MLBEDSW-4838 Added basic TOSA support.

Added basic TOSA support, enabling Vela to
read and compile  a .tosa file corresponding to
CONV2D + Rescale + Clamp, and writing it to an
optimized .tflite file.

The optimized .tflite file, will in this case, hold
a commandstream where the Rescale and Clamp has been
fused into the CONV2D.

The optimized tflite file is not output from Vela.

  -Added support to read .tosa file into Vela
    internal structure.
      - Added tosa_reader.py, tosa_mapper.py and
        helper files stored under tosa/
      - Support for this limited to ~10 ops

    -Added reader_util.py for functions common
    for TOSA and TFLite

    -Added tosa_graph_optimiser.py
      -Added support to fuse Rescale into convolution
      -Modified handling for padding

    -Added support to fuse Clamp to previous op

    -Added graph_optimiser_util.py
      -Moved functions common for TOSA/TFLite graph
       optimization to this file.

    -Renamed graph_optimiser.py to tflite_graph_optmiser.py

    -Added separate tosa_supported_operators.py

    -Added supported_operator_util.py
       -For functions in common for TOSA/TFLite

Signed-off-by: Patrik Gustavsson <patrik.gustavsson@arm.com>
Change-Id: Ic3c540504ec8c5eb4771397fdc6882050ecf33ab
diff --git a/ethosu/vela/tflite_graph_optimiser.py b/ethosu/vela/tflite_graph_optimiser.py
new file mode 100644
index 0000000..3d9eeb8
--- /dev/null
+++ b/ethosu/vela/tflite_graph_optimiser.py
@@ -0,0 +1,1633 @@
+# Copyright (C) 2020-2021 Arm Limited or its affiliates. All rights reserved.
+#
+# SPDX-License-Identifier: Apache-2.0
+#
+# Licensed under the Apache License, Version 2.0 (the License); you may
+# not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an AS IS BASIS, WITHOUT
+# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# Description:
+# Early optimisation of a TensorFlow Lite based network graph, using the rewrite_graph module
+# to do the traversal of the graph.
+import math
+import uuid
+from typing import Tuple
+
+import numpy as np
+
+from . import fp_math
+from . import lut
+from . import rewrite_graph
+from . import scaling
+from .api import NpuRoundingMode
+from .data_type import DataType
+from .debug_database import DebugDatabase
+from .errors import UnsupportedFeatureError
+from .ethos_u55_regs.ethos_u55_regs import resampling_mode
+from .graph_optimiser_util import needed_total_padding
+from .graph_optimiser_util import set_ifm_ofm_op_shapes
+from .graph_optimiser_util import set_tensor_equivalence
+from .numeric_util import clamp_sigmoid
+from .numeric_util import full_shape
+from .numeric_util import round_away_zero
+from .operation import create_activation_function
+from .operation import NpuBlockType
+from .operation import Op
+from .operation import Operation
+from .operation import Padding
+from .operation_util import create_avgpool_nop
+from .operation_util import get_pad_values_from_input
+from .shape4d import Shape4D
+from .softmax import SoftMax
+from .tensor import check_quantized_tens_scaling_equal
+from .tensor import create_const_tensor
+from .tensor import create_equivalence_id
+from .tensor import QuantizationParameters
+from .tensor import Tensor
+from .tensor import TensorPurpose
+from .tflite_mapping import optype_to_builtintype
+
+passthrough_nodes = (Op.Identity,)
+
+
+def create_avg_pool_for_concat(concat_op, name, ifm, ifm_shape: Shape4D, write_offset: Shape4D):
+    """Creates an average pool for the given concat op/input feature map"""
+    ofm = concat_op.ofm
+    avgpool_op = create_avgpool_nop(name)
+    avgpool_op.inputs = [ifm]
+    avgpool_op.outputs = [ofm]
+
+    avgpool_op.write_offset = write_offset
+    avgpool_op.write_shape = ifm_shape
+    ofm.ops.append(avgpool_op)
+    DebugDatabase.add_optimised(concat_op, avgpool_op)
+    avgpool_op.ifm_shapes.append(ifm_shape)
+    avgpool_op.ofm_shapes.append(concat_op.ofm_shapes[0])
+    avgpool_op.memory_function = Op.ConcatSliceWrite
+    return avgpool_op
+
+
+def remove_passthrough_tensor(tens, arch, nng):
+    if len(tens.ops) == 1 and tens.ops[0].type in passthrough_nodes:
+        assert len(tens.ops[0].inputs) == 1
+        tens = tens.ops[0].inputs[0]
+    return tens
+
+
+def rewrite_concat_ops(op, arch):
+    if not op.run_on_npu or not op.type.is_concat_op():
+        return
+
+    axis_4D = 0
+    ofm = op.ofm
+    ofm.ops = []
+    offset = 0
+
+    unfuse_activation_function(op)
+
+    if op.type == Op.Pack:
+        # Pack is also referred to as Stack
+        axis = int(op.attrs["axis"])
+        if axis < 0:  # Convert to positive axis
+            axis = len(op.inputs[0].shape) + 1 + axis
+
+        desired_shape = op.inputs[0].shape[:axis] + [1] + op.inputs[0].shape[axis:]
+
+        axis_4D = axis + (4 - len(desired_shape))
+
+        for idx, inp in enumerate(op.inputs):
+            op.ifm_shapes[idx] = Shape4D(desired_shape)
+        op.type = Op.PackReshaped
+
+    inputs, axis = op.get_concat_inputs_axis()
+    for idx, inp in enumerate(inputs):
+        if op.type != Op.PackReshaped:
+            op.ifm_shapes[idx] = Shape4D(inp.shape)
+            if axis >= 0:
+                axis_4D = axis + (4 - len(inp.shape))
+            else:
+                axis_4D = axis
+        write_offset = [0, 0, 0, 0]
+        write_offset[axis_4D] = offset
+        concat_end = offset + op.ifm_shapes[idx][axis_4D]
+        create_avg_pool_for_concat(
+            op, op.name + str(idx) + "_avgpool", inp, op.ifm_shapes[idx], Shape4D.from_list(write_offset)
+        )
+        offset = concat_end
+    assert ofm.shape[axis] == offset
+
+    return op
+
+
+def rewrite_split_ops(tens, arch, nng):
+
+    if len(tens.ops) == 1 and tens.ops[0].type.is_split_op() and tens.ops[0].type != Op.Unpack:
+        split_op = tens.ops[0]
+
+        # Not supported so leave it and run on CPU
+        if not split_op.run_on_npu:
+            return tens
+
+        inp, outputs, axis, offset_start, offset_end = split_op.get_split_inputs_axis()
+
+        tens.ops = []
+        new_op = Operation(Op.SplitSliceRead, split_op.name)
+        new_op.inputs = [inp]
+        ofm_shape_idx = 0
+        read_shape = offset_end
+
+        # For Split the offset cannot be extracted from the tensor so it has to
+        # be calculated from the index of the output tensor
+        if axis is not None:
+            # Get the start and end of the split
+            offset_start = [0] * 4
+            axis_4D_list = split_op.attrs.get("split_axis_4D", None)  # Present for UnpackReshaped and some StridedSlice
+            for idx, out in enumerate(outputs):
+                if axis_4D_list is not None:
+                    axis_4D = axis_4D_list[idx]
+                else:
+                    split_op.ofm_shapes[idx] = Shape4D(out.shape)
+                    if axis >= 0:
+                        axis_4D = axis + (4 - len(out.shape))
+                    else:
+                        axis_4D = axis
+
+                if out == tens:
+                    ofm_shape_idx = idx
+                    read_shape = split_op.ofm_shapes[idx]
+                    break
+
+                offset_start[axis_4D] += split_op.ofm_shapes[idx][axis_4D]
+
+        new_op.read_offsets[0] = Shape4D.from_list(offset_start, 0)
+        new_op.read_shapes[0] = read_shape
+        new_op.run_on_npu = True
+        new_op.set_output_tensor(tens)
+        new_op.ifm_shapes.append(Shape4D(inp.shape))
+        new_op.ofm_shapes.append(split_op.ofm_shapes[ofm_shape_idx])
+        DebugDatabase.add_optimised(split_op, new_op)
+
+    return tens
+
+
+def remove_SplitSliceRead(op, arch):
+
+    if op.type == Op.SplitSliceRead:
+        # Check if it is possible to put the SplitSliceRead on the tensor consumer, or if an avgpool need to be inserted
+        if (
+            len(op.ofm.consumer_list) == 1
+            and op.ofm.consumer_list[0] is not None
+            and op.ofm.consumer_list[0].run_on_npu
+            and op.ofm.consumer_list[0].type != Op.Reshape
+            and op.ofm_shapes[0] == Shape4D.from_list(op.ofm.shape)
+        ):
+            # SplitSliceRead can be performed by tensor consumer
+            cons_op = op.ofm.consumer_list[0]
+            if cons_op.ifm == op.ofm:
+                cons_op.read_offsets[0] = op.read_offsets[0]
+                cons_op.read_shapes[0] = op.read_shapes[0]
+                cons_op.set_input_tensor(op.ifm, cons_op.type.info.indices.ifms[0])
+                cons_op.ifm_shapes[0] = op.ifm_shapes[0]
+            elif cons_op.type.is_binary_elementwise_op() and cons_op.ifm2 == op.ofm:
+                cons_op.read_offsets[1] = op.read_offsets[0]
+                cons_op.read_shapes[1] = op.read_shapes[0]
+                cons_op.set_input_tensor(op.ifm, cons_op.type.info.indices.ifms[1])
+                cons_op.ifm_shapes[1] = op.ifm_shapes[0]
+
+            if "skirt" in cons_op.attrs:
+                assert cons_op.attrs["explicit_padding"] == cons_op.attrs["skirt"]
+                cons_op.attrs["skirt"] = None
+                cons_op.attrs["force_padding"] = True
+            op.ofm.consumer_list.remove(cons_op)
+            op.ofm.ops = []
+            op.ifm.consumer_list.remove(op)
+        else:
+            avgpool_op = create_avgpool_nop(op.name + "_avgpool")
+            avgpool_op.add_input_tensor(op.ifm)
+            avgpool_op.outputs = [op.ofm]
+            op.ofm.ops.remove(op)
+            op.ofm.ops.append(avgpool_op)
+            avgpool_op.ifm_shapes.append(op.ifm_shapes[0])
+            avgpool_op.ofm_shapes.append(op.ofm_shapes[0])
+            avgpool_op.read_offsets[0] = op.read_offsets[0]
+            avgpool_op.read_shapes[0] = op.read_shapes[0]
+
+            op.ifm.consumer_list.remove(op)
+            DebugDatabase.add_optimised(op, avgpool_op)
+
+
+def insert_copy_op_after_tens(tens):
+    tens_cons_list_copy = tens.consumer_list.copy()
+
+    # Create a avg_pool nop op with ifm as input
+    copy_tens = tens.clone()
+    copy_op = create_avgpool_nop(tens.name + "_avgpool")
+    copy_op.add_input_tensor(tens)
+    copy_op.set_output_tensor(copy_tens)
+    copy_op.set_ifm_ofm_shapes()
+    copy_op.run_on_npu = True
+
+    # Set copy_ifm consumers
+    for tens_cons in tens_cons_list_copy:
+        if tens_cons is not None:
+            for ifm_idx, cons_inp in enumerate(tens_cons.inputs):
+                if cons_inp == tens:
+                    tens_cons.set_input_tensor(copy_tens, ifm_idx)
+
+    DebugDatabase.add_optimised(tens.ops[0], copy_op)
+
+
+def fix_sg_input_output(op, arch, nng):
+    if not op.run_on_npu or op.type != Op.Reshape:
+        return op
+
+    # For the Reshape operators we want to remove, tensors are removed.
