blob: 8fc24949ed838ce6a3368714121d7153b1385925 [file] [log] [blame]
/*
* Copyright (c) 2017-2020 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/NEON/kernels/NETransposeKernel.h"
#include "arm_compute/core/AccessWindowStatic.h"
#include "arm_compute/core/AccessWindowTranspose.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include <arm_neon.h>
using namespace arm_compute;
namespace arm_compute
{
class Coordinates;
} // namespace arm_compute
namespace
{
TensorShape transposed_tensor_shape(const TensorShape &in)
{
TensorShape output_shape{ in };
const size_t w_out = in[1];
const size_t h_out = in[0];
output_shape.set(0, w_out);
output_shape.set(1, h_out);
return output_shape;
}
unsigned int num_elems_processed(size_t element_size)
{
switch(element_size)
{
case 1:
return 8;
break;
case 2:
return 4;
break;
case 4:
return 4;
break;
default:
break;
}
ARM_COMPUTE_ERROR("Element size not supported");
}
Status validate_arguments(const ITensorInfo *input, const ITensorInfo *output)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input);
//Note: ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input) is not needed here as this kernel doesn't use NEON FP16 instructions.
ARM_COMPUTE_RETURN_ERROR_ON(input->data_type() == DataType::UNKNOWN);
if(output->total_size() != 0)
{
const TensorInfo tensor_info = input->clone()->set_tensor_shape(transposed_tensor_shape(input->tensor_shape()));
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(output, &tensor_info);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_QUANTIZATION_INFO(input, output);
}
return Status{};
}
std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input, ITensorInfo *output)
{
// Note: This kernel performs 16 elements per iteration.
// However, since we use a left-over for loop on both dimensions (X and Y), we cannot have any read or write out of memory
// For this reason num_elems_processed_per_iteration_x is set to 1
const unsigned int num_elems_processed_per_iteration_x = 1;
const unsigned int num_elems_processed_per_iteration_y = num_elems_processed(input->element_size());
// Configure kernel window
Window win = calculate_max_window(*input, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));
AccessWindowRectangle input_access(input, 0, 0, num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y);
bool window_changed = update_window_and_padding(win, input_access);
if(output->total_size() != 0)
{
AccessWindowTranspose output_access(output, 0, 0, num_elems_processed_per_iteration_y, num_elems_processed_per_iteration_x);
window_changed = window_changed || update_window_and_padding(win, output_access);
output_access.set_valid_region(win, ValidRegion(Coordinates(), output->tensor_shape()));
}
Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
return std::make_pair(err, win);
}
void transpose_8bit_elements(const ITensor *in, ITensor *out, const Window &window)
{
const int window_step_x = 8;
const int window_step_y = 8;
const int window_start_x = window.x().start();
const int window_end_x = window.x().end();
const int window_start_y = window.y().start();
const int window_end_y = std::min(window.y().end(), static_cast<int>(in->info()->dimension(1)));
const int window_end_y_multiple_of = ((window_end_y - window_start_y) / window_step_y) * window_step_y;
const size_t input_stride_in_bytes = in->info()->strides_in_bytes()[1];
const size_t output_stride_in_bytes = out->info()->strides_in_bytes()[1];
