MLBEDSW-4034: New Scheduler Size or Performance Optimisation

 - Merged dev/scheduler at 83639f90e8c828f70de6e29142355a940224959b

Signed-off-by: Tim Hall <tim.hall@arm.com>
Change-Id: I0050529d4b42da93768c7264296434dd877fb5b4
diff --git a/ethosu/vela/cascade_builder.py b/ethosu/vela/cascade_builder.py
new file mode 100644
index 0000000..e4fa67e
--- /dev/null
+++ b/ethosu/vela/cascade_builder.py
@@ -0,0 +1,260 @@
+# Copyright (C) 2021 Arm Limited or its affiliates. All rights reserved.
+#
+# SPDX-License-Identifier: Apache-2.0
+#
+# Licensed under the Apache License, Version 2.0 (the License); you may
+# not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an AS IS BASIS, WITHOUT
+# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+# Description:
+# Groups Operators in a schedule together to form Cascades.
+from .numeric_util import round_up
+from .operation import NpuBlockType
+from .shape4d import Shape4D
+
+non_cascadable_blocks = (
+    NpuBlockType.Default,
+    NpuBlockType.VectorProduct,
+    NpuBlockType.ElementWise,
+    NpuBlockType.ReduceSum,
+)
+
+
+class CascadeInfo:
+    """Contains metadata about a cascade"""
+
+    def __init__(self, start, end, buffers, mem_usage: int):
+        self.start = start
+        self.end = end
+        self.buffers = buffers
+        self.mem_usage = mem_usage
+
+
+class BufferMap:
+    """Caches the buffers seen"""
+
+    def __init__(self):
+        self.buffer_map = {}
+
+    def get_buffer(self, producer, consumer, cost):
+        assert producer or consumer
+        key = (producer, consumer)
+        if key not in self.buffer_map:
+            # No cached buffer between these two SchedulerOperations
+            if consumer is None:
+                # There are either no consumers or multiple consumers - FeatureMap needs to be stored in full
+                buffer_shape = producer.ofm.shape
+                buffer_size = producer.ofm_size_in_bytes()
+            elif producer is None:
+                # First Op in subgraph or cascade - FeatureMap needs to be stored in full
+                buffer_shape = consumer.ifm.shape
+                buffer_size = consumer.ifm_size_in_bytes()
+            elif producer.requires_full_ofm or consumer.requires_full_ifm:
+                # FeatureMap needs to be stored in full
+                buffer_shape = max(producer.ofm.shape, consumer.ifm.shape)
+                buffer_size = max(producer.ofm_size_in_bytes(), consumer.ifm_size_in_bytes())
+            else:
+                # Use a rolling buffer
+                buffer_shape = rolling_buffer_shape(cost[producer].stripe, cost[consumer].stripe_input)
+                buffer_size = buffer_shape.elements() * producer.ofm.dtype.size_in_bytes()
+
+            self.buffer_map[key] = (buffer_shape, buffer_size)
+
+        return self.buffer_map[key]
+
+
+def rolling_buffer_shape(producer_stripe: Shape4D, consumer_stripe_input: Shape4D) -> Shape4D:
+    """Calculates the storage shape of the rolling buffer between two SchedulerOperations in a Cascade"""
+    buffer_height = round_up(producer_stripe.height + consumer_stripe_input.height, consumer_stripe_input.height)
+    # Rolling buffers have to conform to NHCWB16 format
+    return consumer_stripe_input.with_height(buffer_height).with_depth(round_up(producer_stripe.depth, 16))
+
+
+class CascadeBuilder:
+    """Class for grouping SchedulerOperations into cascades"""
+
+    def __init__(self, sched_ops, spilling, non_local_mem_usage=None):
+        self.sched_ops = sched_ops
+        self.no_cascade = 0
+        self.non_local_mem_usage = non_local_mem_usage if non_local_mem_usage else {}
+        self.spilling = spilling
+
+    def _is_cascadable(self, sched_op, cost) -> bool:
+        """Checks if 'sched_op' can be cascaded"""
+        return (
+            sched_op.op_type.npu_block_type not in non_cascadable_blocks
+            and cost.stripe.height < sched_op.ofm.shape.height
+        )
+
+    def _estimate_sram_usage(self, sched_op, cost) -> int:
+        """Estimate the SRAM required for the Op if all FeatureMaps are in SRAM"""
+        ifm2_size = sched_op.ifm2_size_in_bytes()
+        if sched_op.requires_full_ifm:
+            ifm_size = sched_op.ifm_size_in_bytes()
+        else:
+            ifm_size = (
+                cost.stripe_input.with_depth(round_up(cost.stripe_input.depth, 16)).elements()
+                * sched_op.ifm.dtype.size_in_bytes()
+            )
+        if sched_op.requires_full_ofm:
+            ofm_size = sched_op.ofm_size_in_bytes()
+        else:
+            ofm_size = (
+                cost.stripe.with_depth(round_up(cost.stripe.depth, 16)).elements() * sched_op.ofm.dtype.size_in_bytes()
+            )
+
+        return ifm_size + ifm2_size + ofm_size + self.non_local_mem_usage.get(sched_op, 0)
+
+    def build_cascades(self, ref_schedule, fallback_schedule, guiding_mem_limit):
+        ref_cost = ref_schedule.cost_map
+        fallback_cost = fallback_schedule.cost_map
+        cost = {}
+        cascade_map = {}
+        buffers = BufferMap()
+
+        # Peak memory usage so far - updated continously, unless dedicated SRAM where this is a hard limit
+        peak_sram_usage = guiding_mem_limit
+
+        idx = 0
+        while idx < len(self.sched_ops):
+            op = self.sched_ops[idx]
+            if op in cost:
+                # Already processed this Op
+                idx += 1
+                continue
+
+            if not self._is_cascadable(op, ref_cost[op]):
+                # Op is not a candidate for cascading - assign fallback cost
+                cost[op] = fallback_cost[op]
+                if not self.spilling:
+                    peak_sram_usage = max(self._estimate_sram_usage(op, fallback_cost[op]), peak_sram_usage)
+                idx += 1
+                continue
+
+            # Propose a cascade starting with this Op
+            cascade_start = op.index