+    # But in order to to do this, they cannot be outputs of the sg,
+    # this need to be fixed prior to the removal.
+    # Solution is to add a avgpool NOP, to maintain the original tensor.
+    # This is also valid when reshape ifm/ofm is produced respectively
+    # consumed by CPU
+
+    # Check if operator ifm/ofm are sg ifm/ofm
+    ifm_is_sg_ifm = op.ifm.ops[0].type in (Op.Placeholder, Op.SubgraphInput, Op.Const)
+    ifm_is_sg_ofm = any(ifm_cons is None for ifm_cons in op.ifm.consumer_list)
+    ofm_is_sg_ofm = any(ofm_cons is None for ofm_cons in op.ofm.consumer_list)
+    # Check if ifm/ofm is produced repectivly consumed by CPU
+    ifm_is_cpu_produced = any(ifm_prod is not None and not ifm_prod.run_on_npu for ifm_prod in op.ifm.ops)
+    ofm_is_cpu_consumed = any(ofm_cons is not None and not ofm_cons.run_on_npu for ofm_cons in op.ofm.consumer_list)
+
+    if (ifm_is_sg_ofm or ifm_is_sg_ifm or ifm_is_cpu_produced) and (ofm_is_sg_ofm or ofm_is_cpu_consumed):
+        # Both ifm and ofm need to persist, but only ifm need a copy, in order to remove the Reshape
+        insert_copy_op_after_tens(op.ifm)
+
+    return op
+
+
+def calc_explicit_padding(input_size, stride, filter_size, pad_before, pad_after) -> Tuple[int, int]:
+    """
+    Based on explicit padding provided in a PAD operation, returns the corresponding hardware padding
+    that provides equivalent results.
+    """
+    total_padding = needed_total_padding(input_size, stride, filter_size)
+    # The top/left padding can be taken as is from the PAD
+    output_pad_before = pad_before
+    # The bottom/right padding might need downward adjustment depending on stride/input size
+    output_pad_after = pad_after
+    while output_pad_after > 0 and output_pad_after % stride != (total_padding - pad_before) % stride:
+        output_pad_after -= 1
+    return output_pad_before, output_pad_after
+
+
+def calc_padding_and_skirt(padding_type, kernel, input_shape, explicit_padding):
+    k_w, k_h = kernel.dilated_wh()
+    s_x, s_y = kernel.stride
+    ypad = needed_total_padding(int(input_shape.height), int(s_y), int(k_h))
+    xpad = needed_total_padding(int(input_shape.width), int(s_x), int(k_w))
+    if padding_type == Padding.SAME:
+        left_pad = (xpad + 0) // 2
+        right_pad = (xpad + 1) // 2
+        top_pad = (ypad + 0) // 2
+        bottom_pad = (ypad + 1) // 2
+    elif padding_type == Padding.VALID:
+        left_pad = 0
+        right_pad = 0
+        top_pad = 0
+        bottom_pad = 0
+    elif padding_type == Padding.EXPLICIT:
+        # Padding is specified in a PAD operator which has been bypassed.
+        top, left, bottom, right = explicit_padding
+        top_pad, bottom_pad = calc_explicit_padding(int(input_shape.height), int(s_y), int(k_h), int(top), int(bottom))
+        left_pad, right_pad = calc_explicit_padding(int(input_shape.width), int(s_x), int(k_w), int(left), int(right))
+    else:
+        raise UnsupportedFeatureError(f"Unknown padding")
+    padding = (top_pad, left_pad, bottom_pad, right_pad)
+    skirt = (top_pad, left_pad, ypad - top_pad, xpad - left_pad)
+    return padding, skirt
+
+
+def calc_upscaled_padding_and_skirt(padding_type, kernel_size, stride, input_shape, upscaling_factor):
+    kernel_height, kernel_width = kernel_size[0], kernel_size[1]
+    if padding_type == Padding.SAME:
+        ypad = needed_total_padding(int(input_shape.height) * upscaling_factor, int(stride[1]), int(kernel_height))
+        xpad = needed_total_padding(int(input_shape.width) * upscaling_factor, int(stride[2]), int(kernel_width))
+        right_pad = max(((xpad + 1) // upscaling_factor) - 1, 0)
+        bottom_pad = max(((ypad + 1) // upscaling_factor) - 1, 0)
+        left_pad = max(kernel_width - 1 - right_pad, 0)
+        top_pad = max(kernel_height - 1 - bottom_pad, 0)
+    elif padding_type == Padding.VALID:
+        right_pad = max(kernel_width - 2, 0)
+        bottom_pad = max(kernel_height - 2, 0)
+        left_pad = kernel_width - 1
+        top_pad = kernel_height - 1
+    else:
+        raise UnsupportedFeatureError(f"Unknown padding")
+    padding = (top_pad, left_pad, bottom_pad, right_pad)
+    skirt = padding
+    return padding, skirt
+
+
+def fixup_conv2d_backprop(op, arch, nng):
+    if op.type == Op.Conv2DBackpropInput:
+        # flip the inputs
+        op.inputs[0], op.inputs[2] = op.inputs[2], op.inputs[0]
+        op.type = Op.Conv2DBackpropInputSwitchedBias
+        op.ifm.resampling_mode = resampling_mode.TRANSPOSE
+
+        # Update strides
+        op.attrs.update({"stride_w": 1, "stride_h": 1, "strides": (1, 1, 1, 1)})
+
+    return op
+
+
+# Convert the op to an elementwise add
+def convert_resizebilinear_1x1_to_add(op):
+    op.type = Op.Add
+    op.name = op.name + "_add"
+    op.attrs["resizebilinear"] = True
+    # Create an input tensor filled with zeros
+    shape = op.ofm_shapes[0].as_list()
+    tens = Tensor(shape, op.inputs[0].dtype, op.inputs[1].name + "_add")
+    tens.values = np.zeros(shape)
+    tens.quant_values = np.zeros(shape, np.uint8)
+    tens.quantization = QuantizationParameters(0.0, 255.0)
+    tens.quantization.scale_f32 = 1.0
+    tens.quantization.zero_point = 0
+    tens.consumer_list = [op]
+    tens_op = op.inputs[1].ops[0]
+    tens_op.set_output_tensor(tens)
+    # Set the add inputs
+    op.inputs[1] = op.inputs[0]
+    op.inputs[0] = tens
+    op.set_ifm_ofm_shapes()
+
+    return op
+
+
+# Convert ResizeBilinear to a number of 2x2 pool ops
+def convert_resizebilinear_to_2x2_pool(op):
+    count = 0
+    pre_op = op
+    outputs = op.outputs
+
+    op.attrs.update({"strides": (1, 1, 1, 1), "ksize": (1, 2, 2, 1)})
+    if op.attrs["align_corners"]:
+        shape_modifier = 1
+        op.attrs["padding"] = Padding.VALID
+    else:
+        shape_modifier = 0
+        op.attrs["padding"] = Padding.SAME
+    op.inputs[0].resampling_mode = resampling_mode.NEAREST
+
+    upscaled_shape = np.array(op.ifm_shapes[0].get_hw_as_list())
+    out_shape = np.array(op.ofm_shapes[0].get_hw_as_list())
+    if (upscaled_shape == upscaled_shape * 2 - shape_modifier).all():
+        return op
+
+    while (upscaled_shape < out_shape).all():
+        if count == 0:
+            scaled_op = pre_op
+        else:
+            scaled_op = op.clone("_{}".format(count))
+            scaled_op.inputs[0] = pre_op.outputs[0]
+
+        upscaled_shape = upscaled_shape * 2 - shape_modifier
+
+        if (upscaled_shape == out_shape).all():
+            scaled_op.outputs = outputs
+            scaled_op.outputs[0].ops = [scaled_op]
+        else:
+            shape = op.ofm_shapes[0].as_list()
+            shape[1:3] = upscaled_shape
+            out_tens = Tensor(shape, DataType.int16, "{}_{}".format(op.outputs[0].name, count))
+            out_tens.quantization = op.outputs[0].quantization.clone()
+            out_tens.quantization.quant_min = np.iinfo(np.int16).min
+            out_tens.quantization.quant_max = np.iinfo(np.int16).max
+            scaled_op.set_output_tensor(out_tens)
+            pre_op = scaled_op
+            count += 1
