blob: 7fe9f473d3ba8e03c8a0f9c3f7872def7809cf54 [file] [log] [blame]
// Copyright (c) 2020, ARM Limited.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "tosa_serialization_handler.h"
#include <iostream>
using namespace tosa;
TosaSerializationTensor::TosaSerializationTensor(const flatbuffers::String* name,
const flatbuffers::Vector<uint32_t>& usage,
const flatbuffers::Vector<int32_t>& shape,
DType dtype,
const flatbuffers::Vector<uint32_t>& format,
const flatbuffers::String* npy_filename)
{
_dtype = dtype;
_usage = new std::vector<Usage>(usage.size());
for (uint32_t us : usage)
{
_usage->push_back((Usage)us);
}
assert(_usage);
_format = new std::vector<Format>(format.size());
for (uint32_t fm : format)
{
_format->push_back((Format)fm);
}
assert(_format);
_shape = new std::vector<int32_t>(shape.begin(), shape.end());
_shape = new std::vector<int32_t>(shape.begin(), shape.end());
assert(_shape);
assert(name);
_name = new std::string(name->str());
assert(_name);
if (npy_filename)
{
_npy_filename = new std::string(npy_filename->str());
assert(_npy_filename);
}
else
{
_npy_filename = nullptr;
}
}
TosaSerializationTensor::TosaSerializationTensor(std::string name,
const std::vector<Usage>& usage,
const std::vector<int32_t>& shape,
DType dtype,
const std::vector<Format>& format,
const std::string* npy_filename)
{
_dtype = dtype;
_usage = new std::vector<Usage>(usage);
assert(_usage);
_format = new std::vector<Format>(format);
assert(_format);
_shape = new std::vector<int32_t>(shape);
assert(_shape);
_name = new std::string(name);
assert(_name);
if (npy_filename)
{
_npy_filename = new std::string(*npy_filename);
assert(_npy_filename);
}
else
{
_npy_filename = nullptr;
}
}
TosaSerializationTensor::TosaSerializationTensor()
{
_dtype = DType_UNKNOWN;
_usage = new std::vector<Usage>();
_format = new std::vector<Format>();
_shape = new std::vector<int32_t>();
_name = new std::string("UNKNOWN");
assert(_usage && _format && _shape && _name);
_npy_filename = nullptr;
}
TosaSerializationTensor::TosaSerializationTensor(const TosaSerializationTensor& rhs)
{
_dtype = rhs._dtype;
assert(rhs._usage);
_usage = new std::vector<Usage>(*rhs._usage);
assert(_usage);
assert(rhs._format);
_format = new std::vector<Format>(*rhs._format);
assert(_format);
assert(rhs._shape);
_shape = new std::vector<int32_t>(*rhs._shape);
assert(_shape);
assert(rhs._name);
_name = new std::string(*rhs._name);
assert(_name);
if (rhs._npy_filename)
{
_npy_filename = new std::string(*rhs._npy_filename);
assert(_npy_filename);
}
else
{
_npy_filename = nullptr;
}
}
TosaSerializationTensor& TosaSerializationTensor::operator=(const TosaSerializationTensor& rhs)
{
_dtype = rhs._dtype;
delete _usage;
assert(rhs._usage);
_usage = new std::vector<Usage>(*rhs._usage);
assert(_usage);
delete _format;
assert(rhs._format);
_format = new std::vector<Format>(*rhs._format);
assert(_format);
delete _shape;
assert(rhs._shape);
_shape = new std::vector<int32_t>(*rhs._shape);
assert(_shape);
delete _name;
assert(rhs._name);
_name = new std::string(*rhs._name);
assert(_name);
if (_npy_filename)
delete _npy_filename;
if (rhs._npy_filename)
{
_npy_filename = new std::string(*rhs._npy_filename);
}
else
{
_npy_filename = nullptr;
}
return *this;
}
TosaSerializationTensor::TosaSerializationTensor(TosaSerializationTensor&& rhs)
{
_dtype = rhs._dtype;
std::swap(_format, rhs._format);
std::swap(_usage, rhs._usage);
std::swap(_shape, rhs._shape);
std::swap(_name, rhs._name);
std::swap(_npy_filename, rhs._npy_filename);
}
TosaSerializationTensor& TosaSerializationTensor::operator=(TosaSerializationTensor&& rhs)
{
_dtype = rhs._dtype;
std::swap(_format, rhs._format);
std::swap(_usage, rhs._usage);
std::swap(_shape, rhs._shape);
std::swap(_name, rhs._name);
std::swap(_npy_filename, rhs._npy_filename);
return *this;
}
TosaSerializationTensor::~TosaSerializationTensor()
{
delete _usage;
delete _format;
delete _shape;
delete _name;
if (_npy_filename)
delete _npy_filename;
}
TosaSerializationOperator::TosaSerializationOperator(Op op,
Attribute attribute_type,
const TosaAttributeBase* attribute,
QuantInfo qinfo_type,
const TosaQuantInfoBase* qinfo,
std::vector<std::string> input_tensor_names,
std::vector<std::string> output_tensor_names)
{
_op = op;
_attribute_type = attribute_type;
switch (attribute_type)
{
case Attribute_NONE:
_attribute = new TosaNoneAttribute();
break;
#define DEF_ATTRIBUTE(NAME, ...) \
case Attribute_##NAME##Attribute: \
_attribute = new Tosa##NAME##Attribute(attribute); \
break;
#include "attribute.def"
#undef DEF_ATTRIBUTE
default:
printf("TosaSerializationOperator::TosaSerializationOperator(): Attribute %s not implemented yet\n",
EnumNamesAttribute()[attribute_type]);
assert(0);
}
_qinfo_type = qinfo_type;
switch (qinfo_type)
{
case QuantInfo_NONE:
_qinfo = new TosaNoneQuantInfo();
break;
#define DEF_QUANTIZATION_INFO(NAME, ...) \
case QuantInfo_##NAME##QuantInfo: \
_qinfo = new Tosa##NAME##QuantInfo(qinfo); \
break;
#include "quant_info.def"
#undef DEF_QUANTIZATION_INFO
default:
printf("TosaSerializationOperator::TosaSerializationOperator(): QuantInfo %s not implemented yet\n",
EnumNamesQuantInfo()[qinfo_type]);
assert(0);
}
assert(_attribute && _qinfo);
_input_tensor_names = new std::vector<std::string>(input_tensor_names);
_output_tensor_names = new std::vector<std::string>(output_tensor_names);
assert(_input_tensor_names && _output_tensor_names);
_input_tensors = new std::vector<TosaSerializationTensor*>();
_output_tensors = new std::vector<TosaSerializationTensor*>();
assert(_input_tensors && _output_tensors);
}
TosaSerializationOperator::~TosaSerializationOperator()
{
delete _attribute;
delete _qinfo;
delete _input_tensor_names;
delete _output_tensor_names;
// TosaSerializationTensor should be free'd in TosaSerializationSerializationHandler destructor
delete _input_tensors;
delete _output_tensors;
}
TosaSerializationBasicBlock::TosaSerializationBasicBlock(std::string name,
std::vector<TosaSerializationOperator*> operators,
std::vector<TosaSerializationTensor*> tensors,
std::vector<std::string> inputs,
std::vector<std::string> outputs)
{
_name = new std::string(name);
assert(_name);
_operators = new std::vector<TosaSerializationOperator*>(operators);
assert(_operators);
_tensors = new std::vector<TosaSerializationTensor*>(tensors);
assert(_tensors);
_inputs = new std::vector<std::string>(inputs);
assert(_inputs);
_outputs = new std::vector<std::string>(outputs);
assert(_outputs);
}
TosaSerializationBasicBlock::~TosaSerializationBasicBlock()
{
delete _name;
// deallocate all operators
for (auto op : GetOperators())
{
delete op; // ~TosaSerializationOperator()
}
delete _operators;
// deallocate all tensors
for (auto ts : GetTensors())
{
delete ts; // ~TosaSerializationTensor()
}
_tensors->clear();
delete _inputs;
delete _outputs;
}
TosaSerializationHandler::TosaSerializationHandler()
{
_schemaLoaded = false;
_builder = new flatbuffers::FlatBufferBuilder();
_parser = new flatbuffers::Parser();
_blocks = new std::vector<TosaSerializationBasicBlock*>();
assert(_builder && _parser && _blocks);
SetTosaVersion();
}
TosaSerializationHandler::~TosaSerializationHandler()
{
if (_version)
delete _version;
delete _builder;
delete _parser;
Clear(); // deallocate all basic blocks
delete _blocks;
}
tosa_err_t TosaSerializationHandler::SetTosaVersion()
{
// version is specified within .fbs
// and it's encoded as defaulted value of CreateTosaVersion()
// need to write out one object to read that value out
// TODO: very costly now. is there any better way to encode constant in .fbs?
auto fboffset_version = CreateVersion(*_builder);
auto fboffset_tosa_graph = CreateTosaGraphDirect(*_builder, fboffset_version, nullptr);
_builder->Finish(fboffset_tosa_graph);
std::string jsongen;
uint8_t* buf = _builder->GetBufferPointer();
auto fb_tosa_graph = GetTosaGraph(buf);
auto fb_tosa_version = fb_tosa_graph->version();
_version = new TosaVersion(fb_tosa_version->_major(), fb_tosa_version->_minor(), fb_tosa_version->_patch(),
fb_tosa_version->_experimental());
assert(_version);
return TOSA_OK;
}
tosa_err_t TosaSerializationHandler::LoadFileSchema(const char* schema_filename)
{
std::string schema;
bool ok;
ok = flatbuffers::LoadFile(schema_filename, false, &schema);
if (!ok)
{
printf("Error loading schema file: %s\n", schema_filename);
return TOSA_FILE_ERROR;
}
ok = _parser->Parse(schema.c_str());
if (!ok)
{
printf("Error parsing ISA schema file: %s\n", schema_filename);
return TOSA_FILE_ERROR;
}
_schemaLoaded = true;
return TOSA_OK;
}
tosa_err_t TosaSerializationHandler::LoadFileJson(const char* filename)
{
std::string jsonfile;
bool ok;
tosa_err_t err;
if (!_schemaLoaded)
{
return TOSA_SCHEMA_MISSING;
}
ok = flatbuffers::LoadFile(filename, false, &jsonfile);
if (!ok)
{
printf("Error loading json file: %s\n", filename);
return TOSA_FILE_ERROR;
}
ok = _parser->Parse(jsonfile.c_str());
if (!ok)
{
printf("Error parsing json file: %s\n", filename);
return TOSA_FILE_ERROR;
}
uint8_t* buf = _parser->builder_.GetBufferPointer();
err = InitWithBuf(buf);
if (err != TOSA_OK)
{
return err;
}
return TOSA_OK;
}
tosa_err_t TosaSerializationHandler::SaveFileJson(const char* filename)