// Check if we need a left-over loop for the y dimension
bool left_over_loop_y = (((window_end_y - window_start_y) % window_step_y) != 0);
Window window_in(window);
window_in.set(Window::DimX, Window::Dimension(0, 1, 1));
if(left_over_loop_y)
{
// Check if window_end_y_multiple_of is greater than window_start_y
if(window_end_y_multiple_of > window_start_y)
{
window_in.set(Window::DimY, Window::Dimension(window_start_y, window_end_y_multiple_of, window_step_y));
}
else
{
window_in.set(Window::DimY, Window::Dimension(0, 0, 1));
}
}
Window window_out(window);
window_out.set(Window::DimX, Window::Dimension(0, 0, 0));
window_out.set(Window::DimY, Window::Dimension(0, 0, 0));
Iterator output(out, window_out);
// Run the NEON path if and only if the input is not a row-vector
if(in->info()->dimension(1) != 1)
{
Iterator input(in, window_in);
execute_window_loop(window_in, [&](const Coordinates & id)
{
// Compute 8x8 elements per iteration
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const uint8x8_t row0 = vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + x + 0 * input_stride_in_bytes));
const uint8x8_t row1 = vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + x + 1 * input_stride_in_bytes));
const uint8x8_t row2 = vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + x + 2 * input_stride_in_bytes));
const uint8x8_t row3 = vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + x + 3 * input_stride_in_bytes));
const uint8x8_t row4 = vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + x + 4 * input_stride_in_bytes));
const uint8x8_t row5 = vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + x + 5 * input_stride_in_bytes));
const uint8x8_t row6 = vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + x + 6 * input_stride_in_bytes));
const uint8x8_t row7 = vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + x + 7 * input_stride_in_bytes));
// Transpose 2x2
const uint8x8x2_t k0_u8 = vtrn_u8(row0, row1);
const uint8x8x2_t k1_u8 = vtrn_u8(row2, row3);
const uint8x8x2_t k2_u8 = vtrn_u8(row4, row5);
const uint8x8x2_t k3_u8 = vtrn_u8(row6, row7);
// Transpose 4x4
const uint16x4x2_t k0_u16 = vtrn_u16(vreinterpret_u16_u8(k0_u8.val[0]), vreinterpret_u16_u8(k1_u8.val[0]));
const uint16x4x2_t k1_u16 = vtrn_u16(vreinterpret_u16_u8(k0_u8.val[1]), vreinterpret_u16_u8(k1_u8.val[1]));
const uint16x4x2_t k2_u16 = vtrn_u16(vreinterpret_u16_u8(k2_u8.val[0]), vreinterpret_u16_u8(k3_u8.val[0]));
const uint16x4x2_t k3_u16 = vtrn_u16(vreinterpret_u16_u8(k2_u8.val[1]), vreinterpret_u16_u8(k3_u8.val[1]));
// Transpose 8x8
const uint32x2x2_t k0_u32 = vtrn_u32(vreinterpret_u32_u16(k0_u16.val[0]), vreinterpret_u32_u16(k2_u16.val[0]));
const uint32x2x2_t k1_u32 = vtrn_u32(vreinterpret_u32_u16(k0_u16.val[1]), vreinterpret_u32_u16(k2_u16.val[1]));
const uint32x2x2_t k2_u32 = vtrn_u32(vreinterpret_u32_u16(k1_u16.val[0]), vreinterpret_u32_u16(k3_u16.val[0]));
const uint32x2x2_t k3_u32 = vtrn_u32(vreinterpret_u32_u16(k1_u16.val[1]), vreinterpret_u32_u16(k3_u16.val[1]));
// Compute destination address
const size_t dst_offset_in_bytes = id.y() * sizeof(uint8_t) + x * output_stride_in_bytes;
vst1_u8(reinterpret_cast<uint8_t *>(output.ptr() + dst_offset_in_bytes + 0 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k0_u32.val[0])));
vst1_u8(reinterpret_cast<uint8_t *>(output.ptr() + dst_offset_in_bytes + 1 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k2_u32.val[0])));