+            # Keep track of which Ops are in the proposed cascade as well as the best cascade so far
+            ops_in_cascade = [op]
+            ops_in_best_cascade = [op]
+            # Get the size of the weight buffer
+            weight_buffer = 0
+            if ref_cost[op].buffered_weight_tensor:
+                weight_buffer = ref_cost[op].buffered_weight_tensor.storage_size()
+
+            # The first IFM needs to be stored in full
+            cascade_ifm_size = op.ifm_size_in_bytes() if not self.spilling else 0
+
+            # Add non-local memory usage
+            cascade_ifm_size += self.non_local_mem_usage.get(op, 0)
+
+            # Sum of all intermediate cascade buffers (including weight buffers)
+            cascade_buffers = weight_buffer
+            # Best cascade size - Initially it's the fallback cost of the first Op in the cascade
+            best_cascade_size = self._estimate_sram_usage(op, fallback_cost[op])
+
+            # Op is the producer of the OFM consumed by the next Op to consider
+            producer = op
+            while True:
+                dependants = producer.get_dependants()
+                if len(dependants) != 1:
+                    # producer is either the last Op in the schedule or the start of a branch
+                    break
+
+                current_op = dependants[0]
+                if (
+                    current_op in cost
+                    or current_op not in ref_cost
+                    or not self._is_cascadable(current_op, ref_cost[current_op])
+                    or producer.ofm.shape != current_op.ifm.shape
+                ):
+                    # Current op has already been processed or cannot be cascaded
+                    break
+
+                # Get the size of the FeatureMap buffers between current and neighbouring Ops
+                op_full_ifm = current_op.ifm_size_in_bytes()
+                op_full_ofm = current_op.ofm_size_in_bytes()
+                _, op_ifm_buffer = buffers.get_buffer(producer, current_op, ref_cost)
+
+                # Get the size of the weight buffer
+                op_weight_buffer = 0
+                if ref_cost[current_op].buffered_weight_tensor:
+                    op_weight_buffer = ref_cost[current_op].buffered_weight_tensor.storage_size()
+
+                # Calculate the uncascaded memory requirement for current Op
+                uncascaded_sram_usage = op_full_ifm + op_full_ofm + self.non_local_mem_usage.get(current_op, 0)
+
+                # Add current Op to cascade
+                ops_in_cascade.append(current_op)
+
+                # Increase the accumulated intermediate buffers in the cascade
+                cascade_buffers += op_ifm_buffer + op_weight_buffer
+
+                if self.spilling:
+                    # For Dedicated SRAM only the intermediate buffers are in SRAM
+                    if uncascaded_sram_usage < peak_sram_usage or cascade_buffers > peak_sram_usage:
+                        # Cascade until an Op fits in its entirety or the accumulated buffers no longer fit
+                        break
+                    else:
+                        # Any addition to the cascade that fits is the new best cascade for Dedicated SRAM
+                        ops_in_best_cascade = [op for op in ops_in_cascade]
+                        best_cascade_size = cascade_buffers
+
+                else:
+                    # Calculate the total size of the current cascade
+                    cascade_size = cascade_ifm_size + cascade_buffers + op_full_ofm
+
+                    # Determine if cascading search should stop
+                    if (
+                        uncascaded_sram_usage < peak_sram_usage
+                        and best_cascade_size < peak_sram_usage
+                        or (cascade_ifm_size + cascade_buffers) > best_cascade_size
+                    ):
+                        # Both the existing cascade and current Op fits
+                        break
+
+                    # Determine if current cascade is the best so far
+                    if cascade_size < best_cascade_size:
+                        best_cascade_size = cascade_ifm_size + cascade_buffers + op_full_ofm
+                        ops_in_best_cascade = [op for op in ops_in_cascade]
+
+                producer = current_op
+
+            if len(ops_in_best_cascade) > 1:
+                # A cascade was created - assign cascade and ref_cost to all of the Ops
+                cascade_end = cascade_start + (len(ops_in_best_cascade) - 1)
+                buffers_in_cascade = {}
+                prev_op = None
+                for cascaded_op in ops_in_best_cascade:
+                    cost[cascaded_op] = ref_cost[cascaded_op]
+                    cost[cascaded_op].cascade = cascade_end
+                    if prev_op:
+                        rolling_buffer_shape, _ = buffers.get_buffer(prev_op, cascaded_op, ref_cost)
+                        buffers_in_cascade[cascaded_op] = rolling_buffer_shape
+
+                    prev_op = cascaded_op
+
+                # Create a CascadeInfo for the cascade
+                cascade_map[cascade_end] = CascadeInfo(
+                    cascade_start, cascade_end, buffers_in_cascade, best_cascade_size
+                )
+                if not self.spilling:
+                    # Update peak memory usage
+                    peak_sram_usage = max(best_cascade_size, peak_sram_usage)
+            else:
+                # Assign fallback cost to the initial Op
+                cost[op] = fallback_cost[op]
+                if not self.spilling:
+                    peak_sram_usage = max(self._estimate_sram_usage(op, fallback_cost[op]), peak_sram_usage)
+
+        # Update costing and cascde information for the ref_schedule
+        ref_schedule.cost_map = cost
+        ref_schedule.cascades = cascade_map
+        return ref_schedule