{
std::string jsongen;
tosa_err_t err;
if (!_schemaLoaded)
{
return TOSA_SCHEMA_MISSING;
}
err = FreezeBuilder();
if (err != TOSA_OK)
{
return err;
}
uint8_t* buf = _builder->GetBufferPointer();
if (!GenerateText(*_parser, buf, &jsongen))
{
printf("Couldn't serialize parsed data to JSON!\n");
return TOSA_FILE_ERROR;
}
FILE* file = fopen(filename, "wb");
if (!file)
{
printf("Couldn't open output file: %s\n", filename);
return TOSA_FILE_ERROR;
}
if (fwrite(jsongen.c_str(), sizeof(char), jsongen.size(), file) != jsongen.size())
{
printf("Error writing to json output file: %s\n", filename);
fclose(file);
return TOSA_FILE_ERROR;
}
if (file)
fclose(file);
return TOSA_OK;
}
tosa_err_t TosaSerializationHandler::LoadFileTosaFlatbuffer(const char* filename)
{
std::string read_buffer;
tosa_err_t err;
uint8_t* buf;
bool ok;
ok = flatbuffers::LoadFile(filename, false, &read_buffer);
if (!ok)
{
printf("Error loading flatbuffer file: %s\n", filename);
return TOSA_FILE_ERROR;
}
buf = (uint8_t*)read_buffer.data();
err = InitWithBuf(buf);
if (err != TOSA_OK)
{
return err;
}
return TOSA_OK;
}
tosa_err_t TosaSerializationHandler::SaveFileTosaFlatbuffer(const char* filename)
{
tosa_err_t err;
err = FreezeBuilder();
if (err != TOSA_OK)
{
return err;
}
uint8_t* buf = _builder->GetBufferPointer();
bool ok = flatbuffers::SaveFile(filename, (const char*)buf, _builder->GetSize(), false);
if (!ok)
{
printf("Error saving floatbuffer file: %s\n", filename);
return TOSA_FILE_ERROR;
}
return TOSA_OK;
}
tosa_err_t TosaSerializationHandler::Clear()
{
// deallocate all basic blocks
for (auto bb : GetBlocks())
{
delete bb;
}
_blocks->clear();
return TOSA_OK;
}
tosa_err_t TosaSerializationHandler::CheckTosaVersion(const TosaVersion& read_version)
{
if ((*_version) != read_version)
{
printf("WARNING: read tosa version: %s != schema tosa version %s\n", read_version.to_string().c_str(),
this->_version->to_string().c_str());
return TOSA_VERSION_MISMATCH;
}
return TOSA_OK;
}
tosa_err_t TosaSerializationHandler::InitWithBuf(const uint8_t* buf)
{
auto fb_tosa_graph = GetTosaGraph(buf);
auto fb_tosa_version = fb_tosa_graph->version();
auto fb_tosa_blocks = fb_tosa_graph->blocks();
std::vector<std::string> operator_inputs_container;
std::vector<std::string> operator_outputs_container;
std::vector<TosaSerializationOperator*> block_operators_container;
std::vector<TosaSerializationTensor*> block_tensors_container;
std::vector<std::string> block_inputs_container;
std::vector<std::string> block_outputs_container;
TosaAttributeBase* typed_attribute = NULL;
TosaQuantInfoBase* typed_qinfo = NULL;
TosaSerializationOperator* new_operator = NULL;
TosaSerializationBasicBlock* new_block = NULL;
TosaSerializationTensor* new_tensor = NULL;
// erase container
Clear();
TosaVersion read_version(fb_tosa_version->_major(), fb_tosa_version->_minor(), fb_tosa_version->_patch(),
fb_tosa_version->_experimental());
tosa_err_t err = CheckTosaVersion(read_version);
if (err != TOSA_OK)
return err;
for (size_t i = 0; i < fb_tosa_blocks->size(); i++)
{
auto curr_block = fb_tosa_blocks->Get(i);
auto block_name = curr_block->name()->str();
auto fb_tosa_operators = curr_block->operators();
block_operators_container.clear();
for (size_t j = 0; j < fb_tosa_operators->size(); j++)
{
auto curr_operator = fb_tosa_operators->Get(j);
auto operator_op = curr_operator->op();
auto attribute_type = curr_operator->attribute_type();
auto attribute = curr_operator->attribute();
auto operator_qinfo_type = curr_operator->quant_info_type();
auto operator_qinfo = curr_operator->quant_info();
// input tensors
auto operator_inputs = curr_operator->inputs();
operator_inputs_container.clear();
if (operator_inputs)
{
for (size_t k = 0; k < operator_inputs->size(); k++)
{
auto curr_input = operator_inputs->Get(k);
operator_inputs_container.push_back(curr_input->str());
}
}
// output tensors
auto operator_outputs = curr_operator->outputs();
operator_outputs_container.clear();
if (operator_outputs)
{
for (size_t k = 0; k < operator_outputs->size(); k++)
{
auto curr_output = operator_outputs->Get(k);
operator_outputs_container.push_back(curr_output->str());
}
}
switch (attribute_type)
{
case Attribute_NONE:
typed_attribute = new TosaNoneAttribute();
break;
#define DEF_ATTRIBUTE(NAME, ...) \
case Attribute_##NAME##Attribute: \
typed_attribute = new Tosa##NAME##Attribute(attribute); \
break;
#include "attribute.def"
#undef DEF_ATTRIBUTE
default:
printf("TosaSerializationHandler::InitWithBuf(): Attribute %s not implemented yet\n",
EnumNamesAttribute()[attribute_type]);
return TOSA_INTERNAL_ERROR;
