blob: f8ad30312c13ac87785b4c4052553cee25dc4430 [file] [log] [blame]
/*
* Copyright (c) 2017 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
layout(local_size_x = LOCAL_SIZE_X, local_size_y = LOCAL_SIZE_Y, local_size_z = LOCAL_SIZE_Z) in;
#include "helpers.h"
#define SWAP_ROW_func(u0, l0) \
{ \
tmp_swap = u0; \
u0 = l0; \
l0 = tmp_swap; \
}
#define SWAP_4x4_func(u0, u1, u2, u3, l0, l1, l2, l3) \
{ \
vec4 tmp_swap; \
SWAP_ROW_func(u0, l0); \
SWAP_ROW_func(u1, l1); \
SWAP_ROW_func(u2, l2); \
SWAP_ROW_func(u3, l3); \
}
#define TRANSPOSE_4x4_func(u0, u1, u2, u3) \
{ \
mat4x4 matin, matout; \
matin[0] = u0; \
matin[1] = u1; \
matin[2] = u2; \
matin[3] = u3; \
matout = transpose(matin); \
u0 = matout[0]; \
u1 = matout[1]; \
u2 = matout[2]; \
u3 = matout[3]; \
}
/** This OpenGL ES kernel computes the matrix transposition of input matrix
*
* @note The data type must be passed at compile time using "#define DATA_TYPE_NAME". e.g. "#define DATA_TYPE_FP32"
* @note Optimization name must be passed using "#define OPTIMIZATION_NAME" for F16. e.g. "#define TRANSPOSE_8X8"
*
* @param[in] src_ptr Pointer to the source matrix. Supported data types: F32/F16
* @param[in] src_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data type: same as src_ptr
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
* @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
*/
layout(std140) uniform shader_params
{
IMAGE_PARAM_DECLARATION(src);
IMAGE_PARAM_DECLARATION(dst);
};
#ifdef DATA_TYPE_FP32
precision highp float;
BUFFER_DECLARATION(src, 1, float, readonly);
BUFFER_DECLARATION(dst, 2, float, writeonly);
#define LOAD16(r, name, offset) \
{ \
r.x = LOAD4(name, offset); \
r.y = LOAD4(name, offset + uint(1)); \
r.z = LOAD4(name, offset + uint(2)); \
r.w = LOAD4(name, offset + uint(3)); \
}
#define STORE16(name, offset, r) \
{ \
STORE4(name, offset, r.x); \
STORE4(name, offset + uint(1), r.y); \
STORE4(name, offset + uint(2), r.z); \
STORE4(name, offset + uint(3), r.w); \
}
void main(void)
{
// compute source address
Image src = CONVERT_TO_IMAGE_STRUCT(src);
Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
// load the NxN block at (x, y)
vec4 u0;
vec4 u1;
vec4 u2;
vec4 u3;
LOAD16(u0, src, offset(src, 0, 0));
LOAD16(u1, src, offset(src, 0, 1));
LOAD16(u2, src, offset(src, 0, 2));
LOAD16(u3, src, offset(src, 0, 3));
// transpose the block
TRANSPOSE_4x4_func(u0, u1, u2, u3);
// store the block at (y, x)
uint dst_offset_in_bytes = uint(16) * uint(gl_GlobalInvocationID.y) + uint(4) * uint(gl_GlobalInvocationID.x) * (dst.stride_y) + (dst.offset_first_element_in_bytes);
STORE16(dst, uint((dst_offset_in_bytes + uint(0) * dst.stride_y) >> 2), u0);
STORE16(dst, uint((dst_offset_in_bytes + uint(1) * dst.stride_y) >> 2), u1);
