blob: ae1d48cc69a5d0376ee50faf96824ad2b8b967e3 [file] [log] [blame]
/*
* Copyright (c) 2018 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/NEON/kernels/NEPermuteKernel.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
namespace
{
#include "arm_compute/core/NEON/kernels/convolution/common/shims.hpp"
} // namespace
#include <cstddef>
#include <cstdint>
using namespace arm_compute;
namespace
{
Status validate_arguments(const ITensorInfo *input, const ITensorInfo *output, const PermutationVector &perm)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::U8, DataType::S8, DataType::QS8, DataType::QASYMM8,
DataType::U16, DataType::S16, DataType::QS16,
DataType::U32, DataType::S32,
DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_MSG((perm.num_dimensions() == 3 && !(perm[0] == 2 && perm[1] == 0 && perm[2] == 1) && !(perm[0] == 1 && perm[1] == 2 && perm[2] == 0)),
"Only [2, 0, 1] and [1, 2, 0] permutation is supported");
const TensorShape output_shape = misc::shape_calculator::compute_permutation_output_shape(*input, perm);
// Validate configured output
if(output->total_size() != 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(output->tensor_shape(), output_shape);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_FIXED_POINT(input, output);
}
return Status{};
}
} // namespace
template <typename T>
void NEPermuteKernel::run_permute(const Window &window)
{
// Input window
Window window_in = window;
window_in.set(Window::DimX, Window::Dimension(window.x().start(), window.x().end(), window.x().end() - window.x().start()));
window_in.set(Window::DimY, Window::Dimension(window.y().start(), window.y().end(), window.y().end() - window.y().start()));
window_in.set(Window::DimZ, Window::Dimension(window.z().start(), window.z().end(), window.z().end() - window.z().start()));
window_in.set(3, Window::Dimension(window[3].start(), window[3].end(), window[3].end() - window[3].start()));
// Output window
Window window_out(window);
const Window::Dimension zero_window = Window::Dimension(0, 0, 0);
for(size_t d = 0; d <= _perm.num_dimensions(); ++d)
{
window_out.set(d, zero_window);
}
// Create iterators
Iterator in(_input, window_in);
Iterator out(_output, window_out);
// CHW -> HWC
if((_perm.num_dimensions() == 3) && (_perm[0] == 2) && (_perm[1] == 0) && (_perm[2] == 1))
{
const int in_row_stride = _input->info()->strides_in_bytes().y() / sizeof(T);
const int in_channel_stride = _input->info()->strides_in_bytes().z() / sizeof(T);
const int in_batch_stride = _input->info()->strides_in_bytes()[3] / sizeof(T);
const int out_channel_stride = _output->info()->strides_in_bytes().x() / sizeof(T);
const int out_col_stride = _output->info()->strides_in_bytes().y() / sizeof(T);
const int out_row_stride = _output->info()->strides_in_bytes().z() / sizeof(T);
const int out_batch_stride = _output->info()->strides_in_bytes()[3] / sizeof(T);
const int n_cols = _input->info()->tensor_shape().x();
const int n_rows = window_in.y().step();
const int n_channels = _input->info()->tensor_shape().z();
const int n_batches = _input->info()->tensor_shape()[3];
execute_window_loop(window_in, [&](const Coordinates & id)
{
const int idx = id[0] * out_col_stride + id[1] * out_row_stride + id[2] * out_channel_stride;
reorder::nchw_to_nhwc(reinterpret_cast<const T *>(in.ptr()), reinterpret_cast<T *>(out.ptr()) + idx,
n_batches, n_channels, n_rows, n_cols,
in_batch_stride, in_channel_stride, in_row_stride,
out_batch_stride, out_row_stride, out_col_stride);
},
in, out);
}
// HWC -> CHW
else if((_perm.num_dimensions() == 3) && (_perm[0] == 1) && (_perm[1] == 2) && (_perm[2] == 0))
{
const int in_col_stride = _input->info()->strides_in_bytes().y() / sizeof(T);
const int in_row_stride = _input->info()->strides_in_bytes().z() / sizeof(T);
const int in_batch_stride = _input->info()->strides_in_bytes()[3] / sizeof(T);
const int out_col_stride = _output->info()->strides_in_bytes().x() / sizeof(T);
const int out_row_stride = _output->info()->strides_in_bytes().y() / sizeof(T);
const int out_channel_stride = _output->info()->strides_in_bytes().z() / sizeof(T);
const int out_batch_stride = _output->info()->strides_in_bytes()[3] / sizeof(T);
const int n_channels = _input->info()->tensor_shape().x();
const int n_cols = window_in.y().step();
const int n_rows = _input->info()->tensor_shape().z();
const int n_batches = _input->info()->tensor_shape()[3];
execute_window_loop(window_in, [&](const Coordinates & id)
{
const int idx = id[0] * out_channel_stride + id[1] * out_col_stride + id[2] * out_row_stride;
reorder::nhwc_to_nchw(reinterpret_cast<const T *>(in.ptr()), reinterpret_cast<T *>(out.ptr()) + idx,
n_batches, n_rows, n_cols, n_channels,
in_batch_stride, in_row_stride, in_col_stride,
out_batch_stride, out_channel_stride, out_row_stride);
},
in, out);
}
else
{
ARM_COMPUTE_ERROR("Unsupported permutation vector");
}
}
NEPermuteKernel::NEPermuteKernel()
: _func(), _input(nullptr), _output(nullptr), _perm()
{
}
void NEPermuteKernel::configure(const ITensor *input, ITensor *output, const PermutationVector &perm)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
const TensorShape output_shape = misc::shape_calculator::compute_permutation_output_shape(*input->info(), perm);
// Output auto inizialitation if not yet initialized
auto_init_if_empty(*output->info(), input->info()->clone()->set_tensor_shape(output_shape));
// Perform validation step
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), output->info(), perm));
_input = input;
_output = output;
_perm = perm;
switch(input->info()->element_size())
{
case 1:
_func = &NEPermuteKernel::run_permute<uint8_t>;
break;
case 2:
_func = &NEPermuteKernel::run_permute<uint16_t>;
break;
case 4:
_func = &NEPermuteKernel::run_permute<uint32_t>;
break;
default:
ARM_COMPUTE_ERROR("Element size not supported");
break;
}
// Configure kernel window
Window win = calculate_max_window(*input->info(), Steps());
// The NEPermute doesn't need padding so update_window_and_padding() can be skipped
Coordinates coord;
coord.set_num_dimensions(output->info()->num_dimensions());
output->info()->set_valid_region(ValidRegion(coord, output->info()->tensor_shape()));
ICPPKernel::configure(win);
}
Status NEPermuteKernel::validate(const ITensorInfo *input, const ITensorInfo *output, const PermutationVector &perm)
{
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, output, perm));
return Status{};
}
void NEPermuteKernel::run(const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICPPKernel::window(), window);
if(_func != nullptr)
{
(this->*_func)(window);
}
}