blob: 29cb77e85afcd08e2f6f534f31bf9177d96bc451 [file] [log] [blame]
/*
* Copyright (c) 2020-2021 Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "autogen/tflite_schema.hpp"
#include <ethosu.hpp>
#include <uapi/ethosu.h>
#include <algorithm>
#include <exception>
#include <iostream>
#include <fcntl.h>
#include <poll.h>
#include <signal.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <unistd.h>
using namespace std;
namespace EthosU {
__attribute__((weak)) int eioctl(int fd, unsigned long cmd, void *data = nullptr) {
int ret = ::ioctl(fd, cmd, data);
if (ret < 0) {
throw EthosU::Exception("IOCTL failed");
}
return ret;
}
__attribute__((weak)) int eopen(const char *pathname, int flags) {
int fd = ::open(pathname, flags);
if (fd < 0) {
throw Exception("Failed to open device");
}
return fd;
}
__attribute__((weak)) int
eppoll(struct pollfd *fds, nfds_t nfds, const struct timespec *tmo_p, const sigset_t *sigmask) {
int result = ::ppoll(fds, nfds, tmo_p, sigmask);
if (result < 0) {
throw Exception("Failed to wait for ppoll event or signal");
}
return result;
}
__attribute__((weak)) int eclose(int fd) {
int result = ::close(fd);
if (result < 0) {
throw Exception("Failed to close file");
}
return result;
}
__attribute((weak)) void *emmap(void *addr, size_t length, int prot, int flags, int fd, off_t offset) {
void *ptr = ::mmap(addr, length, prot, flags, fd, offset);
if (ptr == MAP_FAILED) {
throw Exception("Failed to mmap file");
}
return ptr;
}
__attribute__((weak)) int emunmap(void *addr, size_t length) {
int result = ::munmap(addr, length);
if (result < 0) {
throw Exception("Failed to munmap file");
}
return result;
}
} // namespace EthosU
/****************************************************************************
* TFL micro helpers
****************************************************************************/
namespace {
size_t getShapeSize(const flatbuffers::Vector<int32_t> *shape) {
size_t size = 1;
if (shape == nullptr) {
throw EthosU::Exception("getShapeSize(): nullptr arg");
}
for (auto it = shape->begin(); it != shape->end(); ++it) {
size *= *it;
}
return size;
}
size_t getTensorTypeSize(const enum tflite::TensorType type) {
switch (type) {
case tflite::TensorType::TensorType_UINT8:
case tflite::TensorType::TensorType_INT8:
return 1;
case tflite::TensorType::TensorType_INT16:
return 2;
case tflite::TensorType::TensorType_INT32:
case tflite::TensorType::TensorType_FLOAT32:
return 4;
default:
throw EthosU::Exception("Unsupported tensor type");
}
}
vector<size_t> getSubGraphDims(const tflite::SubGraph *subgraph, const flatbuffers::Vector<int32_t> *tensorMap) {
vector<size_t> dims;
if (subgraph == nullptr || tensorMap == nullptr) {
throw EthosU::Exception("getSubGraphDims(): nullptr arg(s)");
}
for (auto index = tensorMap->begin(); index != tensorMap->end(); ++index) {
auto tensor = subgraph->tensors()->Get(*index);
size_t size = getShapeSize(tensor->shape());
size *= getTensorTypeSize(tensor->type());
if (size > 0) {
dims.push_back(size);
}
}
return dims;
}
} // namespace
namespace EthosU {
/****************************************************************************
* Exception
****************************************************************************/
Exception::Exception(const char *msg) : msg(msg) {}
Exception::~Exception() throw() {}
const char *Exception::what() const throw() {
return msg.c_str();
}
/****************************************************************************
* Semantic Version
****************************************************************************/
bool SemanticVersion::operator==(const SemanticVersion &other) {
return other.major == major && other.minor == minor && other.patch == patch;
