blob: 3bf5eb3571f65ba4d92b3f3ade197eee3ebdbdf6 [file] [log] [blame]
/*
* Copyright (c) 2021 Arm Limited. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "Mfcc.hpp"
#include "PlatformMath.hpp"
#include "log_macros.h"
#include <cfloat>
#include <cinttypes>
namespace arm {
namespace app {
namespace audio {
MfccParams::MfccParams(
const float samplingFreq,
const uint32_t numFbankBins,
const float melLoFreq,
const float melHiFreq,
const uint32_t numMfccFeats,
const uint32_t frameLen,
const bool useHtkMethod):
m_samplingFreq(samplingFreq),
m_numFbankBins(numFbankBins),
m_melLoFreq(melLoFreq),
m_melHiFreq(melHiFreq),
m_numMfccFeatures(numMfccFeats),
m_frameLen(frameLen),
/* Smallest power of 2 >= frame length. */
m_frameLenPadded(pow(2, ceil((log(frameLen)/log(2))))),
m_useHtkMethod(useHtkMethod)
{}
void MfccParams::Log() const
{
debug("MFCC parameters:\n");
debug("\t Sampling frequency: %f\n", this->m_samplingFreq);
debug("\t Number of filter banks: %" PRIu32 "\n", this->m_numFbankBins);
debug("\t Mel frequency limit (low): %f\n", this->m_melLoFreq);
debug("\t Mel frequency limit (high): %f\n", this->m_melHiFreq);
debug("\t Number of MFCC features: %" PRIu32 "\n", this->m_numMfccFeatures);
debug("\t Frame length: %" PRIu32 "\n", this->m_frameLen);
debug("\t Padded frame length: %" PRIu32 "\n", this->m_frameLenPadded);
debug("\t Using HTK for Mel scale: %s\n", this->m_useHtkMethod ? "yes" : "no");
}
MFCC::MFCC(const MfccParams& params):
m_params(params),
m_filterBankInitialised(false)
{
this->m_buffer = std::vector<float>(
this->m_params.m_frameLenPadded, 0.0);
this->m_frame = std::vector<float>(
this->m_params.m_frameLenPadded, 0.0);
this->m_melEnergies = std::vector<float>(
this->m_params.m_numFbankBins, 0.0);
this->m_windowFunc = std::vector<float>(this->m_params.m_frameLen);
const auto multiplier = static_cast<float>(2 * M_PI / this->m_params.m_frameLen);
/* Create window function. */
for (size_t i = 0; i < this->m_params.m_frameLen; i++) {
this->m_windowFunc[i] = (0.5 - (0.5 *
math::MathUtils::CosineF32(static_cast<float>(i) * multiplier)));
}
math::MathUtils::FftInitF32(this->m_params.m_frameLenPadded, this->m_fftInstance);
this->m_params.Log();
}
void MFCC::Init()
{
this->InitMelFilterBank();
}
float MFCC::MelScale(const float freq, const bool useHTKMethod)
{
if (useHTKMethod) {
return 1127.0f * logf (1.0f + freq / 700.0f);
} else {
/* Slaney formula for mel scale. */
float mel = freq / ms_freqStep;
if (freq >= ms_minLogHz) {
mel = ms_minLogMel + logf(freq / ms_minLogHz) / ms_logStep;
}
return mel;
}
}
float MFCC::InverseMelScale(const float melFreq, const bool useHTKMethod)
{
if (useHTKMethod) {
return 700.0f * (expf (melFreq / 1127.0f) - 1.0f);
} else {
/* Slaney formula for mel scale. */
float freq = ms_freqStep * melFreq;
if (melFreq >= ms_minLogMel) {
freq = ms_minLogHz * expf(ms_logStep * (melFreq - ms_minLogMel));
}
return freq;
}
}
bool MFCC::ApplyMelFilterBank(
std::vector<float>& fftVec,
std::vector<std::vector<float>>& melFilterBank,
std::vector<uint32_t>& filterBankFilterFirst,
std::vector<uint32_t>& filterBankFilterLast,