}
switch (operator_qinfo_type)
{
case QuantInfo_NONE:
typed_qinfo = new TosaNoneQuantInfo();
break;
#define DEF_QUANTIZATION_INFO(NAME, ...) \
case QuantInfo_##NAME##QuantInfo: \
typed_qinfo = new Tosa##NAME##QuantInfo(operator_qinfo); \
break;
#include "quant_info.def"
#undef DEF_QUANTIZATION_INFO
default:
printf("TosaSerializationHandler::InitWithBuf(): QuantInfo %s not implemented yet\n",
EnumNamesQuantInfo()[operator_qinfo_type]);
return TOSA_INTERNAL_ERROR;
}
new_operator =
new TosaSerializationOperator(operator_op, attribute_type, typed_attribute, operator_qinfo_type,
typed_qinfo, operator_inputs_container, operator_outputs_container);
if (new_operator)
{
block_operators_container.push_back(new_operator);
}
else
{
return TOSA_MEMORY_ERROR;
}
if (typed_attribute)
delete typed_attribute;
if (typed_qinfo)
delete typed_qinfo;
}
auto fb_tosa_tensors = curr_block->tensors();
block_tensors_container.clear();
for (size_t j = 0; j < fb_tosa_tensors->size(); j++)
{
auto curr_tensor = fb_tosa_tensors->Get(j);
auto tensor_name = curr_tensor->name();
auto tensor_usage = curr_tensor->usage();
auto tensor_shape = curr_tensor->shape();
auto tensor_type = curr_tensor->type();
auto tensor_format = curr_tensor->format();
auto tensor_npy_filename = curr_tensor->npy_filename();
new_tensor = new TosaSerializationTensor(tensor_name, *tensor_usage, *tensor_shape, tensor_type,
*tensor_format, tensor_npy_filename);
if (new_tensor)
{
block_tensors_container.push_back(new_tensor);
}
else
{
return TOSA_MEMORY_ERROR;
}
}
auto block_inputs = curr_block->inputs();
auto block_outputs = curr_block->outputs();
block_inputs_container.clear();
block_outputs_container.clear();
for (size_t j = 0; j < block_inputs->size(); j++)
{
auto curr_block_input = block_inputs->Get(j);
block_inputs_container.push_back(curr_block_input->str());
}
for (size_t j = 0; j < block_outputs->size(); j++)
{
auto curr_block_output = block_outputs->Get(j);
block_outputs_container.push_back(curr_block_output->str());
}
new_block = new TosaSerializationBasicBlock(block_name, block_operators_container, block_tensors_container,
block_inputs_container, block_outputs_container);
if (new_block)
{
this->GetBlocks().push_back(new_block);
}
else
{
return TOSA_MEMORY_ERROR;
}
}
return TOSA_OK;
}
tosa_err_t TosaSerializationHandler::FreezeBuilder()
{
std::vector<flatbuffers::Offset<TosaBasicBlock>> fboffset_blocks;
std::vector<flatbuffers::Offset<TosaOperator>> fboffset_block_operators;
std::vector<flatbuffers::Offset<TosaTensor>> fboffset_block_tensors;
std::vector<flatbuffers::Offset<flatbuffers::String>> fboffset_block_inputs;
std::vector<flatbuffers::Offset<flatbuffers::String>> fboffset_block_outputs;
std::vector<flatbuffers::Offset<flatbuffers::String>> fboffset_operator_inputs;
std::vector<flatbuffers::Offset<flatbuffers::String>> fboffset_operator_outputs;
// translate TosaFlatbufferOperator to flatbuffers::Offset<TosaOperator>
for (auto block : GetBlocks())
{
fboffset_block_operators.clear();
fboffset_block_tensors.clear();
fboffset_block_inputs.clear();
fboffset_block_outputs.clear();
auto block_name = _builder->CreateString(block->GetName().c_str());
for (auto tensor_str : block->GetInputs())
{
auto tensor_name = _builder->CreateString(tensor_str.c_str());
fboffset_block_inputs.push_back(tensor_name);
}
for (auto tensor_str : block->GetOutputs())
{
auto tensor_name = _builder->CreateString(tensor_str.c_str());
fboffset_block_outputs.push_back(tensor_name);
}
auto fb_block_inputs = _builder->CreateVector(fboffset_block_inputs);
auto fb_block_outputs = _builder->CreateVector(fboffset_block_outputs);
for (auto op : block->GetOperators())
{
fboffset_operator_inputs.clear();
fboffset_operator_outputs.clear();
auto operator_op = op->GetOp();
auto attribute_type = op->GetAttributeType();
for (auto tensor_str : op->GetInputTensorNames())
{
auto tensor_name = _builder->CreateString(tensor_str.c_str());
fboffset_operator_inputs.push_back(tensor_name);
}
for (auto tensor_str : op->GetOutputTensorNames())
{
auto tensor_name = _builder->CreateString(tensor_str.c_str());
fboffset_operator_outputs.push_back(tensor_name);
}
auto fb_operator_inputs = _builder->CreateVector(fboffset_operator_inputs);
auto fb_operator_outputs = _builder->CreateVector(fboffset_operator_outputs);
flatbuffers::Offset<void> fb_attribute;
switch (attribute_type)
{
case Attribute_NONE:
fb_attribute = 0;
break;
#define DEF_ARGS_S_STR(NAME, V) , _builder->CreateString(reinterpret_cast<Tosa##NAME*>(op->GetAttribute())->V().c_str())
