| /* |
| * Copyright (c) 2022 Arm Limited. All rights reserved. |
| * SPDX-License-Identifier: Apache-2.0 |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| #include "DetectorPostProcessing.hpp" |
| #include "PlatformMath.hpp" |
| |
| #include <cmath> |
| |
| namespace arm { |
| namespace app { |
| |
| DetectorPostProcess::DetectorPostProcess( |
| TfLiteTensor* modelOutput0, |
| TfLiteTensor* modelOutput1, |
| std::vector<object_detection::DetectionResult>& results, |
| const object_detection::PostProcessParams& postProcessParams) |
| : m_outputTensor0{modelOutput0}, |
| m_outputTensor1{modelOutput1}, |
| m_results{results}, |
| m_postProcessParams{postProcessParams} |
| { |
| /* Init PostProcessing */ |
| this->m_net = object_detection::Network{ |
| .inputWidth = postProcessParams.inputImgCols, |
| .inputHeight = postProcessParams.inputImgRows, |
| .numClasses = postProcessParams.numClasses, |
| .branches = |
| {object_detection::Branch{.resolution = postProcessParams.inputImgCols / 32, |
| .numBox = 3, |
| .anchor = postProcessParams.anchor1, |
| .modelOutput = this->m_outputTensor0->data.int8, |
| .scale = (static_cast<TfLiteAffineQuantization*>( |
| this->m_outputTensor0->quantization.params)) |
| ->scale->data[0], |
| .zeroPoint = (static_cast<TfLiteAffineQuantization*>( |
| this->m_outputTensor0->quantization.params)) |
| ->zero_point->data[0], |
| .size = this->m_outputTensor0->bytes}, |
| object_detection::Branch{.resolution = postProcessParams.inputImgCols / 16, |
| .numBox = 3, |
| .anchor = postProcessParams.anchor2, |
| .modelOutput = this->m_outputTensor1->data.int8, |
| .scale = (static_cast<TfLiteAffineQuantization*>( |
| this->m_outputTensor1->quantization.params)) |
| ->scale->data[0], |
| .zeroPoint = (static_cast<TfLiteAffineQuantization*>( |
| this->m_outputTensor1->quantization.params)) |
| ->zero_point->data[0], |
| .size = this->m_outputTensor1->bytes}}, |
| .topN = postProcessParams.topN}; |
| /* End init */ |
| } |
| |
| bool DetectorPostProcess::DoPostProcess() |
| { |
| /* Start postprocessing */ |
| int originalImageWidth = m_postProcessParams.originalImageSize; |
| int originalImageHeight = m_postProcessParams.originalImageSize; |
| |
| std::forward_list<image::Detection> detections; |
| GetNetworkBoxes(this->m_net, originalImageWidth, originalImageHeight, m_postProcessParams.threshold, detections); |
| |
| /* Do nms */ |
| CalculateNMS(detections, this->m_net.numClasses, this->m_postProcessParams.nms); |
| |
| for (auto& it: detections) { |
| float xMin = it.bbox.x - it.bbox.w / 2.0f; |
| float xMax = it.bbox.x + it.bbox.w / 2.0f; |
| float yMin = it.bbox.y - it.bbox.h / 2.0f; |
| float yMax = it.bbox.y + it.bbox.h / 2.0f; |
| |
| if (xMin < 0) { |
| xMin = 0; |
| } |
| if (yMin < 0) { |
| yMin = 0; |
| } |
| if (xMax > originalImageWidth) { |
| xMax = originalImageWidth; |
| } |
| if (yMax > originalImageHeight) { |
| yMax = originalImageHeight; |
| } |
| |
| float boxX = xMin; |
| float boxY = yMin; |
| float boxWidth = xMax - xMin; |
| float boxHeight = yMax - yMin; |
| |
| for (int j = 0; j < this->m_net.numClasses; ++j) { |
| if (it.prob[j] > 0) { |
| |
| object_detection::DetectionResult tmpResult = {}; |
| tmpResult.m_normalisedVal = it.prob[j]; |
| tmpResult.m_x0 = boxX; |
| tmpResult.m_y0 = boxY; |
| tmpResult.m_w = boxWidth; |
| tmpResult.m_h = boxHeight; |
| |
| this->m_results.push_back(tmpResult); |
| } |
| } |
| } |
| return true; |
| } |
| |
| void DetectorPostProcess::InsertTopNDetections(std::forward_list<image::Detection>& detections, image::Detection& det) |
| { |
| std::forward_list<image::Detection>::iterator it; |
| std::forward_list<image::Detection>::iterator last_it; |