std::vector<float>& melEnergies)
{
const size_t numBanks = melEnergies.size();
if (numBanks != filterBankFilterFirst.size() ||
numBanks != filterBankFilterLast.size()) {
printf_err("unexpected filter bank lengths\n");
return false;
}
for (size_t bin = 0; bin < numBanks; ++bin) {
auto filterBankIter = melFilterBank[bin].begin();
auto end = melFilterBank[bin].end();
float melEnergy = FLT_MIN; /* Avoid log of zero at later stages */
const uint32_t firstIndex = filterBankFilterFirst[bin];
const uint32_t lastIndex = std::min<uint32_t>(filterBankFilterLast[bin], fftVec.size() - 1);
for (uint32_t i = firstIndex; i <= lastIndex && filterBankIter != end; i++) {
float energyRep = math::MathUtils::SqrtF32(fftVec[i]);
melEnergy += (*filterBankIter++ * energyRep);
}
melEnergies[bin] = melEnergy;
}
return true;
}
void MFCC::ConvertToLogarithmicScale(std::vector<float>& melEnergies)
{
for (float& melEnergy : melEnergies) {
melEnergy = logf(melEnergy);
}
}
void MFCC::ConvertToPowerSpectrum()
{
const uint32_t halfDim = this->m_buffer.size() / 2;
/* Handle this special case. */
float firstEnergy = this->m_buffer[0] * this->m_buffer[0];
float lastEnergy = this->m_buffer[1] * this->m_buffer[1];
math::MathUtils::ComplexMagnitudeSquaredF32(
this->m_buffer.data(),
this->m_buffer.size(),
this->m_buffer.data(),
this->m_buffer.size()/2);
this->m_buffer[0] = firstEnergy;
this->m_buffer[halfDim] = lastEnergy;
}
std::vector<float> MFCC::CreateDCTMatrix(
const int32_t inputLength,
const int32_t coefficientCount)
{
std::vector<float> dctMatix(inputLength * coefficientCount);
const float normalizer = math::MathUtils::SqrtF32(2.0f/inputLength);
const float angleIncr = M_PI/inputLength;
float angle = 0;
for (int32_t k = 0, m = 0; k < coefficientCount; k++, m += inputLength) {
for (int32_t n = 0; n < inputLength; n++) {
dctMatix[m+n] = normalizer *
math::MathUtils::CosineF32((n + 0.5f) * angle);
}
angle += angleIncr;
}
return dctMatix;
}
float MFCC::GetMelFilterBankNormaliser(
const float& leftMel,
const float& rightMel,
const bool useHTKMethod)
{
UNUSED(leftMel);
UNUSED(rightMel);
UNUSED(useHTKMethod);
/* By default, no normalisation => return 1 */
return 1.f;
}
void MFCC::InitMelFilterBank()
{
if (!this->IsMelFilterBankInited()) {
this->m_melFilterBank = this->CreateMelFilterBank();
this->m_dctMatrix = this->CreateDCTMatrix(
this->m_params.m_numFbankBins,
this->m_params.m_numMfccFeatures);
this->m_filterBankInitialised = true;
}
}
bool MFCC::IsMelFilterBankInited() const
{
return this->m_filterBankInitialised;
}
void MFCC::MfccComputePreFeature(const std::vector<int16_t>& audioData)
{
this->InitMelFilterBank();
/* TensorFlow way of normalizing .wav data to (-1, 1). */
constexpr float normaliser = 1.0/(1u<<15u);
for (size_t i = 0; i < this->m_params.m_frameLen; i++) {
this->m_frame[i] = static_cast<float>(audioData[i]) * normaliser;
}
/* Apply window function to input frame. */
for(size_t i = 0; i < this->m_params.m_frameLen; i++) {
this->m_frame[i] *= this->m_windowFunc[i];
}
/* Set remaining frame values to 0. */
std::fill(this->m_frame.begin() + this->m_params.m_frameLen,this->m_frame.end(), 0);