+
+        # Setup the scale value
+        if scaled_op.inputs[0].dtype.bits == 8 and scaled_op.outputs[0].dtype.bits == 16:
+            scaled_op.rescale = 128
+        elif scaled_op.inputs[0].dtype.bits == 16 and scaled_op.outputs[0].dtype.bits == 8:
+            scaled_op.rescale = 1 / 128
+        else:
+            scaled_op.rescale = None
+        scaled_op.set_ifm_ofm_shapes()
+
+    return op
+
+
+def fixup_resizebilinear(op, arch, nng):
+    if op.type == Op.ResizeBilinear and op.run_on_npu:
+        if op.ifm_shapes[0] == op.ofm_shapes[0]:
+            # Bypass nop resizebilinear
+            op.inputs = op.inputs[:1]
+            op.type = Op.Identity
+        elif op.ifm_shapes[0].height == 1 and op.ifm_shapes[0].width == 1:
+            convert_resizebilinear_1x1_to_add(op)
+        else:
+            convert_resizebilinear_to_2x2_pool(op)
+
+    return op
+
+
+def convert_nop_split_to_identity(op, arch, nng):
+    if op.type == Op.Split and op.attrs.get("num_splits") == 1:
+        # the list comprehension should return a list with a single tensor
+        # if it shouldn't, remove_passthrough_tensor will fail appropriately
+        op.inputs = [i for i in op.inputs if i.shape == op.outputs[0].shape]
+        op.type = Op.Identity
+    return op
+
+
+def rewrite_fully_connected_input(op, arch, nng):
+    if op.type == Op.FullyConnected:
+        n_in_elems = op.weights.shape[-2]
+        elms = op.ifm.elements()
+        batch_size = elms // n_in_elems
+        assert batch_size * n_in_elems == elms
+
+        op.ifm_shapes[0] = Shape4D([batch_size, 1, 1, n_in_elems])
+    return op
+
+
+def convert_batched_fc_shape(op, arch, nng):
+    if op.type == Op.FullyConnected:
+        # Check if the first dimension indicates batching
+        if op.ifm_shapes[0].batch > 1:
+            batching_split = {4: (2, 2), 8: (2, 4), 16: (4, 4)}
+            n = op.ifm_shapes[0].batch
+            h, w = batching_split.get(n, (1, n))
+            op.ifm_shapes[0] = Shape4D([1, h, w, op.ifm_shapes[0].depth])
+
+            # Reshape Weights to be 4D. IO becomes HWIO
+            weight_tensor = op.inputs[1]
+            weight_tensor.quant_values = np.expand_dims(np.expand_dims(weight_tensor.quant_values, axis=0), axis=0)
+            weight_tensor.set_all_shapes(list(weight_tensor.quant_values.shape))
+
+            n = op.ofm_shapes[0].batch
+            h, w = batching_split.get(n, (1, n))
+            op.ofm_shapes[0] = Shape4D([1, h, w, op.ofm_shapes[0].depth])
+    return op
+
+
+def unfuse_activation_function(op):
+    if op.type == Op.ConcatTFLite and op.run_on_npu and op.activation is not None:
+        act_op = Operation(op.activation.op_type, op.name + op.activation.op_type.name)
+        op.activation = None
+        out_tens = op.outputs[0]
+        intermediate_tens = out_tens.clone("_act_intermediate")
+        act_op.set_output_tensor(out_tens)
+        act_op.add_input_tensor(intermediate_tens)
+        op.set_output_tensor(intermediate_tens)
+        act_op.set_ifm_ofm_shapes()
+
+
+def rewrite_stridedslice_output(op, arch, nng):
+    if not op.run_on_npu or op.type != Op.StridedSlice:
+        return op
+
+    new_axis_mask = op.attrs["new_axis_mask"]
+    shrink_axis_mask = op.attrs["shrink_axis_mask"]
+
+    if shrink_axis_mask == 0 and new_axis_mask == 0:
+        return op
+
+    axis_4D = [0] * len(op.outputs)
+    for idx, out_tens in enumerate(op.outputs):
+        output_shape = list(out_tens.shape)
+
+        if shrink_axis_mask != 0:
+            n = 0
+            axis = 0
+            while shrink_axis_mask:
+                prev_mask = shrink_axis_mask
+                n += 1
+                shrink_axis_mask &= shrink_axis_mask - 1
+                axis = int(math.log2(prev_mask - shrink_axis_mask))
+                output_shape = output_shape[:axis] + [1] + output_shape[axis:]
+
+            assert len(out_tens.shape) == (len(op.inputs[0].shape) - n)
+            op.attrs["shrink_axis_mask"] = 0
+            if axis >= 0:
+                axis_4D[idx] = axis + (4 - len(output_shape))
+            else:
+                axis_4D[idx] = axis
+            op.ofm_shapes[idx] = Shape4D(output_shape)
+
+        elif new_axis_mask != 0:
+            n = 0
+            axis = 0
+            while new_axis_mask:
+                prev_mask = new_axis_mask
+                n += 1
+                new_axis_mask &= new_axis_mask - 1
+                axis = int(math.log2(prev_mask - new_axis_mask))
+                output_shape = output_shape[:axis] + output_shape[(axis + 1) :]
+                new_axis_mask >>= 1
+
+            assert len(out_tens.shape) == (len(op.inputs[0].shape) + n)
+            op.attrs["new_axis_mask"] = 0
+            if axis >= 0:
+                axis_4D[idx] = axis + (4 - len(output_shape))
+            else:
+                axis_4D[idx] = axis
+            op.ofm_shapes[idx] = Shape4D(output_shape)
+
+    op.attrs["split_axis_4D"] = axis_4D
+    return op
+
+
+def rewrite_unpack_output(op, arch, nng):
+    tens = op.outputs[0]
+    if op.run_on_npu and op.type == Op.Unpack:
+        # Unpack is also referred to as Unstack
+        axis = int(op.attrs["axis"])
+        if axis < 0:  # Convert to positive axis
+            axis = len(op.inputs[0].shape) + 1 + axis
+        op.type = Op.UnpackReshaped
+        desired_output_shape = tens.shape[:axis] + [1] + tens.shape[axis:]
+
+        axis_4D = axis + (4 - len(desired_output_shape))
+        op.attrs["split_axis_4D"] = [axis_4D] * len(op.outputs)
+
+        for idx, out_tens in enumerate(op.outputs):
+            op.ofm_shapes[idx] = Shape4D(desired_output_shape)
+    return op
+
+
+def add_padding_fields(op, arch, nng):
+    if op.run_on_npu:
+        if "padding" in op.attrs:
+            input_shape = op.ifm_shapes[0]
+            output_shape = op.ofm_shapes[0]
+            if op.type.is_conv2d_op() or op.type.is_depthwise_conv2d_op():
+                kernel_size = op.inputs[1].shape[:2]
+            elif op.type.is_pool_op() or op.type.npu_block_type == NpuBlockType.ReduceSum:
+                kernel_size = op.attrs["ksize"][1:3]
+            else:
+                raise UnsupportedFeatureError(f"Unknown operation that uses padding: {optype_to_builtintype(op.type)}")
+
+            if op.type == Op.Conv2DBackpropInputSwitchedBias:
+                upscaling_factor = output_shape.height // input_shape.height
+                padding, skirt = calc_upscaled_padding_and_skirt(
+                    op.attrs["padding"], kernel_size, op.attrs["strides"], input_shape, upscaling_factor
+                )
+            else:
+                padding, skirt = calc_padding_and_skirt(
+                    op.attrs["padding"], op.kernel, input_shape, op.attrs.get("explicit_padding"),
+                )
+
+            op.attrs["explicit_padding"] = padding
+            op.attrs["skirt"] = skirt
+
+    return op
+
+
+def convert_depthwise_to_conv(op, arch, nng):
+    # Depthwise is equivalent to a single conv2d if the ifm depth is 1 and
+    # the ofm depth equals the depth multipler.