STORE16(dst, uint((dst_offset_in_bytes + uint(2) * dst.stride_y) >> 2), u2);
STORE16(dst, uint((dst_offset_in_bytes + uint(3) * dst.stride_y) >> 2), u3);
}
#elif defined(DATA_TYPE_FP16) /* DATA_TYPE_FP32 */
precision mediump float;
#if defined(TRANSPOSE_4X4)
BUFFER_DECLARATION(src, 1, uvec2, readonly);
BUFFER_DECLARATION(dst, 2, uvec2, writeonly);
void main(void)
{
// compute source address
Image src = GC_CONVERT_TO_IMAGE_STRUCT(src);
Image dst = GC_CONVERT_TO_IMAGE_STRUCT(dst);
// load the NxN block at (x, y)
vec4 u0;
vec4 u1;
vec4 u2;
vec4 u3;
uvec2 packed_s[4];
GC_LOAD1_2D_OFFSET(packed_s[0], src, 0, 0);
GC_LOAD1_2D_OFFSET(packed_s[1], src, 0, 1);
GC_LOAD1_2D_OFFSET(packed_s[2], src, 0, 2);
GC_LOAD1_2D_OFFSET(packed_s[3], src, 0, 3);
u0 = vec4(unpackHalf2x16(packed_s[0].x), unpackHalf2x16(packed_s[0].y));
u1 = vec4(unpackHalf2x16(packed_s[1].x), unpackHalf2x16(packed_s[1].y));
u2 = vec4(unpackHalf2x16(packed_s[2].x), unpackHalf2x16(packed_s[2].y));
u3 = vec4(unpackHalf2x16(packed_s[3].x), unpackHalf2x16(packed_s[3].y));
// transpose the block
TRANSPOSE_4x4_func(u0, u1, u2, u3);
// store the block at (y, x)
uint dst_offset_in_bytes = uint(8) * uint(gl_GlobalInvocationID.y) + uint(gl_GlobalInvocationID.x) * (dst_step_y) + (dst.offset_first_element_in_bytes);
dst.current_offset = dst_offset_in_bytes;
packed_s[0] = uvec2(packHalf2x16(u0.xy), packHalf2x16(u0.zw));
packed_s[1] = uvec2(packHalf2x16(u1.xy), packHalf2x16(u1.zw));
packed_s[2] = uvec2(packHalf2x16(u2.xy), packHalf2x16(u2.zw));
packed_s[3] = uvec2(packHalf2x16(u3.xy), packHalf2x16(u3.zw));
GC_STORE1_2D_OFFSET(packed_s[0], dst, 0, 0);
GC_STORE1_2D_OFFSET(packed_s[1], dst, 0, 1);
GC_STORE1_2D_OFFSET(packed_s[2], dst, 0, 2);
GC_STORE1_2D_OFFSET(packed_s[3], dst, 0, 3);
}
#elif defined(TRANSPOSE_8X8) /* TRANSPOSE_4X4 */
BUFFER_DECLARATION(src, 1, uvec4, readonly);
BUFFER_DECLARATION(dst, 2, uvec4, writeonly);
void main(void)
{
// compute source address
Image src = GC_CONVERT_TO_IMAGE_STRUCT(src);
Image dst = GC_CONVERT_TO_IMAGE_STRUCT(dst);
vec4 u[8][2];
uvec4 packed_s[8];
for(int i = 0; i < 8; i++)
{
GC_LOAD1_2D_OFFSET(packed_s[i], src, 0, i);
u[i][0] = vec4(unpackHalf2x16(packed_s[i].x), unpackHalf2x16(packed_s[i].y));
u[i][1] = vec4(unpackHalf2x16(packed_s[i].z), unpackHalf2x16(packed_s[i].w));
}
// transpose the block
TRANSPOSE_4x4_func(u[0][0], u[1][0], u[2][0], u[3][0]);
TRANSPOSE_4x4_func(u[0][1], u[1][1], u[2][1], u[3][1]);
TRANSPOSE_4x4_func(u[4][0], u[5][0], u[6][0], u[7][0]);
TRANSPOSE_4x4_func(u[4][1], u[5][1], u[6][1], u[7][1]);
SWAP_4x4_func(u[0][1], u[1][1], u[2][1], u[3][1], u[4][0], u[5][0], u[6][0], u[7][0]);
// store the block at (y, x)
uint dst_offset_in_bytes = uint(16) * uint(gl_GlobalInvocationID.y) + uint(gl_GlobalInvocationID.x) * (dst_step_y) + (dst.offset_first_element_in_bytes);