/* Compute FFT. */
math::MathUtils::FftF32(this->m_frame, this->m_buffer, this->m_fftInstance);
/* Convert to power spectrum. */
this->ConvertToPowerSpectrum();
/* Apply mel filterbanks. */
if (!this->ApplyMelFilterBank(this->m_buffer,
this->m_melFilterBank,
this->m_filterBankFilterFirst,
this->m_filterBankFilterLast,
this->m_melEnergies)) {
printf_err("Failed to apply MEL filter banks\n");
}
/* Convert to logarithmic scale. */
this->ConvertToLogarithmicScale(this->m_melEnergies);
}
std::vector<float> MFCC::MfccCompute(const std::vector<int16_t>& audioData)
{
this->MfccComputePreFeature(audioData);
std::vector<float> mfccOut(this->m_params.m_numMfccFeatures);
float * ptrMel = this->m_melEnergies.data();
float * ptrDct = this->m_dctMatrix.data();
float * ptrMfcc = mfccOut.data();
/* Take DCT. Uses matrix mul. */
for (size_t i = 0, j = 0; i < mfccOut.size();
++i, j += this->m_params.m_numFbankBins) {
*ptrMfcc++ = math::MathUtils::DotProductF32(
ptrDct + j,
ptrMel,
this->m_params.m_numFbankBins);
}
return mfccOut;
}
std::vector<std::vector<float>> MFCC::CreateMelFilterBank()
{
size_t numFftBins = this->m_params.m_frameLenPadded / 2;
float fftBinWidth = static_cast<float>(this->m_params.m_samplingFreq) / this->m_params.m_frameLenPadded;
float melLowFreq = MFCC::MelScale(this->m_params.m_melLoFreq,
this->m_params.m_useHtkMethod);
float melHighFreq = MFCC::MelScale(this->m_params.m_melHiFreq,
this->m_params.m_useHtkMethod);
float melFreqDelta = (melHighFreq - melLowFreq) / (this->m_params.m_numFbankBins + 1);
std::vector<float> thisBin = std::vector<float>(numFftBins);
std::vector<std::vector<float>> melFilterBank(
this->m_params.m_numFbankBins);
this->m_filterBankFilterFirst =
std::vector<uint32_t>(this->m_params.m_numFbankBins);
this->m_filterBankFilterLast =
std::vector<uint32_t>(this->m_params.m_numFbankBins);
for (size_t bin = 0; bin < this->m_params.m_numFbankBins; bin++) {
float leftMel = melLowFreq + bin * melFreqDelta;
float centerMel = melLowFreq + (bin + 1) * melFreqDelta;
float rightMel = melLowFreq + (bin + 2) * melFreqDelta;
uint32_t firstIndex = 0;
uint32_t lastIndex = 0;
bool firstIndexFound = false;
const float normaliser = this->GetMelFilterBankNormaliser(leftMel, rightMel, this->m_params.m_useHtkMethod);
for (size_t i = 0; i < numFftBins; i++) {
float freq = (fftBinWidth * i); /* Center freq of this fft bin. */
float mel = MFCC::MelScale(freq, this->m_params.m_useHtkMethod);
thisBin[i] = 0.0;
if (mel > leftMel && mel < rightMel) {
float weight;
if (mel <= centerMel) {
weight = (mel - leftMel) / (centerMel - leftMel);
} else {
weight = (rightMel - mel) / (rightMel - centerMel);
}
thisBin[i] = weight * normaliser;
if (!firstIndexFound) {
firstIndex = i;
firstIndexFound = true;
}
lastIndex = i;
}
}
this->m_filterBankFilterFirst[bin] = firstIndex;
this->m_filterBankFilterLast[bin] = lastIndex;
/* Copy the part we care about. */
for (uint32_t i = firstIndex; i <= lastIndex; i++) {
melFilterBank[bin].push_back(thisBin[i]);
}
}
return melFilterBank;
}
} /* namespace audio */
} /* namespace app */
} /* namespace arm */