+    # If those conditions are true, then we can perform a simple
+    # switch of the operator type (and weight order)
+
+    if op.type == Op.DepthwiseConv2DBias and (op.attrs["depth_multiplier"] != 1):
+        ifm_shape = op.ifm_shapes[0]
+        weight_tensor = op.inputs[1]
+        ofm_shape = op.ofm_shapes[0]
+        if (ifm_shape.depth == 1) and (ofm_shape.depth == op.attrs["depth_multiplier"]):
+            # Change op type to Conv2d
+            op.type = Op.Conv2DBias
+            del op.attrs["channel_multiplier"]
+            del op.attrs["depth_multiplier"]
+
+            weight_tensor.quant_values = np.transpose(weight_tensor.quant_values, (0, 1, 3, 2))
+            weight_tensor.set_all_shapes(list(weight_tensor.quant_values.shape))
+        else:
+            raise UnsupportedFeatureError(
+                f"Unsupported 'DEPTHWISE_CONV_2D' with depth_multiplier = {op.attrs['depth_multiplier']},",
+                f" ifm channels = {ifm_shape.depth}, ofm channels = {ofm_shape.depth}",
+            )
+        DebugDatabase.add_optimised(op, op)
+    return op
+
+
+def reorder_depthwise_weights(op, arch, nng):
+    if op.type.is_depthwise_conv2d_op():
+        weight_tensor = op.inputs[1]
+        weight_tensor.quant_values = np.transpose(weight_tensor.quant_values, (0, 1, 3, 2))
+        weight_tensor.set_all_shapes(list(weight_tensor.quant_values.shape))
+        weight_tensor.weight_transpose_depthwise = True
+
+    return op
+
+
+def optimise_strided_conv(op, arch, nng):
+    stride_x, stride_y = op.get_kernel_stride()
+    ifm_tensor, _, weight_tensor, _ = op.get_ifm_ifm2_weights_ofm()
+
+    if (
+        op.type == Op.Conv2DBias
+        and op.op_index == 0
+        and stride_x == 2
+        and op.ifm_shapes[0].depth <= 4
+        and op.ifm_shapes[0].width % 2 == 0
+        and weight_tensor is not None
+        and weight_tensor.shape[1] >= 2
+    ):
+        ifm_shape = op.ifm_shapes[0]
+        # IFM
+        op.ifm_shapes[0] = Shape4D([ifm_shape.batch, ifm_shape.height, ifm_shape.width // 2, ifm_shape.depth * 2])
+
+        # Weights
+        weight_shape = weight_tensor.shape
+        if weight_shape[1] % 2 != 0:
+            weight_shape[1] = weight_shape[1] + 1
+            padded_array = np.zeros(weight_shape)
+            for i in range(weight_shape[0]):
+                padded_array[i] = np.vstack(
+                    [
+                        weight_tensor.quant_values[i],
+                        np.full((1, weight_shape[2], weight_shape[3]), weight_tensor.quantization.zero_point),
+                    ]
+                )
+            weight_tensor.quant_values = padded_array
+        weight_shape[1] //= 2
+        weight_shape[2] *= 2
+        weight_tensor.quant_values = np.reshape(weight_tensor.quant_values, weight_shape)
+        weight_tensor.set_all_shapes(weight_shape)
+        # If multiple copies of the weights are used, we could avoid
+        # them having the same address by changing the value_id
+        weight_tensor.value_id = uuid.uuid4()
+
+        # Strides
+        stride_x = 1
+        op.attrs.update({"stride_w": stride_x, "stride_h": stride_y, "strides": (1, stride_y, stride_x, 1)})
+
+    return op
+
+
+def convert_conv_to_fc(op, arch, nng):
+    # Conv 1x1 can be equivalent to Fully Connected.
+    # By representing certain convs as fully connected layers, Vela can better determine wether or not to use
+    # caching/double buffering for the weights.
+    # (Weights dont need to be reloaded for convs when IFM H and W are 1)
+    if op.type == Op.Conv2DBias:
+        h = op.ifm_shapes[0].height
+        w = op.ifm_shapes[0].width
+        kh, kw, _, _ = op.inputs[1].shape
+        if h == 1 and w == 1 and kh == 1 and kw == 1:
+            # Overwrite this op as a Fully Connected Op
+            op.name += "_fc"
+            op.type = Op.FullyConnected
+            op.attrs = {
+                "weights_format": 0,
+            }
+            # Reshape Weights to be 2D. HWIO becomes just IO (as H and W are 1, they can just be dropped)
+            weight_tensor = op.inputs[1]
+            weight_tensor.quant_values = weight_tensor.quant_values.squeeze(axis=(0, 1))
+            weight_tensor.set_all_shapes(list(weight_tensor.quant_values.shape))
+
+            DebugDatabase.add_optimised(op, op)
+    return op
+
+
+def fixup_relus_with_differing_ifm_ofm_scaling(op, arch, nng):
+    if op.run_on_npu and op.type.is_relu_op():
+        ifm = op.inputs[0]
+        ofm = op.outputs[0]
+        # Relu with differing IFM and OFM scaling cannot be fused with another primary op
+        # and requires its own to be inserted
+        if not check_quantized_tens_scaling_equal(ifm, ofm):
+            # Override this op with its own primary op (avgpool)
+            relu_fused_op = create_avgpool_nop(op.name + "_avgpool")
+            # And fuse the original activation function to it
+            relu_fused_op.activation = create_activation_function(op.type)
+            # Tidy up and assign the ifm and ofm to the new op
+            ifm.consumer_list.remove(op)
+
+            relu_fused_op.add_input_tensor(ifm)
+            relu_fused_op.set_output_tensor(ofm)
+            relu_fused_op.set_ifm_ofm_shapes()
+            op = relu_fused_op
+    return op
+
+
+def fixup_elementwise_with_scalars(op, arch, nng):
+    if op.type.is_binary_elementwise_op():
+        ifm_tensor, ifm2_tensor, _, _ = op.get_ifm_ifm2_weights_ofm()
+        if ifm2_tensor.shape != [] and ifm_tensor.shape != []:
+            diff = len(ifm_tensor.shape) - len(ifm2_tensor.shape)
+            if diff > 0:
+                ifm2_tensor.shape = full_shape(len(ifm_tensor.shape), ifm2_tensor.shape, 1)
+            elif diff < 0:
+                ifm_tensor.shape = full_shape(len(ifm2_tensor.shape), ifm_tensor.shape, 1)
+        elif ifm_tensor.shape == [] and ifm_tensor.quant_values is None:
+            # IFM is marked as a scalar, but is a result of an operation; change it to a shape of size 1
+            ifm_tensor.shape = len(ifm2_tensor.shape) * [1]
+            ifm_tensor.storage_shape = ifm_tensor.shape
+        elif ifm2_tensor.shape == [] and ifm2_tensor.quant_values is None:
+            # IFM2 is marked as a scalar, but is a result of an operation; change it to a shape of size 1
+            ifm2_tensor.shape = len(ifm_tensor.shape) * [1]
+            ifm2_tensor.storage_shape = ifm2_tensor.shape
+    return op
+
+
+def convert_softmax(op, arch, nng):
+    if op.type == Op.Softmax and op.run_on_npu:
+        softmax = SoftMax(op)
+        op = softmax.get_graph()
+    return op
+
+
+def convert_mul_max_to_abs_or_lrelu(op, arch, nng):
+    r"""Whenever there is a subgraph with this topology:
+
+       Input    X   For X = -1 or X > 0
+       |   \   /    This subgraph can be replaced with either
+       |    Mul     an Abs (if X = -1) or a LeakyReLU (if X > 0)
+       |   /
+       Max
+    """
+
+    if op.type == Op.Maximum:
+        # finds the Mul input(s) to the Max
+        muls = [i for i in op.inputs if i.ops[0].type == Op.Mul]
+        if len(muls) == 1:
+            mul = muls[0].ops[0]
+        elif len(muls) == 2:
+            # In the case both inputs are Muls, find the one with the same input as the Max
+            mul = [m for m in muls if len(set(op.inputs + m.ops[0].inputs)) == 1][0].ops[0]
+        else:
+            # No Mul inputs
+            return op
+
+        # make sure the Mul doesn't have any other consumers
+        mul_ofm = mul.outputs[0]
+        if len(mul_ofm.consumers()) != 1:
+            return op
+        # make sure the Mul doesn't have a fused activation function
+        if mul.activation:
+            return op
+        ifm, ofm = op.get_ifm_ofm()
+        if ifm is None or ofm is None:
+            return op
+
+        if ifm.dtype not in (DataType.uint8, DataType.int8) or ifm.dtype != ofm.dtype:
+            return op
+        if not check_quantized_tens_scaling_equal(ifm, ofm) or not check_quantized_tens_scaling_equal(ifm, mul_ofm):
+            # rewrite to LeakyRelu currently only makes sense if the quantization is identical
+            return op
+
+        # finds the branched input that goes to both the Max and the Mul
+        shared = set(op.inputs) & set(mul.inputs)
+        if len(shared) == 1:
+            shared_in = shared.pop()
+            # find the constant scalar input to the Mul
