blob: 4a7f0a48d201cca7b471cdf4ac395ad347c853d3 [file] [log] [blame]
/*
* Copyright (c) 2021 Arm Limited. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "Model.hpp"
#include "hal.h"
#include <cstdint>
#include <inttypes.h>
/* Initialise the model */
arm::app::Model::~Model()
{
if (this->_m_pInterpreter) {
delete this->_m_pInterpreter;
}
/**
* No clean-up function available for allocator in TensorFlow Lite Micro yet.
**/
}
arm::app::Model::Model() :
_m_inited (false),
_m_type(kTfLiteNoType)
{
this->_m_pErrorReporter = &this->_m_uErrorReporter;
}
bool arm::app::Model::Init(tflite::MicroAllocator* allocator)
{
/* Following tf lite micro example:
* Map the model into a usable data structure. This doesn't involve any
* copying or parsing, it's a very lightweight operation. */
const uint8_t* model_addr = ModelPointer();
debug("loading model from @ 0x%p\n", model_addr);
this->_m_pModel = ::tflite::GetModel(model_addr);
if (this->_m_pModel->version() != TFLITE_SCHEMA_VERSION) {
this->_m_pErrorReporter->Report(
"[ERROR] model's schema version %d is not equal "
"to supported version %d.",
this->_m_pModel->version(), TFLITE_SCHEMA_VERSION);
return false;
}
/* Pull in only the operation implementations we need.
* This relies on a complete list of all the ops needed by this graph.
* An easier approach is to just use the AllOpsResolver, but this will
* incur some penalty in code space for op implementations that are not
* needed by this graph.
* static ::tflite::ops::micro::AllOpsResolver resolver; */
/* NOLINTNEXTLINE(runtime-global-variables) */
debug("loading op resolver\n");
this->EnlistOperations();
/* Create allocator instance, if it doesn't exist */
this->_m_pAllocator = allocator;
if (!this->_m_pAllocator) {
/* Create an allocator instance */
info("Creating allocator using tensor arena in %s\n",
ACTIVATION_BUF_SECTION_NAME);
this->_m_pAllocator = tflite::MicroAllocator::Create(
this->GetTensorArena(),
this->GetActivationBufferSize(),
this->_m_pErrorReporter);
if (!this->_m_pAllocator) {
printf_err("Failed to create allocator\n");
return false;
}
debug("Created new allocator @ 0x%p\n", this->_m_pAllocator);
} else {
debug("Using existing allocator @ 0x%p\n", this->_m_pAllocator);
}
this->_m_pInterpreter = new ::tflite::MicroInterpreter(
this->_m_pModel, this->GetOpResolver(),
this->_m_pAllocator, this->_m_pErrorReporter);
if (!this->_m_pInterpreter) {
printf_err("Failed to allocate interpreter\n");
return false;
}
/* Allocate memory from the tensor_arena for the model's tensors. */
info("Allocating tensors\n");
TfLiteStatus allocate_status = this->_m_pInterpreter->AllocateTensors();
if (allocate_status != kTfLiteOk) {
this->_m_pErrorReporter->Report("[ERROR] allocateTensors() failed");
printf_err("tensor allocation failed!\n");
delete this->_m_pInterpreter;
return false;
}
/* Get information about the memory area to use for the model's input. */
this->_m_input.resize(this->GetNumInputs());
for (size_t inIndex = 0; inIndex < this->GetNumInputs(); inIndex++)
this->_m_input[inIndex] = this->_m_pInterpreter->input(inIndex);
this->_m_output.resize(this->GetNumOutputs());
for (size_t outIndex = 0; outIndex < this->GetNumOutputs(); outIndex++)
this->_m_output[outIndex] = this->_m_pInterpreter->output(outIndex);
if (this->_m_input.empty() || this->_m_output.empty()) {
printf_err("failed to get tensors\n");
return false;
} else {
this->_m_type = this->_m_input[0]->type; /* Input 0 should be the main input */
/* Clear the input & output tensors */
for (size_t inIndex = 0; inIndex < this->GetNumInputs(); inIndex++) {
std::memset(this->_m_input[inIndex]->data.data, 0, this->_m_input[inIndex]->bytes);
}
for (size_t outIndex = 0; outIndex < this->GetNumOutputs(); outIndex++) {
std::memset(this->_m_output[outIndex]->data.data, 0, this->_m_output[outIndex]->bytes);
}
this->LogInterpreterInfo();
}
this->_m_inited = true;
return true;
}
tflite::MicroAllocator* arm::app::Model::GetAllocator()
{
if (this->IsInited()) {
return this->_m_pAllocator;
}
return nullptr;
}
void arm::app::Model::LogTensorInfo(TfLiteTensor* tensor)
{
if (!tensor) {