vst1_u8(reinterpret_cast<uint8_t *>(output.ptr() + dst_offset_in_bytes + 2 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k1_u32.val[0])));
vst1_u8(reinterpret_cast<uint8_t *>(output.ptr() + dst_offset_in_bytes + 3 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k3_u32.val[0])));
vst1_u8(reinterpret_cast<uint8_t *>(output.ptr() + dst_offset_in_bytes + 4 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k0_u32.val[1])));
vst1_u8(reinterpret_cast<uint8_t *>(output.ptr() + dst_offset_in_bytes + 5 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k2_u32.val[1])));
vst1_u8(reinterpret_cast<uint8_t *>(output.ptr() + dst_offset_in_bytes + 6 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k1_u32.val[1])));
vst1_u8(reinterpret_cast<uint8_t *>(output.ptr() + dst_offset_in_bytes + 7 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k3_u32.val[1])));
}
// Compute left-over elements along the x dimension (1x8)
for(; x < window_end_x; ++x)
{
const uint8_t val0 = *(input.ptr() + x + 0 * input_stride_in_bytes);
const uint8_t val1 = *(input.ptr() + x + 1 * input_stride_in_bytes);
const uint8_t val2 = *(input.ptr() + x + 2 * input_stride_in_bytes);
const uint8_t val3 = *(input.ptr() + x + 3 * input_stride_in_bytes);
const uint8_t val4 = *(input.ptr() + x + 4 * input_stride_in_bytes);
const uint8_t val5 = *(input.ptr() + x + 5 * input_stride_in_bytes);
const uint8_t val6 = *(input.ptr() + x + 6 * input_stride_in_bytes);
const uint8_t val7 = *(input.ptr() + x + 7 * input_stride_in_bytes);
uint8x8_t result = vdup_n_u8(0);
result = vset_lane_u8(val0, result, 0);
result = vset_lane_u8(val1, result, 1);
result = vset_lane_u8(val2, result, 2);
result = vset_lane_u8(val3, result, 3);
result = vset_lane_u8(val4, result, 4);
result = vset_lane_u8(val5, result, 5);
result = vset_lane_u8(val6, result, 6);
result = vset_lane_u8(val7, result, 7);
// Compute destination address
const size_t dst_offset_in_bytes = id.y() * sizeof(uint8_t) + x * output_stride_in_bytes;
vst1_u8(output.ptr() + dst_offset_in_bytes, result);
}
},
input, output);
}
if(left_over_loop_y)
{
window_in.set(Window::DimX, Window::Dimension(window.x().start(), window.x().end(), 1));
window_in.set(Window::DimY, Window::Dimension(window_end_y_multiple_of, window_end_y, 1));
Iterator input(in, window_in);
Iterator output(out, window_out);
// Compute left-over elements along the y dimension (1x1)
execute_window_loop(window_in, [&](const Coordinates & id)
{
const uint8_t val0 = *input.ptr();
// Compute destination address
const size_t dst_offset_in_bytes = id.y() * sizeof(uint8_t) + id.x() * output_stride_in_bytes;
*(output.ptr() + dst_offset_in_bytes) = val0;
},
input, output);
}
}
void transpose_16bit_elements(const ITensor *in, ITensor *out, const Window &window)
{
const int window_step_x = 4;
const int window_step_y = 4;
const int window_start_x = window.x().start();
const int window_end_x = window.x().end();
const int window_start_y = window.y().start();
const int window_end_y = std::min(window.y().end(), static_cast<int>(in->info()->dimension(1)));
const int window_end_y_multiple_of = ((window_end_y - window_start_y) / window_step_y) * window_step_y;
const size_t input_stride_in_bytes = in->info()->strides_in_bytes()[1];
const size_t output_stride_in_bytes = out->info()->strides_in_bytes()[1];
// Check if we need a left-over loop for the y dimension
