blob: 86d57e66c848f235a0c23d88f69dcd20c28f13b2 [file] [log] [blame]
/*
* Copyright (c) 2021 Arm Limited. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "MelSpectrogram.hpp"
#include "PlatformMath.hpp"
#include <cfloat>
namespace arm {
namespace app {
namespace audio {
MelSpecParams::MelSpecParams(
const float samplingFreq,
const uint32_t numFbankBins,
const float melLoFreq,
const float melHiFreq,
const uint32_t frameLen,
const bool useHtkMethod):
m_samplingFreq(samplingFreq),
m_numFbankBins(numFbankBins),
m_melLoFreq(melLoFreq),
m_melHiFreq(melHiFreq),
m_frameLen(frameLen),
/* Smallest power of 2 >= frame length. */
m_frameLenPadded(pow(2, ceil((log(frameLen)/log(2))))),
m_useHtkMethod(useHtkMethod)
{}
std::string MelSpecParams::Str()
{
char strC[1024];
snprintf(strC, sizeof(strC) - 1, "\n \
\n\t Sampling frequency: %f\
\n\t Number of filter banks: %u\
\n\t Mel frequency limit (low): %f\
\n\t Mel frequency limit (high): %f\
\n\t Frame length: %u\
\n\t Padded frame length: %u\
\n\t Using HTK for Mel scale: %s\n",
this->m_samplingFreq, this->m_numFbankBins, this->m_melLoFreq,
this->m_melHiFreq, this->m_frameLen,
this->m_frameLenPadded, this->m_useHtkMethod ? "yes" : "no");
return std::string{strC};
}
MelSpectrogram::MelSpectrogram(const MelSpecParams& params):
_m_params(params),
_m_filterBankInitialised(false)
{
this->_m_buffer = std::vector<float>(
this->_m_params.m_frameLenPadded, 0.0);
this->_m_frame = std::vector<float>(
this->_m_params.m_frameLenPadded, 0.0);
this->_m_melEnergies = std::vector<float>(
this->_m_params.m_numFbankBins, 0.0);
this->_m_windowFunc = std::vector<float>(this->_m_params.m_frameLen);
const float multiplier = 2 * M_PI / this->_m_params.m_frameLen;
/* Create window function. */
for (size_t i = 0; i < this->_m_params.m_frameLen; ++i) {
this->_m_windowFunc[i] = (0.5 - (0.5 *
math::MathUtils::CosineF32(static_cast<float>(i) * multiplier)));
}
math::MathUtils::FftInitF32(this->_m_params.m_frameLenPadded, this->_m_fftInstance);
debug("Instantiated Mel Spectrogram object: %s\n", this->_m_params.Str().c_str());
}
void MelSpectrogram::Init()
{
this->_InitMelFilterBank();
}
float MelSpectrogram::MelScale(const float freq, const bool useHTKMethod)
{
if (useHTKMethod) {
return 1127.0f * logf (1.0f + freq / 700.0f);
} else {
/* Slaney formula for mel scale. */
float mel = freq / ms_freqStep;
if (freq >= ms_minLogHz) {
mel = ms_minLogMel + logf(freq / ms_minLogHz) / ms_logStep;
}
return mel;
}
}
float MelSpectrogram::InverseMelScale(const float melFreq, const bool useHTKMethod)
{
if (useHTKMethod) {
return 700.0f * (expf (melFreq / 1127.0f) - 1.0f);
} else {
/* Slaney formula for inverse mel scale. */
float freq = ms_freqStep * melFreq;
if (melFreq >= ms_minLogMel) {
freq = ms_minLogHz * expf(ms_logStep * (melFreq - ms_minLogMel));
}
return freq;
}
}
bool MelSpectrogram::ApplyMelFilterBank(
std::vector<float>& fftVec,
std::vector<std::vector<float>>& melFilterBank,
std::vector<int32_t>& filterBankFilterFirst,
std::vector<int32_t>& filterBankFilterLast,
std::vector<float>& melEnergies)
{
const size_t numBanks = melEnergies.size();
if (numBanks != filterBankFilterFirst.size() ||
numBanks != filterBankFilterLast.size()) {
printf_err("unexpected filter bank lengths\n");
return false;
}
for (size_t bin = 0; bin < numBanks; ++bin) {
auto filterBankIter = melFilterBank[bin].begin();
float melEnergy = FLT_MIN; /* Avoid log of zero at later stages */
int32_t firstIndex = filterBankFilterFirst[bin];
int32_t lastIndex = filterBankFilterLast[bin];
for (int i = firstIndex; i <= lastIndex; ++i) {
float energyRep = math::MathUtils::SqrtF32(fftVec[i]);
melEnergy += (*filterBankIter++ * energyRep);
}
melEnergies[bin] = melEnergy;
}
return true;
}
void MelSpectrogram::ConvertToLogarithmicScale(std::vector<float>& melEnergies)
{
for (size_t bin = 0; bin < melEnergies.size(); ++bin) {
melEnergies[bin] = logf(melEnergies[bin]);
}
}
void MelSpectrogram::_ConvertToPowerSpectrum()
{
const uint32_t halfDim = this->_m_params.m_frameLenPadded / 2;
/* Handle this special case. */
float firstEnergy = this->_m_buffer[0] * this->_m_buffer[0];