printf_err("Invalid tensor\n");
assert(tensor);
return;
}
debug("\ttensor is assigned to 0x%p\n", tensor);
info("\ttensor type is %s\n", TfLiteTypeGetName(tensor->type));
info("\ttensor occupies %zu bytes with dimensions\n",
tensor->bytes);
for (int i = 0 ; i < tensor->dims->size; ++i) {
info ("\t\t%d: %3d\n", i, tensor->dims->data[i]);
}
TfLiteQuantization quant = tensor->quantization;
if (kTfLiteAffineQuantization == quant.type) {
auto* quantParams = (TfLiteAffineQuantization*)quant.params;
info("Quant dimension: %" PRIi32 "\n", quantParams->quantized_dimension);
for (int i = 0; i < quantParams->scale->size; ++i) {
info("Scale[%d] = %f\n", i, quantParams->scale->data[i]);
}
for (int i = 0; i < quantParams->zero_point->size; ++i) {
info("ZeroPoint[%d] = %d\n", i, quantParams->zero_point->data[i]);
}
}
}
void arm::app::Model::LogInterpreterInfo()
{
if (!this->_m_pInterpreter) {
printf_err("Invalid interpreter\n");
return;
}
info("Model INPUT tensors: \n");
for (auto input : this->_m_input) {
this->LogTensorInfo(input);
}
info("Model OUTPUT tensors: \n");
for (auto output : this->_m_output) {
this->LogTensorInfo(output);
}
info("Activation buffer (a.k.a tensor arena) size used: %zu\n",
this->_m_pInterpreter->arena_used_bytes());
const size_t nOperators = this->_m_pInterpreter->operators_size();
info("Number of operators: %zu\n", nOperators);
/* For each operator, display registration information */
for (size_t i = 0 ; i < nOperators; ++i) {
const tflite::NodeAndRegistration nodeReg =
this->_m_pInterpreter->node_and_registration(i);
const TfLiteRegistration* reg = nodeReg.registration;
std::string opName{""};
if (reg) {
if (tflite::BuiltinOperator_CUSTOM == reg->builtin_code) {
opName = std::string(reg->custom_name);
} else {
opName = std::string(EnumNameBuiltinOperator(
tflite::BuiltinOperator(reg->builtin_code)));
}
}
info("\tOperator %zu: %s\n", i, opName.c_str());
}
}
bool arm::app::Model::IsInited() const
{
return this->_m_inited;
}
bool arm::app::Model::IsDataSigned() const
{
return this->GetType() == kTfLiteInt8;
}
bool arm::app::Model::RunInference()
{
bool inference_state = false;
if (this->_m_pModel && this->_m_pInterpreter) {
if (kTfLiteOk != this->_m_pInterpreter->Invoke()) {
printf_err("Invoke failed.\n");
} else {
inference_state = true;
}
} else {
printf_err("Error: No interpreter!\n");
}
return inference_state;
}
TfLiteTensor* arm::app::Model::GetInputTensor(size_t index) const
{
if (index < this->GetNumInputs()) {
return this->_m_input.at(index);
}
return nullptr;
}
TfLiteTensor* arm::app::Model::GetOutputTensor(size_t index) const
{
if (index < this->GetNumOutputs()) {
return this->_m_output.at(index);
}
return nullptr;
}
size_t arm::app::Model::GetNumInputs() const
{
if (this->_m_pModel && this->_m_pInterpreter) {
return this->_m_pInterpreter->inputs_size();
}
return 0;
}
size_t arm::app::Model::GetNumOutputs() const
{
if (this->_m_pModel && this->_m_pInterpreter) {
return this->_m_pInterpreter->outputs_size();
}
return 0;
}
TfLiteType arm::app::Model::GetType() const
{
return this->_m_type;
}
TfLiteIntArray* arm::app::Model::GetInputShape(size_t index) const
{
if (index < this->GetNumInputs()) {
return this->_m_input.at(index)->dims;
}
return nullptr;
}
TfLiteIntArray* arm::app::Model::GetOutputShape(size_t index) const
{
if (index < this->GetNumOutputs()) {
return this->_m_output.at(index)->dims;
}
return nullptr;
}
bool arm::app::Model::ShowModelInfoHandler()
{
if (!this->IsInited()) {
printf_err("Model is not initialised! Terminating processing.\n");
return false;
}
PrintTensorFlowVersion();
info("Model info:\n");
this->LogInterpreterInfo();
#if defined(ARM_NPU)
info("Use of Arm uNPU is enabled\n");
#else /* ARM_NPU */
info("Use of Arm uNPU is disabled\n");
#endif /* ARM_NPU */
return true;
}
namespace arm {
namespace app {
static uint8_t tensor_arena[ACTIVATION_BUF_SZ] ACTIVATION_BUF_ATTRIBUTE;
} /* namespace app */
} /* namespace arm */
size_t arm::app::Model::GetActivationBufferSize()
{
return ACTIVATION_BUF_SZ;
}
uint8_t *arm::app::Model::GetTensorArena()
{
return tensor_arena;
}