+            const_tens = (set(mul.inputs) - {shared_in}).pop()
+            # check that it is a scalar
+            if const_tens.shape != []:
+                return op
+            const = const_tens.ops[0]
+            # check that it is a constant
+            if const.type != Op.Const:
+                return op
+            # Remove the Mul from the shared input's consumers
+            shared_in.consumer_list.remove(mul)
+        else:
+            return op
+
+        val = const.outputs[0].values
+        if val >= 0:
+            new_op = Op.LeakyRelu
+            op.attrs["alpha"] = val
+            # to produce bit exact results, the alpha is not enough;
+            # save additional scaling info in attr "alpha_scale", to be used as input
+            # to the LUT construction
+            alpha_scalar = const_tens.quant_values - const_tens.quantization.zero_point
+            mul_ifm_scale = np.double(ifm.quantization.scale_f32)
+            mul_ifm2_scale = np.double(const_tens.quantization.scale_f32)
+            mul_ofm_scale = np.double(mul_ofm.quantization.scale_f32)
+            alpha_scale, alpha_shift = scaling.elementwise_mul_scale(mul_ifm_scale, mul_ifm2_scale, mul_ofm_scale)
+            op.attrs["alpha_scaling"] = (alpha_scalar, alpha_scale, alpha_shift)
+        elif val == -1:
+            new_op = Op.Abs
+        else:
+            return op
+
+        op.type = new_op
+        op.name = op.name.replace("Maximum", new_op.name)
+        op.outputs[0].name = op.outputs[0].name.replace("Maximum", new_op.name)
+        op.inputs = [shared_in]
+        op.set_ifm_ofm_shapes()
+
+        # Record optimisation in debug database
+        DebugDatabase.add_optimised(op, op)
+
+    return op
+
+
+def convert_hardswish_to_lut(op, arch, nng):
+    if op.type == Op.HardSwish:
+        ifm, ofm = op.get_ifm_ofm()
+        # Generate the LUT
+        ifm_scale = np.double(ifm.quantization.scale_f32)
+        ofm_scale = np.double(ofm.quantization.scale_f32)
+        zp_in = ifm.quantization.zero_point
+        zp_out = ofm.quantization.zero_point
+        ifm_scale_hires = (1 / 128) * ifm_scale
+        relu_multiplier = np.double(3 / 32768)
+        out_scale, out_shift = scaling.quantise_scale(ifm_scale_hires / ofm_scale)
+        relu_scale, relu_shift = scaling.quantise_scale(ifm_scale_hires / relu_multiplier)
+        # Use 16bit scale
+        out_scale_16 = fp_math.downscale_multiplier_int32_to_int16(out_scale)
+        relu_scale_16 = fp_math.downscale_multiplier_int32_to_int16(relu_scale)
+
+        values = []
+        ix = range(256) if ifm.dtype == DataType.uint8 else range(-128, 128)
+        quantized_min = min(ix)
+        quantized_max = max(ix)
+        for x in ix:
+            input_value = x - zp_in
+            input_value_hires = input_value * 128
+            # Compute the input value on essentially the output scale, not shifted yet
+            input_value_preshift = fp_math.saturating_rounding_mul16(input_value_hires, out_scale_16)
+            # Compute the "relu-ish multiplier". This matches the code in TensorFlow Lite Micro kernel
+            relu_value = np.int16(input_value_hires)
+            if relu_shift < 31:
+                relu_value = fp_math.shift_left16(relu_value, 30 - relu_shift)
+
+            relu_value = fp_math.saturating_rounding_mul16(relu_value, relu_scale_16)
+
+            if relu_shift < 31:
+                relu_value = fp_math.shift_left16(relu_value, 1)
+
+            if relu_shift > 31:
+                relu_value = fp_math.rounding_divide_by_pot(relu_value, relu_shift - 31)
+
+            # Rescaled the value into a 16bit fixedpoint relu_value in [-1, 1]
+            # Now convert that to a 16bit fixedpoint value in [0, 1]
+            relu_value = (relu_value + (1 << 15)) >> 1
+            lut_result = fp_math.saturating_mul16(relu_value, input_value_preshift)
+            shift = 31 - out_shift
+            shift = -shift if shift < 0 else 0
+            # Finally apply the output shift
+            lut_result = fp_math.rounding_divide_by_pot(lut_result, shift) + zp_out
+            lut_result = min(quantized_max, max(quantized_min, lut_result))
+            values.append(lut_result)
+        return convert_to_lut(op, values, "hardswish")
+    return op
+
+
+def convert_lrelu_to_mul_max(op, arch):
+    # Converts LeakyRelu to Max(alpha * IFM, identity * IFM)
+    # (the opposite of convert_mul_max_to_abs_or_lrelu)
+    ifm, ofm = op.get_ifm_ofm()
+    if ifm is None or ofm is None:
+        return op
+
+    # Add multiplication with alpha
+    mul_alpha = Operation(Op.Mul, op.name + "_mul_alpha")
+    mul_alpha.add_input_tensor(ifm)
+    # Create const tensor containing alpha as scalar
+    alpha = op.attrs["alpha"]
+    quantization = ifm.quantization.clone()
+    quantization.min = 0
+    quantization.max = alpha * (quantization.quant_max - quantization.quant_min)
+    quantization.zero_point = 0
+    if np.isinf(1 / np.float32(alpha)):
+        # Handling of alpha near zero
+        quantization.scale_f32 = 1
+        scalar = 0
+    else:
+        quantization.scale_f32 = alpha
+        scalar = alpha
+    alpha_tens = create_const_tensor(
+        op.name + "_alpha_scalar", [], ifm.dtype, [scalar], np.float32, quantization=quantization
+    )
+    alpha_tens.quant_values = np.array([1])
+    mul_alpha.add_input_tensor(alpha_tens)
+    fm_alpha = ofm.clone(op.name + "_alpha", set_unique=True)
+    mul_alpha.set_output_tensor(fm_alpha)
+    mul_alpha.set_ifm_ofm_shapes()
+    DebugDatabase.add_optimised(op, mul_alpha)
+
+    if check_quantized_tens_scaling_equal(ifm, ofm):
+        # No identity multiplication is needed
+        fm_id = ifm
+    else:
+        # Add multiplication with identity
+        mul_identity = Operation(Op.Mul, op.name + "_mul_identity")
+        mul_identity.add_input_tensor(ifm)
+        # Create const tensor containing identity as scalar
+        quantization = ifm.quantization.clone()
+        quantization.min = 0
+        quantization.max = quantization.quant_max - quantization.quant_min
+        quantization.scale_f32 = 1
+        quantization.zero_point = 0
+        identity_tens = create_const_tensor(
+            op.name + "_id_scalar", [], ifm.dtype, [1], np.uint8, quantization=quantization
+        )
+        mul_identity.add_input_tensor(identity_tens)
+        # Make sure that fm_id is allocated to a different address than fm_alpha
+        fm_id = ofm.clone(op.name + "_id", set_unique=True)
+        mul_identity.set_output_tensor(fm_id)
+        mul_identity.set_ifm_ofm_shapes()
+        DebugDatabase.add_optimised(op, mul_identity)
+
+    # Convert LeakyRelu to Max, add the results of the multiplication(s) as inputs
+    op.type = Op.Maximum
+    op.name = op.name.replace("LeakyRelu", "Maximum")
+    op.inputs = []
+    ifm.consumer_list.remove(op)
+    op.add_input_tensor(fm_alpha)
+    op.add_input_tensor(fm_id)
+    op.set_ifm_ofm_shapes()
+
+    DebugDatabase.add_optimised(op, op)
+    return op
+
+
+def convert_to_lut(op, lut_values, lut_name):
+    # Rewrite the operation by Add with scalar 0 + LUT activation
+    ifm = op.inputs[0]
+    if ifm is None:
+        return op
+    assert ifm.dtype.size_in_bytes() == 1
+    op.type = Op.Add
+    op.name = op.name + "_lut_" + lut_name
+    # Mark as no-op to enable potential fusing optimizations
+    op.attrs["is_nop"] = True
+    # Create an input tensor containing scalar zero
+    quantization = QuantizationParameters(0.0, 255.0)
+    quantization.scale_f32 = ifm.quantization.scale_f32
+    quantization.zero_point = 0
+    tens = create_const_tensor(op.inputs[0].name + "_scalar0", [], ifm.dtype, [0], np.uint8, quantization=quantization)
+    op.add_input_tensor(tens)
+    op.ifm_shapes.append(Shape4D(tens.shape))
+
+    # The LUT must be applied without any preceding rescaling (the LUT itself performs the rescale),
+    # so even if the OFM has a different scale than the IFM, the generated OFM scale instructions
+    # should be the same as the IFM
+    op.forced_output_quantization = ifm.quantization
+    lut_tensor = lut.create_lut_tensor(op.name + "_values", lut_values, DataType.int8)
+    op.set_activation_lut(lut_tensor)
+    op.set_ifm_ofm_shapes()
+    return op
+
+
+def convert_to_lut8(op, fn, fn_name):
+    # Converts op to a no-op + int8/uint8 LUT which is generated with the given function.