}
bool SemanticVersion::operator<(const SemanticVersion &other) {
if (other.major > major)
return true;
if (other.minor > minor)
return true;
return other.patch > patch;
}
bool SemanticVersion::operator<=(const SemanticVersion &other) {
return *this < other || *this == other;
}
bool SemanticVersion::operator!=(const SemanticVersion &other) {
return !(*this == other);
}
bool SemanticVersion::operator>(const SemanticVersion &other) {
return !(*this <= other);
}
bool SemanticVersion::operator>=(const SemanticVersion &other) {
return !(*this < other);
}
ostream &operator<<(ostream &out, const SemanticVersion &v) {
return out << "{ major=" << unsigned(v.major) << ", minor=" << unsigned(v.minor) << ", patch=" << unsigned(v.patch)
<< " }";
}
/****************************************************************************
* Device
****************************************************************************/
Device::Device(const char *device) {
fd = eopen(device, O_RDWR | O_NONBLOCK);
}
Device::~Device() {
eclose(fd);
}
int Device::ioctl(unsigned long cmd, void *data) {
return eioctl(fd, cmd, data);
}
Capabilities Device::capabilities() {
ethosu_uapi_device_capabilities uapi;
(void)eioctl(fd, ETHOSU_IOCTL_CAPABILITIES_REQ, static_cast<void *>(&uapi));
Capabilities capabilities(
HardwareId(uapi.hw_id.version_status,
SemanticVersion(uapi.hw_id.version_major, uapi.hw_id.version_minor),
SemanticVersion(uapi.hw_id.product_major),
SemanticVersion(uapi.hw_id.arch_major_rev, uapi.hw_id.arch_minor_rev, uapi.hw_id.arch_patch_rev)),
HardwareConfiguration(uapi.hw_cfg.macs_per_cc, uapi.hw_cfg.cmd_stream_version, bool(uapi.hw_cfg.custom_dma)),
SemanticVersion(uapi.driver_major_rev, uapi.driver_minor_rev, uapi.driver_patch_rev));
return capabilities;
}
/****************************************************************************
* Buffer
****************************************************************************/
Buffer::Buffer(Device &device, const size_t capacity) : fd(-1), dataPtr(nullptr), dataCapacity(capacity) {
ethosu_uapi_buffer_create uapi = {static_cast<uint32_t>(dataCapacity)};
fd = device.ioctl(ETHOSU_IOCTL_BUFFER_CREATE, static_cast<void *>(&uapi));
void *d;
try {
d = emmap(nullptr, dataCapacity, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
} catch (std::exception &e) {
try {
eclose(fd);
} catch (...) { std::throw_with_nested(e); }
}
dataPtr = reinterpret_cast<char *>(d);
}
Buffer::~Buffer() {
emunmap(dataPtr, dataCapacity);
eclose(fd);
}
size_t Buffer::capacity() const {
return dataCapacity;
}
void Buffer::clear() {
resize(0, 0);
}
char *Buffer::data() {
return dataPtr + offset();
}
void Buffer::resize(size_t size, size_t offset) {
ethosu_uapi_buffer uapi;
uapi.offset = offset;
uapi.size = size;
eioctl(fd, ETHOSU_IOCTL_BUFFER_SET, static_cast<void *>(&uapi));
}
size_t Buffer::offset() const {
ethosu_uapi_buffer uapi;
eioctl(fd, ETHOSU_IOCTL_BUFFER_GET, static_cast<void *>(&uapi));
return uapi.offset;
}
size_t Buffer::size() const {
ethosu_uapi_buffer uapi;
eioctl(fd, ETHOSU_IOCTL_BUFFER_GET, static_cast<void *>(&uapi));
return uapi.size;
}
int Buffer::getFd() const {
return fd;
}
/****************************************************************************
* Network
****************************************************************************/
Network::Network(Device &device, shared_ptr<Buffer> &buffer) : fd(-1), buffer(buffer) {
// Create buffer handle
ethosu_uapi_network_create uapi;
uapi.fd = buffer->getFd();
fd = device.ioctl(ETHOSU_IOCTL_NETWORK_CREATE, static_cast<void *>(&uapi));
// Create model handle
const tflite::Model *model = tflite::GetModel(reinterpret_cast<void *>(buffer->data()));