#define DEF_ARGS_S_DEFAULT(NAME, V) , reinterpret_cast<Tosa##NAME*>(op->GetAttribute())->V()
#define DEF_ARGS_S_int32_t(NAME, V) DEF_ARGS_S_DEFAULT(NAME, V)
#define DEF_ARGS_S_float(NAME, V) DEF_ARGS_S_DEFAULT(NAME, V)
#define DEF_ARGS_S_bool(NAME, V) DEF_ARGS_S_DEFAULT(NAME, V)
#define DEF_ARGS_S_ResizeMode(NAME, V) DEF_ARGS_S_DEFAULT(NAME, V)
#define DEF_ARGS_S_string(NAME, V) DEF_ARGS_S_STR(NAME, V)
#define DEF_ARGS_S(NAME, T, V) DEF_ARGS_S_##T(NAME, V)
#define DEF_ARGS_V(NAME, T, V) , _builder->CreateVector<T>(reinterpret_cast<Tosa##NAME*>(op->GetAttribute())->V())
#define DEF_ARGS_1(NAME, T0, F0, V0) DEF_ARGS_##F0(NAME, T0, V0)
#define DEF_ARGS_2(NAME, T0, F0, V0, T1, F1, V1) DEF_ARGS_##F0(NAME, T0, V0) DEF_ARGS_##F1(NAME, T1, V1)
#define DEF_ARGS_3(NAME, T0, F0, V0, T1, F1, V1, T2, F2, V2) \
DEF_ARGS_##F0(NAME, T0, V0) DEF_ARGS_##F1(NAME, T1, V1) DEF_ARGS_##F2(NAME, T2, V2)
#define DEF_ARGS_4(NAME, T0, F0, V0, T1, F1, V1, T2, F2, V2, T3, F3, V3) \
DEF_ARGS_##F0(NAME, T0, V0) DEF_ARGS_##F1(NAME, T1, V1) DEF_ARGS_##F2(NAME, T2, V2) DEF_ARGS_##F3(NAME, T3, V3)
#define DEF_ARGS_5(NAME, T0, F0, V0, T1, F1, V1, T2, F2, V2, T3, F3, V3, T4, F4, V4) \
DEF_ARGS_##F0(NAME, T0, V0) DEF_ARGS_##F1(NAME, T1, V1) DEF_ARGS_##F2(NAME, T2, V2) DEF_ARGS_##F3(NAME, T3, V3) \
DEF_ARGS_##F4(NAME, T4, V4)
#define DEF_ARGS_6(NAME, T0, F0, V0, T1, F1, V1, T2, F2, V2, T3, F3, V3, T4, F4, V4, T5, F5, V5) \
DEF_ARGS_##F0(NAME, T0, V0) DEF_ARGS_##F1(NAME, T1, V1) DEF_ARGS_##F2(NAME, T2, V2) DEF_ARGS_##F3(NAME, T3, V3) \
DEF_ARGS_##F4(NAME, T4, V4) DEF_ARGS_##F5(NAME, T5, V5)
#define DEF_ARGS_7(NAME, T0, F0, V0, T1, F1, V1, T2, F2, V2, T3, F3, V3, T4, F4, V4, T5, F5, V5, T6, F6, V6) \
DEF_ARGS_##F0(NAME, T0, V0) DEF_ARGS_##F1(NAME, T1, V1) DEF_ARGS_##F2(NAME, T2, V2) DEF_ARGS_##F3(NAME, T3, V3) \
DEF_ARGS_##F4(NAME, T4, V4) DEF_ARGS_##F5(NAME, T5, V5) DEF_ARGS_##F6(NAME, T6, V6)
#define DEF_ATTRIBUTE(NAME, NUM_ARGS, ...) \
case Attribute_##NAME##Attribute: \
fb_attribute = Create##NAME##Attribute(*_builder DEF_ARGS_##NUM_ARGS(NAME##Attribute, __VA_ARGS__)).Union(); \
break;
#include "attribute.def"
#undef DEF_ATTRIBUTE
#undef DEF_ARGS_1
#undef DEF_ARGS_2
#undef DEF_ARGS_3
#undef DEF_ARGS_4
#undef DEF_ARGS_5
#undef DEF_ARGS_6
#undef DEF_ARGS_7
#undef DEF_ARGS_S
#undef DEF_ARGS_V
#undef DEF_ARGS_S_int32_t
#undef DEF_ARGS_S_float
#undef DEF_ARGS_S_bool
#undef DEF_ARGS_S_ResizeMode
#undef DEF_ARGS_S_string
#undef DEF_ARGS_S_STR
#undef DEF_ARGS_S_DEFAULT
default:
printf("TosaSerializationHandler::FreezeBuilder(): Attribute %s not implemented yet\n",
EnumNamesAttribute()[attribute_type]);
return TOSA_INTERNAL_ERROR;
}
auto qinfo_type = op->GetQInfoType();
flatbuffers::Offset<void> fb_operator_qinfo;
switch (qinfo_type)
{
case QuantInfo_NONE:
fb_operator_qinfo = 0;
break;
#define DEF_ARGS_S(NAME, T, V) , reinterpret_cast<Tosa##NAME*>(op->GetQInfo())->V()
#define DEF_ARGS_V(NAME, T, V) , _builder->CreateVector<T>(reinterpret_cast<Tosa##NAME*>(op->GetQInfo())->V())
#define DEF_ARGS_1(NAME, T0, F0, V0) DEF_ARGS_##F0(NAME, T0, V0)
#define DEF_ARGS_2(NAME, T0, F0, V0, T1, F1, V1) DEF_ARGS_##F0(NAME, T0, V0) DEF_ARGS_##F1(NAME, T1, V1)
#define DEF_ARGS_3(NAME, T0, F0, V0, T1, F1, V1, T2, F2, V2) \
DEF_ARGS_##F0(NAME, T0, V0) DEF_ARGS_##F1(NAME, T1, V1) DEF_ARGS_##F2(NAME, T2, V2)
#define DEF_ARGS_4(NAME, T0, F0, V0, T1, F1, V1, T2, F2, V2, T3, F3, V3) \
DEF_ARGS_##F0(NAME, T0, V0) DEF_ARGS_##F1(NAME, T1, V1) DEF_ARGS_##F2(NAME, T2, V2) DEF_ARGS_##F3(NAME, T3, V3)
#define DEF_ARGS_5(NAME, T0, F0, V0, T1, F1, V1, T2, F2, V2, T3, F3, V3, T4, F4, V4) \
DEF_ARGS_##F0(NAME, T0, V0) DEF_ARGS_##F1(NAME, T1, V1) DEF_ARGS_##F2(NAME, T2, V2) DEF_ARGS_##F3(NAME, T3, V3) \
DEF_ARGS_##F4(NAME, T4, V4)
#define DEF_ARGS_6(NAME, T0, F0, V0, T1, F1, V1, T2, F2, V2, T3, F3, V3, T4, F4, V4, T5, F5, V5) \
DEF_ARGS_##F0(NAME, T0, V0) DEF_ARGS_##F1(NAME, T1, V1) DEF_ARGS_##F2(NAME, T2, V2) DEF_ARGS_##F3(NAME, T3, V3) \
DEF_ARGS_##F4(NAME, T4, V4) DEF_ARGS_##F5(NAME, T5, V5)
#define DEF_ARGS_7(NAME, T0, F0, V0, T1, F1, V1, T2, F2, V2, T3, F3, V3, T4, F4, V4, T5, F5, V5, T6, F6, V6) \
DEF_ARGS_##F0(NAME, T0, V0) DEF_ARGS_##F1(NAME, T1, V1) DEF_ARGS_##F2(NAME, T2, V2) DEF_ARGS_##F3(NAME, T3, V3) \
DEF_ARGS_##F4(NAME, T4, V4) DEF_ARGS_##F5(NAME, T5, V5) DEF_ARGS_##F6(NAME, T6, V6)
#define DEF_ARGS_8(NAME, T0, F0, V0, T1, F1, V1, T2, F2, V2, T3, F3, V3, T4, F4, V4, T5, F5, V5, T6, F6, V6, T7, F7, \
V7) \
DEF_ARGS_##F0(NAME, T0, V0) DEF_ARGS_##F1(NAME, T1, V1) DEF_ARGS_##F2(NAME, T2, V2) DEF_ARGS_##F3(NAME, T3, V3) \
DEF_ARGS_##F4(NAME, T4, V4) DEF_ARGS_##F5(NAME, T5, V5) DEF_ARGS_##F6(NAME, T6, V6) \
