blob: f555fbb36e3fe6380b133b87debe3e1840f62b29 [file] [log] [blame]
/*
* Copyright (c) 2022 Arm Limited. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "DetectorPostProcessing.hpp"
#include "PlatformMath.hpp"
#include <cmath>
namespace arm {
namespace app {
DetectorPostProcess::DetectorPostProcess(
TfLiteTensor* modelOutput0,
TfLiteTensor* modelOutput1,
std::vector<object_detection::DetectionResult>& results,
const object_detection::PostProcessParams& postProcessParams)
: m_outputTensor0{modelOutput0},
m_outputTensor1{modelOutput1},
m_results{results},
m_postProcessParams{postProcessParams}
{
/* Init PostProcessing */
this->m_net = object_detection::Network{
.inputWidth = postProcessParams.inputImgCols,
.inputHeight = postProcessParams.inputImgRows,
.numClasses = postProcessParams.numClasses,
.branches =
{object_detection::Branch{.resolution = postProcessParams.inputImgCols / 32,
.numBox = 3,
.anchor = postProcessParams.anchor1,
.modelOutput = this->m_outputTensor0->data.int8,
.scale = (static_cast<TfLiteAffineQuantization*>(
this->m_outputTensor0->quantization.params))
->scale->data[0],
.zeroPoint = (static_cast<TfLiteAffineQuantization*>(
this->m_outputTensor0->quantization.params))
->zero_point->data[0],
.size = this->m_outputTensor0->bytes},
object_detection::Branch{.resolution = postProcessParams.inputImgCols / 16,
.numBox = 3,
.anchor = postProcessParams.anchor2,
.modelOutput = this->m_outputTensor1->data.int8,
.scale = (static_cast<TfLiteAffineQuantization*>(
this->m_outputTensor1->quantization.params))
->scale->data[0],
.zeroPoint = (static_cast<TfLiteAffineQuantization*>(
this->m_outputTensor1->quantization.params))
->zero_point->data[0],
.size = this->m_outputTensor1->bytes}},
.topN = postProcessParams.topN};
/* End init */
}
bool DetectorPostProcess::DoPostProcess()
{
/* Start postprocessing */
int originalImageWidth = m_postProcessParams.originalImageSize;
int originalImageHeight = m_postProcessParams.originalImageSize;
std::forward_list<image::Detection> detections;
GetNetworkBoxes(this->m_net, originalImageWidth, originalImageHeight, m_postProcessParams.threshold, detections);
/* Do nms */
CalculateNMS(detections, this->m_net.numClasses, this->m_postProcessParams.nms);
for (auto& it: detections) {
float xMin = it.bbox.x - it.bbox.w / 2.0f;
float xMax = it.bbox.x + it.bbox.w / 2.0f;
float yMin = it.bbox.y - it.bbox.h / 2.0f;
float yMax = it.bbox.y + it.bbox.h / 2.0f;
if (xMin < 0) {
xMin = 0;
}
if (yMin < 0) {
yMin = 0;
}
if (xMax > originalImageWidth) {
xMax = originalImageWidth;
}
if (yMax > originalImageHeight) {
yMax = originalImageHeight;
}
float boxX = xMin;
float boxY = yMin;
float boxWidth = xMax - xMin;
float boxHeight = yMax - yMin;
for (int j = 0; j < this->m_net.numClasses; ++j) {
if (it.prob[j] > 0) {
object_detection::DetectionResult tmpResult = {};
tmpResult.m_normalisedVal = it.prob[j];
tmpResult.m_x0 = boxX;
tmpResult.m_y0 = boxY;
tmpResult.m_w = boxWidth;
tmpResult.m_h = boxHeight;
this->m_results.push_back(tmpResult);
}
}
}
return true;
}
void DetectorPostProcess::InsertTopNDetections(std::forward_list<image::Detection>& detections, image::Detection& det)
{
std::forward_list<image::Detection>::iterator it;
std::forward_list<image::Detection>::iterator last_it;