bool left_over_loop_y = (((window_end_y - window_start_y) % window_step_y) != 0);
Window window_in(window);
window_in.set(Window::DimX, Window::Dimension(0, 1, 1));
if(left_over_loop_y)
{
// Check if window_end_y_multiple_of is greater than window_start_y
if(window_end_y_multiple_of > window_start_y)
{
window_in.set(Window::DimY, Window::Dimension(window_start_y, window_end_y_multiple_of, window_step_y));
}
else
{
window_in.set(Window::DimY, Window::Dimension(0, 0, 1));
}
}
Window window_out(window);
window_out.set(Window::DimX, Window::Dimension(0, 0, 0));
window_out.set(Window::DimY, Window::Dimension(0, 0, 0));
Iterator output(out, window_out);
// Run the NEON path if and only if the input is not a row-vector
if(in->info()->dimension(1) != 1)
{
Iterator input(in, window_in);
execute_window_loop(window_in, [&](const Coordinates & id)
{
// Compute 4x4 elements per iteration
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const uint16x4_t row0 = vld1_u16(reinterpret_cast<const uint16_t *>(input.ptr() + 0 * input_stride_in_bytes) + x);
const uint16x4_t row1 = vld1_u16(reinterpret_cast<const uint16_t *>(input.ptr() + 1 * input_stride_in_bytes) + x);
const uint16x4_t row2 = vld1_u16(reinterpret_cast<const uint16_t *>(input.ptr() + 2 * input_stride_in_bytes) + x);
const uint16x4_t row3 = vld1_u16(reinterpret_cast<const uint16_t *>(input.ptr() + 3 * input_stride_in_bytes) + x);
// Transpose 2x2
const uint16x4x2_t k0_u16 = vtrn_u16(row0, row1);
const uint16x4x2_t k1_u16 = vtrn_u16(row2, row3);
// Transpose 4x4
const uint32x2x2_t k0_u32 = vtrn_u32(vreinterpret_u32_u16(k0_u16.val[0]), vreinterpret_u32_u16(k1_u16.val[0]));
const uint32x2x2_t k1_u32 = vtrn_u32(vreinterpret_u32_u16(k0_u16.val[1]), vreinterpret_u32_u16(k1_u16.val[1]));
// Compute destination address
const size_t dst_offset_in_bytes = id.y() * sizeof(uint16_t) + x * output_stride_in_bytes;
vst1_u16(reinterpret_cast<uint16_t *>(output.ptr() + dst_offset_in_bytes + 0 * output_stride_in_bytes), vreinterpret_u16_u32(k0_u32.val[0]));
vst1_u16(reinterpret_cast<uint16_t *>(output.ptr() + dst_offset_in_bytes + 1 * output_stride_in_bytes), vreinterpret_u16_u32(k1_u32.val[0]));
vst1_u16(reinterpret_cast<uint16_t *>(output.ptr() + dst_offset_in_bytes + 2 * output_stride_in_bytes), vreinterpret_u16_u32(k0_u32.val[1]));
vst1_u16(reinterpret_cast<uint16_t *>(output.ptr() + dst_offset_in_bytes + 3 * output_stride_in_bytes), vreinterpret_u16_u32(k1_u32.val[1]));
}
// Compute left-over elements (1x4)
for(; x < window_end_x; ++x)
{
const uint16_t val0 = *(reinterpret_cast<uint16_t *>(input.ptr() + 0 * input_stride_in_bytes) + x);
const uint16_t val1 = *(reinterpret_cast<uint16_t *>(input.ptr() + 1 * input_stride_in_bytes) + x);
const uint16_t val2 = *(reinterpret_cast<uint16_t *>(input.ptr() + 2 * input_stride_in_bytes) + x);
const uint16_t val3 = *(reinterpret_cast<uint16_t *>(input.ptr() + 3 * input_stride_in_bytes) + x);
uint16x4_t result = vdup_n_u16(0);
result = vset_lane_u16(val0, result, 0);
result = vset_lane_u16(val1, result, 1);
result = vset_lane_u16(val2, result, 2);
result = vset_lane_u16(val3, result, 3);
// Compute destination address
const size_t dst_offset_in_bytes = id.y() * sizeof(uint16_t) + x * output_stride_in_bytes;
vst1_u16(reinterpret_cast<uint16_t *>(output.ptr() + dst_offset_in_bytes), result);
}
},
input, output);
}
if(left_over_loop_y)
{