DEF_ARGS_##F7(NAME, T7, V7)
#define DEF_ARGS_9(NAME, T0, F0, V0, T1, F1, V1, T2, F2, V2, T3, F3, V3, T4, F4, V4, T5, F5, V5, T6, F6, V6, T7, F7, \
V7, T8, F8, V8) \
DEF_ARGS_##F0(NAME, T0, V0) DEF_ARGS_##F1(NAME, T1, V1) DEF_ARGS_##F2(NAME, T2, V2) DEF_ARGS_##F3(NAME, T3, V3) \
DEF_ARGS_##F4(NAME, T4, V4) DEF_ARGS_##F5(NAME, T5, V5) DEF_ARGS_##F6(NAME, T6, V6) \
DEF_ARGS_##F7(NAME, T7, V7) DEF_ARGS_##F8(NAME, T8, V8)
#define DEF_ARGS_10(NAME, T0, F0, V0, T1, F1, V1, T2, F2, V2, T3, F3, V3, T4, F4, V4, T5, F5, V5, T6, F6, V6, T7, F7, \
V7, T8, F8, V8, T9, F9, V9) \
DEF_ARGS_##F0(NAME, T0, V0) DEF_ARGS_##F1(NAME, T1, V1) DEF_ARGS_##F2(NAME, T2, V2) DEF_ARGS_##F3(NAME, T3, V3) \
DEF_ARGS_##F4(NAME, T4, V4) DEF_ARGS_##F5(NAME, T5, V5) DEF_ARGS_##F6(NAME, T6, V6) \
DEF_ARGS_##F7(NAME, T7, V7) DEF_ARGS_##F8(NAME, T8, V8) DEF_ARGS_##F9(NAME, T9, V9)
#define DEF_QUANTIZATION_INFO(NAME, NUM_ARGS, ...) \
case QuantInfo_##NAME##QuantInfo: \
fb_operator_qinfo = \
Create##NAME##QuantInfo(*_builder DEF_ARGS_##NUM_ARGS(NAME##QuantInfo, __VA_ARGS__)).Union(); \
break;
#include "quant_info.def"
#undef DEF_QUANTIZATION_INFO
#undef DEF_ARGS_1
#undef DEF_ARGS_2
#undef DEF_ARGS_3
#undef DEF_ARGS_4
#undef DEF_ARGS_5
#undef DEF_ARGS_6
#undef DEF_ARGS_7
#undef DEF_ARGS_8
#undef DEF_ARGS_9
#undef DEF_ARGS_10
#undef DEF_ARGS_S
#undef DEF_ARGS_V
default:
printf("TosaSerializationHandler::FreezeBuilder(): Attribute %s not implemented yet\n",
EnumNamesAttribute()[attribute_type]);
return TOSA_INTERNAL_ERROR;
}
auto fboffset_operator =
CreateTosaOperator(*_builder, operator_op, attribute_type, fb_attribute, fb_operator_inputs,
fb_operator_outputs, qinfo_type, fb_operator_qinfo);
fboffset_block_operators.push_back(fboffset_operator);
}
auto fb_block_operators = _builder->CreateVector(fboffset_block_operators);
for (auto tensor : block->GetTensors())
{
auto tensor_name = _builder->CreateString(tensor->GetName().c_str());
auto tensor_usage =
_builder->CreateVector(std::vector<uint32_t>(tensor->GetUsage().begin(), tensor->GetUsage().end()));
auto tensor_shape = _builder->CreateVector(tensor->GetShape());
auto tensor_dtype = tensor->GetDtype();
auto tensor_format =
_builder->CreateVector(std::vector<uint32_t>(tensor->GetFormat().begin(), tensor->GetFormat().end()));
flatbuffers::Offset<flatbuffers::String> tensor_npy_filename = 0;
if (tensor->GetNpyFilePtr())
tensor_npy_filename = _builder->CreateString(tensor->GetNpyFilePtr()->c_str());
auto fboffset_tensor = CreateTosaTensor(*_builder, tensor_name, tensor_shape, tensor_dtype, tensor_usage,
tensor_format, tensor_npy_filename);
fboffset_block_tensors.push_back(fboffset_tensor);
}
auto fb_block_tensors = _builder->CreateVector(fboffset_block_tensors);
auto fboffset_block = CreateTosaBasicBlock(*_builder, block_name, fb_block_operators, fb_block_tensors,
fb_block_inputs, fb_block_outputs);
fboffset_blocks.push_back(fboffset_block);
}
auto fb_blocks = _builder->CreateVector(fboffset_blocks);
auto fb_version = CreateVersion(*_builder, GetTosaVersion()->_major, GetTosaVersion()->_minor,
GetTosaVersion()->_patch, GetTosaVersion()->_experimental);
auto fb_graph = CreateTosaGraph(*_builder, fb_version, fb_blocks);
_builder->Finish(fb_graph);
return TOSA_OK;
}
// Magic NUMPY header
static const char NUMPY_HEADER_STR[] = "\x93NUMPY\x1\x0\x76\x0{";
static const int NUMPY_HEADER_SZ = 128;
NumpyUtilities::NPError NumpyUtilities::readFromNpyFile(const char* filename, const uint32_t elems, bool* databuf)
{
const char dtype_str[] = "'|b1'";
FILE* infile = nullptr;
NPError rc = NO_ERROR;
assert(filename);
assert(databuf);
infile = fopen(filename, "rb");
if (!infile)
{
rc = FILE_NOT_FOUND;
goto done;
}
rc = checkNpyHeader(infile, elems, dtype_str);
if (rc != NO_ERROR)
{
goto done;
}
// Read in the data from numpy byte array to native bool
// array format
for (uint32_t i = 0; i < elems; i++)
{
int val = fgetc(infile);
if (val == EOF)
{
rc = FILE_IO_ERROR;
goto done;
}
databuf[i] = val;
}
done:
if (infile)
fclose(infile);
return rc;
}
NumpyUtilities::NPError NumpyUtilities::readFromNpyFile(const char* filename, const uint32_t elems, int32_t* databuf)
{
const char dtype_str[] = "'<i4'";
FILE* infile = nullptr;
NPError rc = NO_ERROR;
assert(filename);
assert(databuf);
infile = fopen(filename, "rb");
if (!infile)
{
rc = FILE_NOT_FOUND;
goto done;
}
rc = checkNpyHeader(infile, elems, dtype_str);
if (rc != NO_ERROR)
{
goto done;
}
// Now we are at the beginning of the data
// Parse based on the datatype and number of dimensions
if (fread(databuf, sizeof(int32_t), elems, infile) != elems)
{