+    # fn is a function(real) -> real
+    ifm, ofm = op.get_ifm_ofm()
+    if ifm.dtype not in (DataType.uint8, DataType.int8) or ifm.dtype != ofm.dtype:
+        return op
+    # Generate the LUT
+    ifm_scale = np.double(ifm.quantization.scale_f32)
+    ofm_scale = np.double(ofm.quantization.scale_f32)
+    zp_in = ifm.quantization.zero_point
+    zp_out = ofm.quantization.zero_point
+    values = []
+    ix = range(256) if ifm.dtype == DataType.uint8 else range(-128, 128)
+    quantized_min = min(ix)
+    quantized_max = max(ix)
+    for x in ix:
+        x_real = ifm_scale * (x - zp_in)
+        y_real = fn(x_real)
+        lut_result = round_away_zero(zp_out + y_real / ofm_scale)
+        lut_result = min(quantized_max, max(quantized_min, lut_result))
+        values.append(lut_result)
+    return convert_to_lut(op, values, fn_name)
+
+
+def convert_lrelu_to_lut(op, arch):
+    ifm, ofm = op.get_ifm_ofm()
+    # Generate the LUT
+    alpha = op.attrs["alpha"]
+    ifm_scale = np.double(ifm.quantization.scale_f32)
+    ofm_scale = np.double(ofm.quantization.scale_f32)
+    zp_in = ifm.quantization.zero_point
+    zp_out = ofm.quantization.zero_point
+    identity_scale, identity_shift = scaling.elementwise_mul_scale(ifm_scale, 1, ofm_scale)
+    alpha_scalar = 1
+    alpha_scale, alpha_shift = scaling.elementwise_mul_scale(ifm_scale, alpha, ofm_scale)
+    if "alpha_scaling" in op.attrs:
+        # The LeakyRelu was the result from convert_mul_max_to_abs_or_lrelu
+        alpha_scalar, alpha_scale, alpha_shift = op.attrs["alpha_scaling"]
+    values = []
+    ix = range(256) if ifm.dtype == DataType.uint8 else range(-128, 128)
+    quantized_min = min(ix)
+    quantized_max = max(ix)
+    for x in ix:
+        if x < zp_in:
+            lut_result = zp_out + fp_math.multiply_by_quantized_multiplier(
+                alpha_scalar * (x - zp_in), alpha_scale, alpha_shift
+            )
+        else:
+            lut_result = zp_out + fp_math.multiply_by_quantized_multiplier(x - zp_in, identity_scale, identity_shift)
+        lut_result = min(quantized_max, max(quantized_min, lut_result))
+        values.append(lut_result)
+    return convert_to_lut(op, values, "lrelu")
+
+
+def convert_lrelu(op, arch, nng):
+    # Converts LeakyRelu to a LUT based solution if possible, otherwise a mul + max
+    if op.type != Op.LeakyRelu:
+        return op
+    ifm, ofm = op.get_ifm_ofm()
+    if ifm is None or ofm is None:
+        return op
+    if ifm.dtype in (DataType.uint8, DataType.int8) and ifm.dtype == ofm.dtype:
+        # use LUT for int8/uint8
+        return convert_lrelu_to_lut(op, arch)
+    if check_quantized_tens_scaling_equal(ifm, ofm) and ifm.dtype == ofm.dtype == DataType.int16:
+        # use LeakyRelu unmodified for int16 with equal input/output scaling
+        return op
+    return convert_lrelu_to_mul_max(op, arch)
+
+
+def convert_tanh_sigmoid_to_lut(op, arch, nng):
+    # Converts int8/uint8 Sigmoid and Tanh to a LUT based solution
+    if op.type == Op.Sigmoid:
+        return convert_to_lut8(op, clamp_sigmoid, "sigmoid")
+    elif op.type == Op.Tanh:
+        return convert_to_lut8(op, math.tanh, "tanh")
+    return op
+
+
+def remove_reshapes(op, arch):
+    if op.run_on_npu and op.type == Op.Reshape:
+        ofm = op.ofm
+        ifm = op.ifm
+
+        # Check if quantization is the same in the input and output for the reshape ops
+        if not check_quantized_tens_scaling_equal(ifm, ofm):
+            # TODO Both tensors are needed, since quantisation properties currently are linked to Tensors.
+            # In order to remove this reshape either quantization properties need to be moved to Operator,
+            # or the reshape need to be replace with a NOP.
+            return
+
+        # Check if Reshape ifm/ofm are network ifm/ofm
+        ifm_is_sg_ifm = ifm.ops[0].type in (Op.Placeholder, Op.SubgraphInput, Op.Const)
+        ifm_is_sg_ofm = any(ifm_cons is None for ifm_cons in ifm.consumer_list)
+        ofm_is_sg_ofm = any(ofm_cons is None for ofm_cons in ofm.consumer_list)
+        # Check if ifm/ofm is produced repectivly consumed by CPU
+        ifm_is_cpu_produced = any(ifm_prod is not None and not ifm_prod.run_on_npu for ifm_prod in op.ifm.ops)
+        ofm_is_cpu_consumed = any(ofm_cons is not None and not ofm_cons.run_on_npu for ofm_cons in op.ofm.consumer_list)
+
+        # This case should be handled prior to this function
+        assert not ((ifm_is_sg_ifm or ifm_is_sg_ofm or ifm_is_cpu_produced) and (ofm_is_sg_ofm or ofm_is_cpu_consumed))
+
+        if ofm_is_sg_ofm or ofm_is_cpu_consumed:
+            # Bypassed by replacing ifm with ofm
+            ofm.ops = []
+            for prev_op in ifm.ops:
+                prev_op.outputs = [ofm]
+                ofm.ops.append(prev_op)
+
+            # All ifm consumers need to use ofm as input
+            for ifm_cons in ifm.consumer_list:
+                for ifm_idx, cons_ifm in enumerate(ifm_cons.inputs):
+                    if cons_ifm == ifm:
+                        ifm_cons.set_input_tensor(ofm, ifm_idx)
+        else:
+            # Bypassed Reshape by replacing ofm with ifm
+            for cons in ofm.consumer_list:
+                for ifm_idx, cons_ifm in enumerate(cons.inputs):
+                    if cons_ifm == ofm:
+                        cons.set_input_tensor(ifm, ifm_idx)
+
+
+def fuse_activation_function_with_prev(op, arch, nng):
+    # if op is a no-op: attempts to move the activation function to the preceding op
+    if not op.attrs.get("is_nop", False) or op.activation is None:
+        return op
+    ifm, ofm = op.get_ifm_ofm()
+    if ifm is None or ofm is None:
+        return op
+    # finds the input(s) to the operation
+    prev_op = ifm.ops[0]
+    # Note: the below checks on prev_op require that a first optimize pass on the full graph has been performed
+    fuse = (
+        prev_op.run_on_npu
+        and prev_op.type.npu_block_type != NpuBlockType.Default
+        and len(ifm.ops) == 1
+        and len(prev_op.outputs[0].consumers()) == 1
+        and prev_op.activation is None
+    )
+    if op.activation_lut is not None and arch.shram_reserved_unused_banks == 0:
+        # TODO: if SHRAM LUT space is shared with SHRAM ACC (32, 64 MAC),
+        # LUT currently only works correctly for elementwise ops
+        fuse = False
+    if not fuse:
+        return op
+    # Move the fused activation function + corresponding info to prev_op
+    prev_op.activation = op.activation
+    prev_op.forced_output_quantization = op.forced_output_quantization
+    if op.activation_lut is not None:
+        prev_op.set_activation_lut(op.activation_lut)
+    # Bypass op
+    prev_op.set_output_tensor(ofm)
+    DebugDatabase.add_optimised(op, prev_op)
+    return op
+
+
+def _leading_pad_ok(leading_pad, stride, kernel_size):
+    # If kernel size // 2 > stride, then (left, top) padding must be a multiple of stride,
+    # otherwise replacing PAD by hardware padding would iterate the wrong IFM rows/columns
+    max_size = kernel_size // 2
+    return leading_pad == max_size or max_size <= stride or leading_pad % stride == 0
+
+
+def replace_pad_by_hw_pad(op: Operation, arch, nng):
+    """
+    Tries to completely remove a PAD operator by using hardware padding.
+    E.g. a PAD operation that pads 1, followed by a CONV with VALID padding and kernel size 3
+    is rewritten such that the PAD is removed, and the CONV uses SAME padding.
+    Converts tens1 -> PAD -> tens2 -> CONV to tens1 -> CONV
+    if both operations can be run on the NPU.
+    This is the most efficient way to implement PAD, but cannot be done for all pad sizes.
+    """
+    if (
+        (op.type.is_conv2d_op() or op.type.is_depthwise_conv2d_op() or op.type.is_avgpool_op())
+        and op.run_on_npu
+        and op.attrs["padding"] == Padding.VALID
+    ):
+        pad_op = op.ifm.ops[0]
+        if pad_op.type != Op.Pad or not pad_op.run_on_npu:
+            return op
+        if pad_op.ifm.dtype != pad_op.ofm.dtype or not check_quantized_tens_scaling_equal(pad_op.ofm, pad_op.ifm):
+            return op
+        top, left, bottom, right = get_pad_values_from_input(pad_op.inputs[1].values)
+        k = op.kernel
+        k_w, k_h = k.dilated_wh()
+
+        # Check if the PAD operator can be replaced by hardware padding
+        if left > k_w // 2 or right > k_w // 2 or top > k_h // 2 or bottom > k_h // 2:
+            # Too much padding, it would require hardware padding to actually insert zeros
+            return op
+        if not _leading_pad_ok(top, k.stride.y, k_h) or not _leading_pad_ok(left, k.stride.x, k_w):
+            return op
+
+        if op.type.is_avgpool_op():
+            # For average pool, hardware padding can only be used if padding is 0 or kernel size / 2
+            for pad, k_size in (
+                (left, k_w),
+                (right, k_w),
+                (top, k_h),
+                (bottom, k_h),
+            ):
+                if pad not in (0, k_size // 2):
+                    return op
+            # Average pool is converted to depthwise, because NPU average pool + same padding
+            # has a special implementation that is different from PAD followed by average pool with
+            # valid padding.
