfo= BuildArmComputeTensorInfo(concatOuputTensorInfo);
802
803 if (maxTime != 1) // ACL concat does not work with only one element to concatenate.
804 {
805 for (unsigned int i = 0; i < maxTime; ++i)
806 {
807 auto acl_shape_expand = BuildArmComputeTensorShape(shapeExpandTimeMajor);
808 concatInputsTensorInfos[i].set_tensor_shape(acl_shape_expand);
809 }
810
811 unsigned int aclAxisConcat = CalcAclAxis(numberDimensions, dimension);
812 if (!descriptor.m_TimeMajor)
813 {
814 statusConcat = arm_compute::CLConcatenateLayer::validate(concatInputsTensorInfosPtr,
815 &aclConcatOuputTensorInfo,
816 aclAxisConcat);
817 }
818 else
819 {
820 statusConcat = arm_compute::CLConcatenateLayer::validate(concatInputsTensorInfosPtr,
821 &aclOutputInfo,
822 aclAxisConcat);
823 }
824 }
825 // If only one LSTM batch, we do not concat and/or permute.
826 // Must ensure final output info is expanded to correct batch major dimensions.
827 else
828 {
829 if (!descriptor.m_TimeMajor)
830 {
831 const_cast<arm_compute::TensorInfo*>(&aclInputInfo)->set_tensor_shape(
832 BuildArmComputeTensorShape(shapeExpandBatchMajor));
833 }
834 else
835 {
836 const_cast<arm_compute::TensorInfo*>(&aclInputInfo)->set_tensor_shape(
837 BuildArmComputeTensorShape(shapeExpandTimeMajor));
838 }
839 }
840 //
841 // Permute validate
842 //
843 if (!descriptor.m_TimeMajor)
844 {
845 // Output now time major. Permute output back to batch major.
846 if (maxTime != 1)
847 {
848 statusPermute2 = arm_compute::CLPermute::validate(&aclConcatOuputTensorInfo,
849 &aclOutputInfo,
850 arm_compute::PermutationVector(0U, 2U, 1U));
851 }
852 else
853 {
854 statusPermute2 = arm_compute::CLPermute::validate(concatInputsTensorInfosPtr[0],
855 &aclOutputInfo,
856 arm_compute::PermutationVector(0U, 2U, 1U));
857 }
858 }
859
860 auto okCode = arm_compute::ErrorCode::OK;
861 if (statusPermute1.error_code() == okCode &&
862 statusSplit.error_code() == okCode &&
863 statusLSTM .error_code() == okCode &&
864 statusConcat.error_code() == okCode &&
865 statusPermute2.error_code() == okCode)
866 {
867 return arm_compute::Status(arm_compute::ErrorCode::OK,
868 "All Unidirectional Sequence LSTM layer validate status OK.");
869 }
870 else
871 {
872 return arm_compute::Status(arm_compute::ErrorCode::RUNTIME_ERROR,
873 "Unidirectional Sequence LSTM layer validate status failed.");
874 }
875}
876
877void ClUnidirectionalSequenceLstmFloatWorkload::FreeUnusedTensors()
878{
879 FreeTensorIfUnused(m_InputToInputWeightsTensor);
880 FreeTensorIfUnused(m_InputToForgetWeightsTensor);
881 FreeTensorIfUnused(m_InputToCellWeightsTensor);
882 FreeTensorIfUnused(m_InputToOutputWeightsTensor);
883 FreeTensorIfUnused(m_RecurrentToInputWeightsTensor);
884 FreeTensorIfUnused(m_RecurrentToForgetWeightsTensor);
885 FreeTensorIfUnused(m_RecurrentToCellWeightsTensor);
886 FreeTensorIfUnused(m_RecurrentToOutputWeightsTensor);
887 FreeTensorIfUnused(m_CellToInputWeightsTensor);
888 FreeTensorIfUnused(m_CellToForgetWeightsTensor);
889 FreeTensorIfUnused(m_CellToOutputWeightsTensor);
890 FreeTensorIfUnused(m_InputGateBiasTensor);
891 FreeTensorIfUnused(m_ForgetGateBiasTensor);
892 FreeTensorIfUnused(m_CellBiasTensor);
893 FreeTensorIfUnused(m_OutputGateBiasTensor);
894 FreeTensorIfUnused(m_ProjectionWeightsTensor);
895 FreeTensorIfUnused(m_ProjectionBiasTensor);
896 FreeTensorIfUnused(m_InputLayerNormWeightsTensor);
897 FreeTensorIfUnused(m_ForgetLayerNormWeightsTensor);
898 FreeTensorIfUnused(m_CellLayerNormWeightsTensor);
899 FreeTensorIfUnused(m_OutputLayerNormWeightsTensor);
900 FreeTensorIfUnused(m_ScratchBuffer);
901}
902
903} //namespace armnn