dst.current_offset = dst_offset_in_bytes;
for(int i = 0; i < 8; i++)
{
packed_s[i] = uvec4(packHalf2x16(u[i][0].xy), packHalf2x16(u[i][0].zw), packHalf2x16(u[i][1].xy), packHalf2x16(u[i][1].zw));
GC_STORE1_2D_OFFSET(packed_s[i], dst, 0, i);
}
}
#elif defined(TRANSPOSE_8X8_SQUARE) /* TRANSPOSE_4X4 */
BUFFER_DECLARATION(src, 1, uvec4, readonly);
BUFFER_DECLARATION(dst, 2, uvec4, writeonly);
void main(void)
{
Image src = GC_CONVERT_TO_IMAGE_STRUCT(src);
Image dst = GC_CONVERT_TO_IMAGE_STRUCT(dst);
if(gl_GlobalInvocationID.x <= gl_GlobalInvocationID.y)
{
uint blk1_offset_in_bytes = src.current_offset;
uint blk2_offset_in_bytes = uint(16) * uint(gl_GlobalInvocationID.y) + uint(gl_GlobalInvocationID.x) * (dst_step_y) + (dst.offset_first_element_in_bytes);
// load block1
vec4 u1[8][2];
uvec4 packed_s[8];
src.current_offset = blk1_offset_in_bytes;
for(int i = 0; i < 8; i++)
{
GC_LOAD1_2D_OFFSET(packed_s[i], src, 0, i);
u1[i][0] = vec4(unpackHalf2x16(packed_s[i].x), unpackHalf2x16(packed_s[i].y));
u1[i][1] = vec4(unpackHalf2x16(packed_s[i].z), unpackHalf2x16(packed_s[i].w));
}
// transpose block1
TRANSPOSE_4x4_func(u1[0][0], u1[1][0], u1[2][0], u1[3][0]);
TRANSPOSE_4x4_func(u1[0][1], u1[1][1], u1[2][1], u1[3][1]);
TRANSPOSE_4x4_func(u1[4][0], u1[5][0], u1[6][0], u1[7][0]);
TRANSPOSE_4x4_func(u1[4][1], u1[5][1], u1[6][1], u1[7][1]);
SWAP_4x4_func(u1[0][1], u1[1][1], u1[2][1], u1[3][1], u1[4][0], u1[5][0], u1[6][0], u1[7][0]);
// write to block2
dst.current_offset = blk2_offset_in_bytes;
for(int i = 0; i < 8; i++)
{
packed_s[i] = uvec4(packHalf2x16(u1[i][0].xy), packHalf2x16(u1[i][0].zw), packHalf2x16(u1[i][1].xy), packHalf2x16(u1[i][1].zw));
GC_STORE1_2D_OFFSET(packed_s[i], dst, 0, i);
}
// load block2
vec4 u2[8][2];
src.current_offset = blk2_offset_in_bytes;
for(int i = 0; i < 8; i++)
{
GC_LOAD1_2D_OFFSET(packed_s[i], src, 0, i);
u2[i][0] = vec4(unpackHalf2x16(packed_s[i].x), unpackHalf2x16(packed_s[i].y));
u2[i][1] = vec4(unpackHalf2x16(packed_s[i].z), unpackHalf2x16(packed_s[i].w));
}
// transpose block2
TRANSPOSE_4x4_func(u2[0][0], u2[1][0], u2[2][0], u2[3][0]);
TRANSPOSE_4x4_func(u2[0][1], u2[1][1], u2[2][1], u2[3][1]);
TRANSPOSE_4x4_func(u2[4][0], u2[5][0], u2[6][0], u2[7][0]);
TRANSPOSE_4x4_func(u2[4][1], u2[5][1], u2[6][1], u2[7][1]);
SWAP_4x4_func(u2[0][1], u2[1][1], u2[2][1], u2[3][1], u2[4][0], u2[5][0], u2[6][0], u2[7][0]);
// write to block1
dst.current_offset = blk1_offset_in_bytes;
for(int i = 0; i < 8; i++)
{
packed_s[i] = uvec4(packHalf2x16(u2[i][0].xy), packHalf2x16(u2[i][0].zw), packHalf2x16(u2[i][1].xy), packHalf2x16(u2[i][1].zw));
GC_STORE1_2D_OFFSET(packed_s[i], dst, 0, i);
}
}
}
#endif /* TRANSPOSE_4X4 */
#endif /* DATA_TYPE_FP32 */