+            k_w, k_h = op.kernel.width, op.kernel.height
+            ifm = op.ifm
+            # Remember other inputs
+            other_inputs = op.inputs[1:]
+            # Create a weight tensor, all weights are set to 1/(kernel width * kernel height)
+            quantization = QuantizationParameters(0.0, 255.0)
+            quantization.scale_f32 = 1.0 / (k_w * k_h)
+            quantization.zero_point = 0
+            shape = [k_h, k_w, 1, op.ofm.shape[-1]]
+            weights = np.full(shape, 1)
+
+            weight_tens = create_const_tensor(
+                op.name + "_weights",
+                shape,
+                op.ifm.dtype,
+                weights,
+                np.uint8,
+                purpose=TensorPurpose.Weights,
+                quantization=quantization,
+            )
+            weight_tens.quant_values = weights
+            op.type = Op.DepthwiseConv2DBias
+            op.inputs = []
+            op.add_input_tensor(ifm)
+            op.add_input_tensor(weight_tens)
+            # Add bias tensor, all biases set to 0
+            op.inputs.append(None)
+            fixup_bias_tensors(op, arch, nng)
+            # Add other inputs
+            op.inputs.extend(other_inputs)
+            op.rounding_mode = NpuRoundingMode.NATURAL
+
+        # Bypass the PAD operator
+        op.set_input_tensor(pad_op.ifm, 0)
+        # Adjust the padding attributes of the convolution operator
+        op.attrs["padding"] = Padding.EXPLICIT
+        op.attrs["explicit_padding"] = (top, left, bottom, right)
+        op.set_ifm_ofm_shapes()
+    return op
+
+
+def convert_pad(op: Operation, arch, nng):
+    """
+    Rewrites PAD operator to an average pool that copies the IFM to the OFM
+    + up to 4 average pool operators that fill the OFM with zeros at the borders.
+    This is done as fall-back for the PAD operators that remain after replace_pad_by_hw_pad
+    """
+    if op.type != Op.Pad or not op.run_on_npu:
+        return op
+    top, left, bottom, right = get_pad_values_from_input(op.inputs[1].values)
+
+    ifm = op.ifm
+    assert ifm is not None
+    ifm_shape = Shape4D(ifm.shape)
+    ofm = op.ofm
+    assert ofm is not None
+    ofm.ops = []
+    ofm_shape = op.ofm_shapes[0]
+
+    # Average pool op that copies IFM to the right place inside the OFM
+    shp0 = Shape4D(0, 0, 0, 0)
+    shp_top = shp0.with_height(top)
+    avgpool_op = create_avg_pool_for_concat(op, op.name + "_main", ifm, ifm_shape, shp_top.with_width(left))
+    avgpool_op.activation = op.activation
+    quant = ofm.quantization
+    pad_value = quant.zero_point
+    # Add operations that fill the borders of the OFM
+    if top > 0:
+        shape = Shape4D(1, top, ofm_shape.width, ofm_shape.depth)
+        zero_tens = create_const_tensor(
+            op.name + "_top", shape.as_list(), ofm.dtype, shape.elements() * [pad_value], np.uint8, quantization=quant
+        )
+        # If top/bottom or left/right are equal, the const tensors can be allocated to the same address
+        zero_tens.equivalence_id = create_equivalence_id(tuple(zero_tens.values))
+        create_avg_pool_for_concat(op, op.name + "_top", zero_tens, shape, shp0)
+    if bottom > 0:
+        shape = Shape4D(1, bottom, ofm_shape.width, ofm_shape.depth)
+        zero_tens = create_const_tensor(
+            op.name + "_bottom",
+            shape.as_list(),
+            ofm.dtype,
+            shape.elements() * [pad_value],
+            np.uint8,
+            quantization=quant,
+        )
+        zero_tens.equivalence_id = create_equivalence_id(tuple(zero_tens.values))
+        create_avg_pool_for_concat(
+            op, op.name + "_bottom", zero_tens, shape, shp0.with_height(ofm_shape.height - bottom)
+        )
+    if left > 0:
+        shape = Shape4D(1, ifm_shape.height, left, ofm_shape.depth)
+        zero_tens = create_const_tensor(
+            op.name + "_left", shape.as_list(), ofm.dtype, shape.elements() * [pad_value], np.uint8, quantization=quant
+        )
+        zero_tens.equivalence_id = create_equivalence_id(tuple(zero_tens.values))
+        create_avg_pool_for_concat(op, op.name + "_left", zero_tens, shape, shp_top)
+    if right > 0:
+        shape = Shape4D(1, ifm_shape.height, right, ofm_shape.depth)
+        zero_tens = create_const_tensor(
+            op.name + "_right", shape.as_list(), ofm.dtype, shape.elements() * [pad_value], np.uint8, quantization=quant
+        )
+        zero_tens.equivalence_id = create_equivalence_id(tuple(zero_tens.values))
+        create_avg_pool_for_concat(
+            op, op.name + "_right", zero_tens, shape, shp_top.with_width(ofm_shape.width - right)
+        )
+
+    op.type = Op.ConcatTFLite
+    return avgpool_op
+
+
+def add_attrs_to_resizebilinear(op, arch, nng):
+    if op.type == Op.ResizeBilinear and op.run_on_npu:
+        input_tensor = op.inputs[0]
+        input_shape = op.ifm_shapes[0]
+        upscaled_height = input_shape.height * 2
+        upscaled_width = input_shape.width * 2
+        out_shape = op.ofm_shapes[0]
+        if not op.attrs["align_corners"] and out_shape.height == upscaled_height and out_shape.width == upscaled_width:
+            # this means the output is supposed to be a x2 upscale,
+            # so we need to do SAME padding
+            op.attrs["padding"] = Padding.SAME
+        elif (
+            op.attrs["align_corners"]
+            and out_shape.height == (upscaled_height - 1)
+            and out_shape.width == (upscaled_width - 1)
+        ):
+            # here we can just run the avg pool without padding and
+            # produce a (M * 2 - 1, N * 2 - 1) sized output
+            op.attrs["padding"] = Padding.VALID
+        else:
+            return op
+        input_tensor.resampling_mode = resampling_mode.NEAREST
+        op.attrs.update({"strides": (1, 1, 1, 1), "ksize": (1, 2, 2, 1)})
+    return op
+
+
+def fixup_bias_tensors(op, arch, nng):
+    if op.type.needs_bias() and op.bias is None:
+        # Op has no bias, add bias tensor filled with zeros
+        nr_biases = op.inputs[1].shape[-1]
+        bias_values = [0] * nr_biases
+        bias_tensor = create_const_tensor(op.name + "_bias", [nr_biases], DataType.int32, bias_values)
+        bias_tensor.quant_values = bias_tensor.values
+        op.set_input_tensor(bias_tensor, op.type.info.indices.biases[0])
+
+    return op
+
+
+def convert_mean_to_depthwise_conv_or_avgpool(op, arch, nng):
+    if op.type == Op.Mean and op.run_on_npu:
+        keep_dims = op.attrs.get("keep_dims", False)
+        inp, axis = op.inputs
+        shape = inp.shape
+        dims = len(shape)
+
+        # Height and width axes have different index depending on dimensions
+        if axis.shape == [] or axis.shape[0] == 1:  # single axis
+            axis = int(axis.values) if len(axis.shape) == 0 else int(axis.values[0])
+            if dims in (2, 3):
+                if axis == 0:
+                    h, w = shape[axis], 1
+                else:
+                    h, w = 1, shape[axis]
+            else:
+                if axis == 1:
+                    h, w = shape[axis], 1
+                else:
+                    h, w = 1, shape[axis]
+        else:  # multiple axes
+            axis = sorted(axis.values)
+            h, w = [shape[i] for i in axis]
+
+        # Set necessary depthwise attributes
+        op.attrs.update(
+            {
+                "padding": Padding.VALID,
+                "stride_h": 1,
+                "stride_w": 1,
+                "strides": (1, 1, 1, 1),
+                "depth_multiplier": 1,
+                "channel_multiplier": 1,
+                "dilation_h_factor": 1,
+                "dilation_w_factor": 1,
+                "dilation": (1, 1, 1, 1),
+            }
+        )
+        # Change op type
+        op.type = Op.DepthwiseConv2DBias
+        # Set IFM/OFM shapes after changing op type
+        op.set_ifm_ofm_shapes()
+
+        weight_scale, bias = 1, None
+        ofmq, ifmq = op.ofm.quantization, inp.quantization
+        # Set rounding mode, scaling and zero point based on which reference implementation to match
+        if len(shape) == 4 and axis == [1, 2] and keep_dims:
+            if inp.dtype == DataType.uint8:
+                # This attribute means a different scaling calculation is used in order to match reference
+                op.low_precision_scaling = True
+                weight_scale = h * w
+                # Set zero points to 0 as they will be adjusted for with bias term
+                foq = ofmq.clone()
+                foq.zero_point = 0
+                fiq = ifmq.clone()
+                fiq.zero_point = 0
+                op.forced_input_quantization = fiq
+                bias_term = ofmq.zero_point - int(ifmq.zero_point * ifmq.scale_f32 / ofmq.scale_f32)
+                # If the bias term is outside uint8 range, we need an Add op to apply it.
+                if bias_term < 0 or bias_term > 255:
+                    intermediate = op.ofm.clone(suffix="_intermediate", set_unique=True)
+                    # Bias term has higher bitness (i32) than input/output (u8).