window_in.set(Window::DimX, Window::Dimension(window.x().start(), window.x().end(), 1));
window_in.set(Window::DimY, Window::Dimension(window_end_y_multiple_of, window_end_y, 1));
Iterator input(in, window_in);
Iterator output(out, window_out);
// Compute left-over elements along the y dimension (1x1)
execute_window_loop(window_in, [&](const Coordinates & id)
{
const uint16_t val0 = *(reinterpret_cast<uint16_t *>(input.ptr()));
// Compute destination address
const size_t dst_offset_in_bytes = id.y() * sizeof(uint16_t) + id.x() * output_stride_in_bytes;
*(reinterpret_cast<uint16_t *>(output.ptr() + dst_offset_in_bytes)) = val0;
},
input, output);
}
}
void transpose_32bit_elements(const ITensor *in, ITensor *out, const Window &window)
{
const int window_step_x = 4;
const int window_step_y = 4;
const int window_start_x = window.x().start();
const int window_end_x = window.x().end();
const int window_start_y = window.y().start();
const int window_end_y = std::min(window.y().end(), static_cast<int>(in->info()->dimension(1)));
const int window_end_y_multiple_of = ((window_end_y - window_start_y) / window_step_y) * window_step_y;
const size_t input_stride_in_bytes = in->info()->strides_in_bytes()[1];
const size_t output_stride_in_bytes = out->info()->strides_in_bytes()[1];
// Check if we need a left-over loop for the y dimension
bool left_over_loop_y = (((window_end_y - window_start_y) % window_step_y) != 0);
Window window_in(window);
window_in.set(Window::DimX, Window::Dimension(0, 1, 1));
if(left_over_loop_y)
{
// Check if window_end_y_multiple_of is greater than window_start_y
if(window_end_y_multiple_of > window_start_y)
{
window_in.set(Window::DimY, Window::Dimension(window_start_y, window_end_y_multiple_of, window_step_y));
}
else
{
window_in.set(Window::DimY, Window::Dimension(0, 0, 1));
}
}
Window window_out(window);
window_out.set(Window::DimX, Window::Dimension(0, 0, 0));
window_out.set(Window::DimY, Window::Dimension(0, 0, 0));
Iterator output(out, window_out);
// Run the NEON path if and only if the input is not a row-vector
if(in->info()->dimension(1) != 1)
{
Iterator input(in, window_in);
execute_window_loop(window_in, [&](const Coordinates & id)
{
// Compute 4x4 elements per iteration
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const uint32x4_t row0 = vld1q_u32(reinterpret_cast<const uint32_t *>(input.ptr() + 0 * input_stride_in_bytes) + x);
const uint32x4_t row1 = vld1q_u32(reinterpret_cast<const uint32_t *>(input.ptr() + 1 * input_stride_in_bytes) + x);
const uint32x4_t row2 = vld1q_u32(reinterpret_cast<const uint32_t *>(input.ptr() + 2 * input_stride_in_bytes) + x);
const uint32x4_t row3 = vld1q_u32(reinterpret_cast<const uint32_t *>(input.ptr() + 3 * input_stride_in_bytes) + x);
// Transpose 2x2
const uint32x2x2_t k0_u32 = vtrn_u32(vget_low_u32(row0), vget_low_u32(row1));
const uint32x2x2_t k1_u32 = vtrn_u32(vget_high_u32(row2), vget_high_u32(row3));
const uint32x2x2_t k2_u32 = vtrn_u32(vget_high_u32(row0), vget_high_u32(row1));
const uint32x2x2_t k3_u32 = vtrn_u32(vget_low_u32(row2), vget_low_u32(row3));
// Compute destination address
const size_t dst_offset_in_bytes = id.y() * sizeof(uint32_t) + x * output_stride_in_bytes;
// Swap block 01 with block 10 and store
vst1q_u32(reinterpret_cast<uint32_t *>(output.ptr() + dst_offset_in_bytes + 0 * output_stride_in_bytes), vcombine_u32(k0_u32.val[0], k3_u32.val[0]));