float lastEnergy = this->_m_buffer[1] * this->_m_buffer[1];
math::MathUtils::ComplexMagnitudeSquaredF32(
this->_m_buffer.data(),
this->_m_buffer.size(),
this->_m_buffer.data(),
this->_m_buffer.size()/2);
this->_m_buffer[0] = firstEnergy;
this->_m_buffer[halfDim] = lastEnergy;
}
float MelSpectrogram::GetMelFilterBankNormaliser(
const float& leftMel,
const float& rightMel,
const bool useHTKMethod)
{
UNUSED(leftMel);
UNUSED(rightMel);
UNUSED(useHTKMethod);
/* By default, no normalisation => return 1 */
return 1.f;
}
void MelSpectrogram::_InitMelFilterBank()
{
if (!this->_IsMelFilterBankInited()) {
this->_m_melFilterBank = this->_CreateMelFilterBank();
this->_m_filterBankInitialised = true;
}
}
bool MelSpectrogram::_IsMelFilterBankInited()
{
return this->_m_filterBankInitialised;
}
std::vector<float> MelSpectrogram::ComputeMelSpec(const std::vector<int16_t>& audioData, float trainingMean)
{
this->_InitMelFilterBank();
/* TensorFlow way of normalizing .wav data to (-1, 1). */
constexpr float normaliser = 1.0/(1<<15);
for (size_t i = 0; i < this->_m_params.m_frameLen; ++i) {
this->_m_frame[i] = static_cast<float>(audioData[i]) * normaliser;
}
/* Apply window function to input frame. */
for(size_t i = 0; i < this->_m_params.m_frameLen; ++i) {
this->_m_frame[i] *= this->_m_windowFunc[i];
}
/* Set remaining frame values to 0. */
std::fill(this->_m_frame.begin() + this->_m_params.m_frameLen,this->_m_frame.end(), 0);
/* Compute FFT. */
math::MathUtils::FftF32(this->_m_frame, this->_m_buffer, this->_m_fftInstance);
/* Convert to power spectrum. */
this->_ConvertToPowerSpectrum();
/* Apply mel filterbanks. */
if (!this->ApplyMelFilterBank(this->_m_buffer,
this->_m_melFilterBank,
this->_m_filterBankFilterFirst,
this->_m_filterBankFilterLast,
this->_m_melEnergies)) {
printf_err("Failed to apply MEL filter banks\n");
}
/* Convert to logarithmic scale */
this->ConvertToLogarithmicScale(this->_m_melEnergies);
/* Perform mean subtraction. */
for (auto& energy:this->_m_melEnergies) {
energy -= trainingMean;
}
return this->_m_melEnergies;
}
std::vector<std::vector<float>> MelSpectrogram::_CreateMelFilterBank()
{
size_t numFftBins = this->_m_params.m_frameLenPadded / 2;
float fftBinWidth = static_cast<float>(this->_m_params.m_samplingFreq) / this->_m_params.m_frameLenPadded;
float melLowFreq = MelSpectrogram::MelScale(this->_m_params.m_melLoFreq,
this->_m_params.m_useHtkMethod);
float melHighFreq = MelSpectrogram::MelScale(this->_m_params.m_melHiFreq,
this->_m_params.m_useHtkMethod);
float melFreqDelta = (melHighFreq - melLowFreq) / (this->_m_params.m_numFbankBins + 1);
std::vector<float> thisBin = std::vector<float>(numFftBins);
std::vector<std::vector<float>> melFilterBank(
this->_m_params.m_numFbankBins);
this->_m_filterBankFilterFirst =
std::vector<int32_t>(this->_m_params.m_numFbankBins);
this->_m_filterBankFilterLast =
std::vector<int32_t>(this->_m_params.m_numFbankBins);
for (size_t bin = 0; bin < this->_m_params.m_numFbankBins; bin++) {
float leftMel = melLowFreq + bin * melFreqDelta;
float centerMel = melLowFreq + (bin + 1) * melFreqDelta;
float rightMel = melLowFreq + (bin + 2) * melFreqDelta;
int32_t firstIndex = -1;
int32_t lastIndex = -1;
const float normaliser = this->GetMelFilterBankNormaliser(leftMel, rightMel, this->_m_params.m_useHtkMethod);
for (size_t i = 0; i < numFftBins; ++i) {
float freq = (fftBinWidth * i); /* Center freq of this fft bin. */
float mel = MelSpectrogram::MelScale(freq, this->_m_params.m_useHtkMethod);
thisBin[i] = 0.0;
if (mel > leftMel && mel < rightMel) {
float weight;
if (mel <= centerMel) {
weight = (mel - leftMel) / (centerMel - leftMel);
} else {
weight = (rightMel - mel) / (rightMel - centerMel);
}
thisBin[i] = weight * normaliser;
if (firstIndex == -1) {
firstIndex = i;
}
lastIndex = i;
}
}
this->_m_filterBankFilterFirst[bin] = firstIndex;
this->_m_filterBankFilterLast[bin] = lastIndex;
/* Copy the part we care about. */
for (int32_t i = firstIndex; i <= lastIndex; ++i) {
melFilterBank[bin].push_back(thisBin[i]);
}
}
return melFilterBank;
}
} /* namespace audio */
} /* namespace app */
} /* namespace arm */