| for ( it = detections.begin(); it != detections.end(); ++it ) { |
| if(it->objectness > det.objectness) |
| break; |
| last_it = it; |
| } |
| if(it != detections.begin()) { |
| detections.emplace_after(last_it, det); |
| detections.pop_front(); |
| } |
| } |
| |
| void DetectorPostProcess::GetNetworkBoxes( |
| object_detection::Network& net, |
| int imageWidth, |
| int imageHeight, |
| float threshold, |
| std::forward_list<image::Detection>& detections) |
| { |
| int numClasses = net.numClasses; |
| int num = 0; |
| auto det_objectness_comparator = [](image::Detection& pa, image::Detection& pb) { |
| return pa.objectness < pb.objectness; |
| }; |
| for (size_t i = 0; i < net.branches.size(); ++i) { |
| int height = net.branches[i].resolution; |
| int width = net.branches[i].resolution; |
| int channel = net.branches[i].numBox*(5+numClasses); |
| |
| for (int h = 0; h < net.branches[i].resolution; h++) { |
| for (int w = 0; w < net.branches[i].resolution; w++) { |
| for (int anc = 0; anc < net.branches[i].numBox; anc++) { |
| |
| /* Objectness score */ |
| int bbox_obj_offset = h * width * channel + w * channel + anc * (numClasses + 5) + 4; |
| float objectness = math::MathUtils::SigmoidF32( |
| (static_cast<float>(net.branches[i].modelOutput[bbox_obj_offset]) |
| - net.branches[i].zeroPoint |
| ) * net.branches[i].scale); |
| |
| if(objectness > threshold) { |
| image::Detection det; |
| det.objectness = objectness; |
| /* Get bbox prediction data for each anchor, each feature point */ |
| int bbox_x_offset = bbox_obj_offset -4; |
| int bbox_y_offset = bbox_x_offset + 1; |
| int bbox_w_offset = bbox_x_offset + 2; |
| int bbox_h_offset = bbox_x_offset + 3; |
| int bbox_scores_offset = bbox_x_offset + 5; |
| |
| det.bbox.x = (static_cast<float>(net.branches[i].modelOutput[bbox_x_offset]) |
| - net.branches[i].zeroPoint) * net.branches[i].scale; |
| det.bbox.y = (static_cast<float>(net.branches[i].modelOutput[bbox_y_offset]) |
| - net.branches[i].zeroPoint) * net.branches[i].scale; |
| det.bbox.w = (static_cast<float>(net.branches[i].modelOutput[bbox_w_offset]) |
| - net.branches[i].zeroPoint) * net.branches[i].scale; |
| det.bbox.h = (static_cast<float>(net.branches[i].modelOutput[bbox_h_offset]) |
| - net.branches[i].zeroPoint) * net.branches[i].scale; |
| |
| float bbox_x, bbox_y; |
| |
| /* Eliminate grid sensitivity trick involved in YOLOv4 */ |
| bbox_x = math::MathUtils::SigmoidF32(det.bbox.x); |
| bbox_y = math::MathUtils::SigmoidF32(det.bbox.y); |
| det.bbox.x = (bbox_x + w) / width; |
| det.bbox.y = (bbox_y + h) / height; |
| |
| det.bbox.w = std::exp(det.bbox.w) * net.branches[i].anchor[anc*2] / net.inputWidth; |
| det.bbox.h = std::exp(det.bbox.h) * net.branches[i].anchor[anc*2+1] / net.inputHeight; |
| |
| for (int s = 0; s < numClasses; s++) { |
| float sig = math::MathUtils::SigmoidF32( |
| (static_cast<float>(net.branches[i].modelOutput[bbox_scores_offset + s]) - |
| net.branches[i].zeroPoint) * net.branches[i].scale |
| ) * objectness; |
| det.prob.emplace_back((sig > threshold) ? sig : 0); |
| } |
| |
| /* Correct_YOLO_boxes */ |
| det.bbox.x *= imageWidth; |
| det.bbox.w *= imageWidth; |
| det.bbox.y *= imageHeight; |
| det.bbox.h *= imageHeight; |
| |
| if (num < net.topN || net.topN <=0) { |
| detections.emplace_front(det); |
| num += 1; |
| } else if (num == net.topN) { |
| detections.sort(det_objectness_comparator); |
| InsertTopNDetections(detections, det); |
| num += 1; |
| } else { |
| InsertTopNDetections(detections, det); |
| } |
| } |
| } |
| } |
| } |
| } |
| if(num > net.topN) |
| num -=1; |
| } |
| |
| } /* namespace app */ |
| } /* namespace arm */ |