vst1q_u32(reinterpret_cast<uint32_t *>(output.ptr() + dst_offset_in_bytes + 1 * output_stride_in_bytes), vcombine_u32(k0_u32.val[1], k3_u32.val[1]));
vst1q_u32(reinterpret_cast<uint32_t *>(output.ptr() + dst_offset_in_bytes + 2 * output_stride_in_bytes), vcombine_u32(k2_u32.val[0], k1_u32.val[0]));
vst1q_u32(reinterpret_cast<uint32_t *>(output.ptr() + dst_offset_in_bytes + 3 * output_stride_in_bytes), vcombine_u32(k2_u32.val[1], k1_u32.val[1]));
}
// Compute left-over elements (1x4)
for(; x < window_end_x; ++x)
{
const uint32_t val0 = *(reinterpret_cast<uint32_t *>(input.ptr() + 0 * input_stride_in_bytes) + x);
const uint32_t val1 = *(reinterpret_cast<uint32_t *>(input.ptr() + 1 * input_stride_in_bytes) + x);
const uint32_t val2 = *(reinterpret_cast<uint32_t *>(input.ptr() + 2 * input_stride_in_bytes) + x);
const uint32_t val3 = *(reinterpret_cast<uint32_t *>(input.ptr() + 3 * input_stride_in_bytes) + x);
uint32x4_t result = vdupq_n_u32(0);
result = vsetq_lane_u32(val0, result, 0);
result = vsetq_lane_u32(val1, result, 1);
result = vsetq_lane_u32(val2, result, 2);
result = vsetq_lane_u32(val3, result, 3);
// Compute destination address
const size_t dst_offset_in_bytes = id.y() * sizeof(uint32_t) + x * output_stride_in_bytes;
vst1q_u32(reinterpret_cast<uint32_t *>(output.ptr() + dst_offset_in_bytes), result);
}
},
input, output);
}
if(left_over_loop_y)
{
window_in.set(Window::DimX, Window::Dimension(window.x().start(), window.x().end(), 1));
window_in.set(Window::DimY, Window::Dimension(window_end_y_multiple_of, window_end_y, 1));
Iterator input(in, window_in);
Iterator output(out, window_out);
// Compute left-over elements along the y dimension (1x1)
execute_window_loop(window_in, [&](const Coordinates & id)
{
const uint32_t val0 = *(reinterpret_cast<uint32_t *>(input.ptr()));
// Compute destination address
const size_t dst_offset_in_bytes = id.y() * sizeof(uint32_t) + id.x() * output_stride_in_bytes;
*(reinterpret_cast<uint32_t *>(output.ptr() + dst_offset_in_bytes)) = val0;
},
input, output);
}
}
} // namespace
Status NETransposeKernel::validate(const ITensorInfo *input, const ITensorInfo *output)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, output));
ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(), output->clone().get()).first);
return Status{};
}
NETransposeKernel::NETransposeKernel()
: _func(nullptr), _input(nullptr), _output(nullptr)
{
}
void NETransposeKernel::configure(const ITensor *input, ITensor *output)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
// Output tensor auto inizialitation if not yet initialized
auto_init_if_empty(*output->info(), input->info()->clone()->set_tensor_shape(transposed_tensor_shape(input->info()->tensor_shape())));
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), output->info()));
_input = input;
_output = output;
switch(input->info()->element_size())
{
case 1:
_func = &transpose_8bit_elements;
break;
case 2:
_func = &transpose_16bit_elements;
break;
case 4:
_func = &transpose_32bit_elements;
break;
default:
ARM_COMPUTE_ERROR("Element size not supported");
break;
}
// Configure kernel window
auto win_config = validate_and_configure_window(input->info(), output->info());
ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
INEKernel::configure(win_config.second);
}
void NETransposeKernel::run(const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
ARM_COMPUTE_ERROR_ON(_func == nullptr);
(*_func)(_input, _output, window);
}