rc = FILE_IO_ERROR;
goto done;
}
done:
if (infile)
fclose(infile);
return rc;
}
NumpyUtilities::NPError NumpyUtilities::readFromNpyFile(const char* filename, const uint32_t elems, int64_t* databuf)
{
const char dtype_str[] = "'<i8'";
FILE* infile = nullptr;
NPError rc = NO_ERROR;
assert(filename);
assert(databuf);
infile = fopen(filename, "rb");
if (!infile)
{
rc = FILE_NOT_FOUND;
goto done;
}
rc = checkNpyHeader(infile, elems, dtype_str);
if (rc != NO_ERROR)
{
goto done;
}
// Now we are at the beginning of the data
// Parse based on the datatype and number of dimensions
if (fread(databuf, sizeof(int64_t), elems, infile) != elems)
{
rc = FILE_IO_ERROR;
goto done;
}
done:
if (infile)
fclose(infile);
return rc;
}
NumpyUtilities::NPError NumpyUtilities::readFromNpyFile(const char* filename, const uint32_t elems, float* databuf)
{
const char dtype_str[] = "'<f4'";
FILE* infile = nullptr;
NPError rc = NO_ERROR;
assert(filename);
assert(databuf);
infile = fopen(filename, "rb");
if (!infile)
{
rc = FILE_NOT_FOUND;
goto done;
}
rc = checkNpyHeader(infile, elems, dtype_str);
if (rc != NO_ERROR)
{
goto done;
}
// Now we are at the beginning of the data
// Parse based on the datatype and number of dimensions
if (fread(databuf, sizeof(float), elems, infile) != elems)
{
rc = FILE_IO_ERROR;
goto done;
}
done:
if (infile)
fclose(infile);
return rc;
}
NumpyUtilities::NPError NumpyUtilities::checkNpyHeader(FILE* infile, const uint32_t elems, const char* dtype_str)
{
char buf[NUMPY_HEADER_SZ + 1];
char* ptr = nullptr;
NPError rc = NO_ERROR;
bool foundFormat = false;
bool foundOrder = false;
bool foundShape = false;
bool fortranOrder = false;
std::vector<int> shape;
uint32_t totalElems = 1;
char* outer_end = NULL;
assert(infile);
assert(elems > 0);
if (fread(buf, NUMPY_HEADER_SZ, 1, infile) != 1)
{
rc = HEADER_PARSE_ERROR;
goto done;
}
if (memcmp(buf, NUMPY_HEADER_STR, sizeof(NUMPY_HEADER_STR) - 1))
{
rc = HEADER_PARSE_ERROR;
goto done;
}
ptr = strtok_r(buf + sizeof(NUMPY_HEADER_STR) - 1, ":", &outer_end);
// Read in the data type, order, and shape
while (ptr && (!foundFormat || !foundOrder || !foundShape))
{
// End of string?
if (!ptr)
break;
// Skip whitespace
while (isspace(*ptr))
ptr++;
// Parse the dictionary field name
if (!strcmp(ptr, "'descr'"))
{
ptr = strtok_r(NULL, ",", &outer_end);
if (!ptr)
break;
while (isspace(*ptr))
ptr++;
if (strcmp(ptr, dtype_str))
{
rc = FILE_TYPE_MISMATCH;
goto done;
}
foundFormat = true;
}
else if (!strcmp(ptr, "'fortran_order'"))
{
ptr = strtok_r(NULL, ",", &outer_end);
if (!ptr)
break;
while (isspace(*ptr))
ptr++;
if (!strcmp(ptr, "False"))
{
fortranOrder = false;
}
else
{
rc = FILE_TYPE_MISMATCH;
goto done;
}
foundOrder = true;
}
else if (!strcmp(ptr, "'shape'"))
{
ptr = strtok_r(NULL, "(", &outer_end);
if (!ptr)
break;
ptr = strtok_r(NULL, ")", &outer_end);
if (!ptr)
break;
while (isspace(*ptr))
ptr++;
// The shape contains N comma-separated integers. Read up to 4.
char* end = NULL;
ptr = strtok_r(ptr, ",", &end);
for (int i = 0; i < 4; i++)
{
// Out of dimensions
if (!ptr)
break;
shape.push_back(atoi(ptr));
totalElems *= atoi(ptr);
ptr = strtok_r(NULL, ",", &end);
}
foundShape = true;
}
else
{
rc = HEADER_PARSE_ERROR;
goto done;
}
if (!ptr)
break;
ptr = strtok_r(NULL, ":", &outer_end);
}
if (!foundShape || !foundFormat || !foundOrder)
{
rc = HEADER_PARSE_ERROR;
goto done;
}
// Validate header
if (fortranOrder != false)
{
rc = FILE_TYPE_MISMATCH;
goto done;
}
if (totalElems != elems)
{
rc = BUFFER_SIZE_MISMATCH;
goto done;
}
// Go back to the begininng and read until the end of the header dictionary
rewind(infile);
int val;
do
{
val = fgetc(infile);
} while (val != EOF && val != '\n');
done:
return rc;
}
NumpyUtilities::NPError NumpyUtilities::writeToNpyFile(const char* filename, const uint32_t elems, const bool* databuf)
{
std::vector<int32_t> shape = { (int32_t)elems };
return writeToNpyFile(filename, shape, databuf);
}
NumpyUtilities::NPError
NumpyUtilities::writeToNpyFile(const char* filename, const std::vector<int32_t>& shape, const bool* databuf)
{
const char dtype_str[] = "'|b1'";
FILE* outfile = nullptr;
NPError rc = NO_ERROR;
uint32_t totalElems = 1;
assert(filename);
assert(shape.size() >= 0);
assert(databuf);
outfile = fopen(filename, "wb");
if (!outfile)
{
rc = FILE_NOT_FOUND;
goto done;
}
for (uint32_t i = 0; i < shape.size(); i++)
{
totalElems *= shape[i];
}
rc = writeNpyHeader(outfile, shape, dtype_str);
// Numpy save format stores booleans as a byte array
// with one byte per boolean. This somewhat inefficiently
// remaps from system bool[] to this format.