for ( it = detections.begin(); it != detections.end(); ++it ) {
if(it->objectness > det.objectness)
break;
last_it = it;
}
if(it != detections.begin()) {
detections.emplace_after(last_it, det);
detections.pop_front();
}
}
void DetectorPostProcess::GetNetworkBoxes(
object_detection::Network& net,
int imageWidth,
int imageHeight,
float threshold,
std::forward_list<image::Detection>& detections)
{
int numClasses = net.numClasses;
int num = 0;
auto det_objectness_comparator = [](image::Detection& pa, image::Detection& pb) {
return pa.objectness < pb.objectness;
};
for (size_t i = 0; i < net.branches.size(); ++i) {
int height = net.branches[i].resolution;
int width = net.branches[i].resolution;
int channel = net.branches[i].numBox*(5+numClasses);
for (int h = 0; h < net.branches[i].resolution; h++) {
for (int w = 0; w < net.branches[i].resolution; w++) {
for (int anc = 0; anc < net.branches[i].numBox; anc++) {
/* Objectness score */
int bbox_obj_offset = h * width * channel + w * channel + anc * (numClasses + 5) + 4;
float objectness = math::MathUtils::SigmoidF32(
(static_cast<float>(net.branches[i].modelOutput[bbox_obj_offset])
- net.branches[i].zeroPoint
) * net.branches[i].scale);
if(objectness > threshold) {
image::Detection det;
det.objectness = objectness;
/* Get bbox prediction data for each anchor, each feature point */
int bbox_x_offset = bbox_obj_offset -4;
int bbox_y_offset = bbox_x_offset + 1;
int bbox_w_offset = bbox_x_offset + 2;
int bbox_h_offset = bbox_x_offset + 3;
int bbox_scores_offset = bbox_x_offset + 5;
det.bbox.x = (static_cast<float>(net.branches[i].modelOutput[bbox_x_offset])
- net.branches[i].zeroPoint) * net.branches[i].scale;
det.bbox.y = (static_cast<float>(net.branches[i].modelOutput[bbox_y_offset])
- net.branches[i].zeroPoint) * net.branches[i].scale;
det.bbox.w = (static_cast<float>(net.branches[i].modelOutput[bbox_w_offset])
- net.branches[i].zeroPoint) * net.branches[i].scale;
det.bbox.h = (static_cast<float>(net.branches[i].modelOutput[bbox_h_offset])
- net.branches[i].zeroPoint) * net.branches[i].scale;
float bbox_x, bbox_y;
/* Eliminate grid sensitivity trick involved in YOLOv4 */
bbox_x = math::MathUtils::SigmoidF32(det.bbox.x);
bbox_y = math::MathUtils::SigmoidF32(det.bbox.y);
det.bbox.x = (bbox_x + w) / width;
det.bbox.y = (bbox_y + h) / height;
det.bbox.w = std::exp(det.bbox.w) * net.branches[i].anchor[anc*2] / net.inputWidth;
det.bbox.h = std::exp(det.bbox.h) * net.branches[i].anchor[anc*2+1] / net.inputHeight;
for (int s = 0; s < numClasses; s++) {
float sig = math::MathUtils::SigmoidF32(
(static_cast<float>(net.branches[i].modelOutput[bbox_scores_offset + s]) -
net.branches[i].zeroPoint) * net.branches[i].scale
) * objectness;
det.prob.emplace_back((sig > threshold) ? sig : 0);
}
/* Correct_YOLO_boxes */
det.bbox.x *= imageWidth;
det.bbox.w *= imageWidth;
det.bbox.y *= imageHeight;
det.bbox.h *= imageHeight;
if (num < net.topN || net.topN <=0) {
detections.emplace_front(det);
num += 1;
} else if (num == net.topN) {
detections.sort(det_objectness_comparator);
InsertTopNDetections(detections, det);
num += 1;
} else {
InsertTopNDetections(detections, det);
}
}
}
}
}
}
if(num > net.topN)
num -=1;
}
} /* namespace app */
} /* namespace arm */