if (model->subgraphs() == nullptr) {
try {
eclose(fd);
} catch (...) { std::throw_with_nested(EthosU::Exception("Failed to get subgraphs: nullptr")); }
}
// Get input dimensions for first subgraph
auto *subgraph = *model->subgraphs()->begin();
ifmDims = getSubGraphDims(subgraph, subgraph->inputs());
// Get output dimensions for last subgraph
subgraph = *model->subgraphs()->rbegin();
ofmDims = getSubGraphDims(subgraph, subgraph->outputs());
}
Network::~Network() {
eclose(fd);
}
int Network::ioctl(unsigned long cmd, void *data) {
return eioctl(fd, cmd, data);
}
shared_ptr<Buffer> Network::getBuffer() {
return buffer;
}
const std::vector<size_t> &Network::getIfmDims() const {
return ifmDims;
}
size_t Network::getIfmSize() const {
size_t size = 0;
for (auto s : ifmDims) {
size += s;
}
return size;
}
const std::vector<size_t> &Network::getOfmDims() const {
return ofmDims;
}
size_t Network::getOfmSize() const {
size_t size = 0;
for (auto s : ofmDims) {
size += s;
}
return size;
}
/****************************************************************************
* Inference
****************************************************************************/
Inference::~Inference() {
eclose(fd);
}
void Inference::create(std::vector<uint32_t> &counterConfigs, bool cycleCounterEnable = false) {
ethosu_uapi_inference_create uapi;
if (ifmBuffers.size() > ETHOSU_FD_MAX) {
throw Exception("IFM buffer overflow");
}
if (ofmBuffers.size() > ETHOSU_FD_MAX) {
throw Exception("OFM buffer overflow");
}
if (counterConfigs.size() != ETHOSU_PMU_EVENT_MAX) {
throw Exception("Wrong size of counter configurations");
}
uapi.ifm_count = 0;
for (auto it : ifmBuffers) {
uapi.ifm_fd[uapi.ifm_count++] = it->getFd();
}
uapi.ofm_count = 0;
for (auto it : ofmBuffers) {
uapi.ofm_fd[uapi.ofm_count++] = it->getFd();
}
for (int i = 0; i < ETHOSU_PMU_EVENT_MAX; i++) {
uapi.pmu_config.events[i] = counterConfigs[i];
}
uapi.pmu_config.cycle_count = cycleCounterEnable;
fd = network->ioctl(ETHOSU_IOCTL_INFERENCE_CREATE, static_cast<void *>(&uapi));
}
std::vector<uint32_t> Inference::initializeCounterConfig() {
return std::vector<uint32_t>(ETHOSU_PMU_EVENT_MAX, 0);
}
uint32_t Inference::getMaxPmuEventCounters() {
return ETHOSU_PMU_EVENT_MAX;
}
int Inference::wait(int64_t timeoutNanos) {
struct pollfd pfd;
pfd.fd = fd;
pfd.events = POLLIN | POLLERR;
pfd.revents = 0;
// if timeout negative wait forever
if (timeoutNanos < 0) {
return eppoll(&pfd, 1, NULL, NULL);
}
struct timespec tmo_p;
int64_t nanosec = 1000000000;
tmo_p.tv_sec = timeoutNanos / nanosec;
tmo_p.tv_nsec = timeoutNanos % nanosec;
return eppoll(&pfd, 1, &tmo_p, NULL);
}
bool Inference::failed() {
ethosu_uapi_result_status uapi;
eioctl(fd, ETHOSU_IOCTL_INFERENCE_STATUS, static_cast<void *>(&uapi));
return uapi.status != ETHOSU_UAPI_STATUS_OK;
}
const std::vector<uint32_t> Inference::getPmuCounters() {
ethosu_uapi_result_status uapi;
std::vector<uint32_t> counterValues = std::vector<uint32_t>(ETHOSU_PMU_EVENT_MAX, 0);
eioctl(fd, ETHOSU_IOCTL_INFERENCE_STATUS, static_cast<void *>(&uapi));
for (int i = 0; i < ETHOSU_PMU_EVENT_MAX; i++) {
if (uapi.pmu_config.events[i]) {
counterValues.at(i) = uapi.pmu_count.events[i];
}
}
return counterValues;
}
uint64_t Inference::getCycleCounter() {
ethosu_uapi_result_status uapi;
eioctl(fd, ETHOSU_IOCTL_INFERENCE_STATUS, static_cast<void *>(&uapi));
return uapi.pmu_count.cycle_count;
}
int Inference::getFd() {
return fd;
}
shared_ptr<Network> Inference::getNetwork() {
return network;
}
vector<shared_ptr<Buffer>> &Inference::getIfmBuffers() {
return ifmBuffers;
}
vector<shared_ptr<Buffer>> &Inference::getOfmBuffers() {
return ofmBuffers;
}
} // namespace EthosU