for (uint32_t i = 0; i < totalElems; i++)
{
int val = databuf[i] ? 1 : 0;
if (fputc(val, outfile) == EOF)
{
rc = FILE_IO_ERROR;
goto done;
}
}
done:
if (outfile)
fclose(outfile);
return rc;
}
NumpyUtilities::NPError
NumpyUtilities::writeToNpyFile(const char* filename, const uint32_t elems, const int32_t* databuf)
{
std::vector<int32_t> shape = { (int32_t)elems };
return writeToNpyFile(filename, shape, databuf);
}
NumpyUtilities::NPError
NumpyUtilities::writeToNpyFile(const char* filename, const std::vector<int32_t>& shape, const int32_t* databuf)
{
const char dtype_str[] = "'<i4'";
FILE* outfile = nullptr;
NPError rc = NO_ERROR;
uint32_t totalElems = 1;
assert(filename);
assert(shape.size() >= 0);
assert(databuf);
outfile = fopen(filename, "wb");
if (!outfile)
{
rc = FILE_NOT_FOUND;
goto done;
}
for (uint32_t i = 0; i < shape.size(); i++)
{
totalElems *= shape[i];
}
rc = writeNpyHeader(outfile, shape, dtype_str);
if (fwrite(databuf, sizeof(int32_t), totalElems, outfile) != totalElems)
{
rc = FILE_IO_ERROR;
goto done;
}
done:
if (outfile)
fclose(outfile);
return rc;
}
NumpyUtilities::NPError
NumpyUtilities::writeToNpyFile(const char* filename, const uint32_t elems, const int64_t* databuf)
{
std::vector<int32_t> shape = { (int32_t)elems };
return writeToNpyFile(filename, shape, databuf);
}
NumpyUtilities::NPError
NumpyUtilities::writeToNpyFile(const char* filename, const std::vector<int32_t>& shape, const int64_t* databuf)
{
const char dtype_str[] = "'<i8'";
FILE* outfile = nullptr;
NPError rc = NO_ERROR;
uint32_t totalElems = 1;
assert(filename);
assert(shape.size() >= 0);
assert(databuf);
outfile = fopen(filename, "wb");
if (!outfile)
{
rc = FILE_NOT_FOUND;
goto done;
}
for (uint32_t i = 0; i < shape.size(); i++)
{
totalElems *= shape[i];
}
rc = writeNpyHeader(outfile, shape, dtype_str);
if (fwrite(databuf, sizeof(int64_t), totalElems, outfile) != totalElems)
{
rc = FILE_IO_ERROR;
goto done;
}
done:
if (outfile)
fclose(outfile);
return rc;
}
NumpyUtilities::NPError NumpyUtilities::writeToNpyFile(const char* filename, const uint32_t elems, const float* databuf)
{
std::vector<int32_t> shape = { (int32_t)elems };
return writeToNpyFile(filename, shape, databuf);
}
NumpyUtilities::NPError
NumpyUtilities::writeToNpyFile(const char* filename, const std::vector<int32_t>& shape, const float* databuf)
{
const char dtype_str[] = "'<f4'";
FILE* outfile = nullptr;
NPError rc = NO_ERROR;
uint32_t totalElems = 1;
assert(filename);
assert(shape.size() >= 0);
assert(databuf);
outfile = fopen(filename, "wb");
if (!outfile)
{
rc = FILE_NOT_FOUND;
goto done;
}
for (uint32_t i = 0; i < shape.size(); i++)
{
totalElems *= shape[i];
}
rc = writeNpyHeader(outfile, shape, dtype_str);
if (fwrite(databuf, sizeof(float), totalElems, outfile) != totalElems)
{
rc = FILE_IO_ERROR;
goto done;
}
done:
if (outfile)
fclose(outfile);
return rc;
}
NumpyUtilities::NPError
NumpyUtilities::writeNpyHeader(FILE* outfile, const std::vector<int32_t>& shape, const char* dtype_str)
{
NPError rc = NO_ERROR;
uint32_t i;
char header[NUMPY_HEADER_SZ + 1];
int headerPos = 0;
assert(outfile);
assert(shape.size() >= 0);
// Space-fill the header and end with a newline to start per numpy spec
memset(header, 0x20, NUMPY_HEADER_SZ);
header[NUMPY_HEADER_SZ - 1] = '\n';
header[NUMPY_HEADER_SZ] = 0;
// Write out the hard-coded header. We only support a 128-byte 1.0 header
// for now, which should be sufficient for simple tensor types of any
// reasonable rank.
memcpy(header, NUMPY_HEADER_STR, sizeof(NUMPY_HEADER_STR) - 1);
headerPos += sizeof(NUMPY_HEADER_STR) - 1;
// Output the format dictionary
// Hard-coded for I32 for now
headerPos +=
snprintf(header + headerPos, NUMPY_HEADER_SZ - headerPos, "'descr': %s, 'fortran_order': False, 'shape': (%d,",
dtype_str, shape.size() > 0 ? shape[0] : 1);
// Remainder of shape array
for (i = 1; i < shape.size(); i++)
{
headerPos += snprintf(header + headerPos, NUMPY_HEADER_SZ - headerPos, " %d,", shape[i]);
}
// Close off the dictionary
headerPos += snprintf(header + headerPos, NUMPY_HEADER_SZ - headerPos, "), }");
// snprintf leaves a NULL at the end. Replace with a space
header[headerPos] = 0x20;
if (fwrite(header, NUMPY_HEADER_SZ, 1, outfile) != 1)
{
rc = FILE_IO_ERROR;
goto done;
}
done:
return rc;
}