+                    # 16 bits is enough since the bias is added/subtracted from a u8 value,
+                    # the bias can only effectively assume values in the range [-255, 255].
+                    intermediate.dtype = DataType.int16
+                    intermediate.quantization.zero_point = 0
+                    add_op = Operation(Op.Add, op.name + "_bias")
+                    add_op.forced_output_quantization = foq
+                    add_op.add_input_tensor(intermediate)
+                    quant = QuantizationParameters()
+                    quant.zero_point = 0
+                    bias_term_tens = create_const_tensor(
+                        op.name + "_bias",
+                        [1, 1, 1, 1],
+                        DataType.int16,
+                        [bias_term],
+                        np.int16,
+                        quantization=quant,
+                        quant_value_dtype=np.int16,
+                    )
+                    add_op.add_input_tensor(bias_term_tens)
+                    add_op.set_output_tensor(op.ofm)
+                    add_op.set_ifm_ofm_shapes()
+                    add_op.activation = op.activation
+                    op.activation = None
+                    op.set_output_tensor(intermediate)
+                    op.set_ifm_ofm_shapes()
+                # If not, we can just do it with the OFM zero point.
+                else:
+                    foq.zero_point = bias_term
+                    op.forced_output_quantization = foq
+            else:
+                assert inp.dtype == DataType.int8
+                # Use a depthwise to calculate the sum,
+                # followed by a multiplication with 1/N to get the MEAN
+                weight_scale = 1
+                intermediate = op.ofm.clone(suffix="_intermediate", set_unique=True)
+                intermediate.dtype = DataType.int16
+                mul_op = Operation(Op.Mul, op.name + "_mul")
+                mul_op.add_input_tensor(intermediate)
+                # Create scalar containing 1/N
+                quant = QuantizationParameters()
+                quant.zero_point = 0
+                # The reference rounds negative numbers downwards, e.g. -1.5 is rounded to -2,
+                # while rounding mode NATURAL would round this to -1.
+                # This can only occur if N is even, and can be emulated by
+                # multiplying with a number that is slightly smaller than 1/N.
+                # It must be so small that other roundings are not affected;
+                # the calculated value is based on worst case,
+                # which is sum 256 * N (the maximum sum that can occur with int8)
+                n = int(h * w)
+                eps = 1 / (256 * (n + 1)) if n % 2 == 0 else 0
+                quant.scale_f32 = 1 / (n - eps)
+                scalar = create_const_tensor(
+                    op.name + "_scalar", [1, 1, 1, 1], DataType.uint8, [1], np.uint8, quantization=quant
+                )
+                mul_op.add_input_tensor(scalar)
+                mul_op.set_output_tensor(op.ofm)
+                mul_op.set_ifm_ofm_shapes()
+                mul_op.rounding_mode = NpuRoundingMode.NATURAL
+                mul_op.activation = op.activation
+                op.activation = None
+                op.set_output_tensor(intermediate)
+                op.set_ifm_ofm_shapes()
+        elif ifmq.zero_point == ofmq.zero_point and ifmq.scale_f32 == ofmq.scale_f32:
+            # Here we can just use a simple AvgPool with truncating rounding,
+            # as we're emulating simple integer division.
+            op.rounding_mode = NpuRoundingMode.TRUNCATE
+            op.type = Op.AvgPool
+            op.attrs.update({"ksize": (1, h, w, 1), "filter_height": h, "filter_width": w})
+        else:
+            op.rounding_mode = NpuRoundingMode.NATURAL
+            weight_scale = 1 / (h * w)
+            # Input zero point is adjusted after mean calculation, so we emulate that with a bias
+            bias = -ifmq.zero_point * h * w
+            fiq = ifmq.clone()
+            fiq.zero_point = 0
+            op.forced_input_quantization = fiq
+
+        # Change dimensions to 4
+        if dims < 4:
+            shape = [1] + shape
+            if dims == 2:
+                shape += [1]
+
+        # If height is greater than max kernel height, reshape to from HxW to 1x(HxW)
+        if h > 64:
+            shape = [shape[0], 1, h * w, shape[3]]
+            op.ifm_shapes[0] = Shape4D(shape)
+            if h > 256 and op.type == Op.AvgPool:
+                op.attrs.update({"ksize": (1, 1, h * w, 1), "filter_height": 1, "filter_width": h * w})
+
+        # If the AvgPool version is used, we don't need to do anything else
+        if op.type == Op.AvgPool:
+            return op
+
+        # Make unit weight tensor quantization
+        weight_quant = ifmq.clone()
+        weight_quant.min = 0
+        weight_quant.max = 255
+        weight_quant.scale_f32 = weight_scale
+        weight_quant.zero_point = 0
+
+        # Set weight shape to [H,W,C,B]
+        weight_shape = shape[1:4] + [shape[0]]
+        # Add unit weight tensor
+        op.set_input_tensor(
+            create_const_tensor(
+                "weights",
+                weight_shape,
+                inp.dtype,
+                np.ones(weight_shape),
+                value_dtype=np.uint8,
+                quantization=weight_quant,
+            ),
+            1,
+        )
+        op.weights.quant_values = np.reshape(op.inputs[1].quant_values, weight_shape)
+
+        # Add None bias tensor
+        op.inputs.append(None)
+        # Add bias tensor
+        if bias:
+            bias_shape = [shape[-1]]
+            op.set_input_tensor(
+                create_const_tensor(
+                    "bias",
+                    bias_shape,
+                    inp.dtype,
+                    np.ones(bias_shape) * bias,
+                    value_dtype=np.int32,
+                    quant_value_dtype=np.int32,
+                    quantization=None,
+                ),
+                2,
+            )
+
+    return op
+
+
+def supported_operator_check(op, arch, nng):
+    op.run_on_npu = arch.supported_operators.is_operator_supported(op)
+    return op
+
+
+def tflite_optimise_graph(nng, arch):
+    # Pre-processing step
+    pre_process_list = [
+        supported_operator_check,
+        set_ifm_ofm_op_shapes,
+    ]
+
+    for idx, sg in enumerate(nng.subgraphs):
+        nng.subgraphs[idx] = rewrite_graph.rewrite_graph_pre_order(
+            nng, sg, arch, [], pre_process_list, rewrite_unsupported=False,
+        )
+
+    # Handle Concat Ops
+    for idx, sg in enumerate(nng.subgraphs):
+        rewrite_graph.visit_graph_post_order(sg.output_tensors, arch, [], [rewrite_concat_ops])
+        sg.refresh_after_modification()
+
+    # Handle Split Ops
+    for idx, sg in enumerate(nng.subgraphs):
+        nng.subgraphs[idx] = rewrite_graph.rewrite_graph_pre_order(
+            nng,
+            sg,
+            arch,
+            [],
+            [rewrite_unpack_output, rewrite_stridedslice_output, convert_nop_split_to_identity],
+            rewrite_unsupported=False,
+        )
+
+    for idx, sg in enumerate(nng.subgraphs):
+        nng.subgraphs[idx] = rewrite_graph.rewrite_graph_pre_order(
+            nng, sg, arch, [rewrite_split_ops], [], rewrite_unsupported=False,
+        )
+
+    # Handle sg input output
+    for idx, sg in enumerate(nng.subgraphs):
+        nng.subgraphs[idx] = rewrite_graph.rewrite_graph_pre_order(
+            nng, sg, arch, [], [fix_sg_input_output], rewrite_unsupported=False,
+        )
+
+    # Removal of reshapes
+    for sg in nng.subgraphs:
+        rewrite_graph.visit_graph_post_order(sg.output_tensors, arch, [], [remove_reshapes])
+        sg.refresh_after_modification()
+
+    # Rewrite of operators
+    op_rewrite_list = [
+        set_tensor_equivalence,
+        convert_mean_to_depthwise_conv_or_avgpool,
+        convert_depthwise_to_conv,
+        convert_conv_to_fc,
+        convert_softmax,
+        optimise_strided_conv,
+        convert_hardswish_to_lut,
+        rewrite_fully_connected_input,
+        convert_batched_fc_shape,
+        fixup_conv2d_backprop,
+        fixup_relus_with_differing_ifm_ofm_scaling,
+        fixup_elementwise_with_scalars,
+        reorder_depthwise_weights,
+        fixup_resizebilinear,
+        fixup_bias_tensors,
+        convert_mul_max_to_abs_or_lrelu,
+        convert_lrelu,
+        convert_tanh_sigmoid_to_lut,
+        replace_pad_by_hw_pad,
+    ]
+
+    for idx, sg in enumerate(nng.subgraphs):
+        nng.subgraphs[idx] = rewrite_graph.rewrite_graph_pre_order(
+            nng, sg, arch, [], op_rewrite_list, rewrite_unsupported=False,
+        )
+
+    for idx, sg in enumerate(nng.subgraphs):
+        # remove passthrough tensors and attempt further optimizations
+        nng.subgraphs[idx] = rewrite_graph.rewrite_graph_pre_order(
+            nng,
+            sg,
+            arch,
+            [remove_passthrough_tensor],
+            [fuse_activation_function_with_prev, convert_pad, add_padding_fields],
+        )
+
+    # Removal of SplitSliceRead, need to be done after optimisation has been performed,
+    # since ifm/ofm_shapes are of importance to this function
+    for sg in nng.subgraphs:
+        rewrite_graph.visit_graph_post_order(sg.output_tensors, arch, [], [remove_SplitSliceRead])
+        sg.refresh_after_modification()
+
+    return nng