blob: 695e1cbbf16794db6543de5d9f3f369485b1da36 [file] [log] [blame]
/*
* Copyright (c) 2018-2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "src/core/CL/kernels/CLWinogradInputTransformKernel.h"
#include "arm_compute/core/CL/CLHelpers.h"
#include "arm_compute/core/CL/CLKernelLibrary.h"
#include "arm_compute/core/CL/ICLTensor.h"
#include "arm_compute/core/CL/OpenCL.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "src/core/AccessWindowStatic.h"
#include "src/core/CL/CLValidate.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/WindowHelpers.h"
#include "support/StringSupport.h"
using namespace arm_compute;
namespace
{
Status validate_arguments(const ITensorInfo *input, const ITensorInfo *output, const WinogradInfo &winograd_info)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F32, DataType::F16);
ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(input);
const PadStrideInfo conv_info = winograd_info.convolution_info;
const Size2D output_tile_size = winograd_info.output_tile_size;
const Size2D kernel_size = winograd_info.kernel_size;
ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.stride().first != 1 || conv_info.stride().second != 1, "Winograd input transform only supports unit strides");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(!cl_winograd_convolution_layer_supported(output_tile_size, kernel_size, input->data_layout()), "Winograd input transform not supported");
ARM_COMPUTE_UNUSED(conv_info);
ARM_COMPUTE_UNUSED(output_tile_size);
ARM_COMPUTE_UNUSED(kernel_size);
// Validate configured output
if(output->total_size() != 0)
{
const TensorShape output_shape = misc::shape_calculator::compute_winograd_input_transform_shape(*input, winograd_info);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(output->tensor_shape(), output_shape);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
}
return Status{};
}
std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input, ITensorInfo *output, const WinogradInfo &winograd_info)
{
ARM_COMPUTE_UNUSED(output);
ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
bool window_changed = false;
Window win = calculate_max_window(*input, Steps(1, 1));
if(input->data_layout() == DataLayout::NCHW)
{
const PadStrideInfo conv_info = winograd_info.convolution_info;
const Size2D output_tile_size = winograd_info.output_tile_size;
const Size2D kernel_size = winograd_info.kernel_size;
unsigned int num_elems_read_per_iteration_x = output_tile_size.width + kernel_size.width - 1;
unsigned int num_elems_read_per_iteration_y = output_tile_size.height + kernel_size.height - 1;
AccessWindowRectangle input_access(input, -conv_info.pad_left(), -conv_info.pad_top(), num_elems_read_per_iteration_x, num_elems_read_per_iteration_y);
window_changed = update_window_and_padding(win, input_access);
}
Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
return std::make_pair(err, win);
}
} // namespace
CLWinogradInputTransformKernel::CLWinogradInputTransformKernel()
: _border_size(0), _input(nullptr), _output(nullptr), _data_layout(DataLayout::UNKNOWN), _num_tiles_x(0), _num_tiles_y(0), _step_z(1)
{
}
BorderSize CLWinogradInputTransformKernel::border_size() const
{
return _border_size;
}
void CLWinogradInputTransformKernel::configure(const ICLTensor *input, ICLTensor *output, const WinogradInfo &winograd_info)
{
configure(CLKernelLibrary::get().get_compile_context(), input, output, winograd_info);
}
void CLWinogradInputTransformKernel::configure(const CLCompileContext &compile_context, const ICLTensor *input, ICLTensor *output, const WinogradInfo &winograd_info)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), output->info(), winograd_info));
auto padding_info = get_padding_info({ input, output });
const PadStrideInfo conv_info = winograd_info.convolution_info;
const Size2D output_tile_size = winograd_info.output_tile_size;
const Size2D kernel_size = winograd_info.kernel_size;
_data_layout = input->info()->data_layout();
const size_t idx_w = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::WIDTH);
const size_t idx_h = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::HEIGHT);
// Compute number of elements to process in the X and Y direction
const int num_elements_x = input->info()->dimension(idx_w) - (kernel_size.width - 1) + conv_info.pad_left() + conv_info.pad_right();
const int num_elements_y = input->info()->dimension(idx_h) - (kernel_size.height - 1) + conv_info.pad_top() + conv_info.pad_bottom();
if(_data_layout == DataLayout::NCHW)
{
// Check if we need to extend the right or bottom border
const unsigned int extra_border_right = ((num_elements_x % output_tile_size.width) == 0) ? 0u : static_cast<unsigned int>(output_tile_size.width - 1);
const unsigned int extra_border_bottom = ((num_elements_y % output_tile_size.height) == 0) ? 0u : static_cast<unsigned int>(output_tile_size.height - 1);
_border_size = BorderSize(conv_info.pad_top(), conv_info.pad_right() + extra_border_right, conv_info.pad_bottom() + extra_border_bottom, conv_info.pad_left());
}
else
{
_border_size = BorderSize();
}
// Compute the number of output tiles along the x and y direction of size "output_tile_size"
const Size2D num_tiles = compute_winograd_convolution_tiles(Size2D(input->info()->dimension(idx_w), input->info()->dimension(idx_h)),
kernel_size,
output_tile_size,
conv_info);
_input = input;
_output = output;
_num_tiles_x = num_tiles.width;
_num_tiles_y = num_tiles.height;
const TensorShape output_shape = misc::shape_calculator::compute_winograd_input_transform_shape(*input->info(), winograd_info);
// Output auto initialization if not yet initialized
auto_init_if_empty(*output->info(), input->info()->clone()->set_tensor_shape(output_shape));
ARM_COMPUTE_ERROR_ON(_num_tiles_x * _num_tiles_y != static_cast<int>(output->info()->dimension(1)));
const size_t total_batches = input->info()->tensor_shape().total_size_upper(3);
CLBuildOptions build_opts;
build_opts.add_option("-DNUM_TILES_X=" + support::cpp11::to_string(_num_tiles_x));
build_opts.add_option("-DPAD_LEFT=" + support::cpp11::to_string(conv_info.pad_left()));
build_opts.add_option("-DPAD_TOP=" + support::cpp11::to_string(conv_info.pad_top()));
build_opts.add_option("-DOUTPUT_TILE_W=" + support::cpp11::to_string(output_tile_size.width));
build_opts.add_option("-DOUTPUT_TILE_H=" + support::cpp11::to_string(output_tile_size.height));
build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(input->info()->data_type()));
build_opts.add_option_if(winograd_info.kernel_size.height == 1, "-DWINOGRAD_INPUT_TRANSFORM_HORIZONTAL");
build_opts.add_option_if(winograd_info.kernel_size.width == 1, "-DWINOGRAD_INPUT_TRANSFORM_VERTICAL");
if(_data_layout == DataLayout::NHWC)
{
build_opts.add_option_if(total_batches > 1, "-DNUM_TILES_Y=" + support::cpp11::to_string(_num_tiles_y));
build_opts.add_option("-DSRC_DIM_1=" + support::cpp11::to_string(_input->info()->dimension(1)));
build_opts.add_option("-DSRC_DIM_2=" + support::cpp11::to_string(_input->info()->dimension(2)));
}
else
{
build_opts.add_option_if(total_batches > 1, "-DSRC_DEPTH=" + support::cpp11::to_string(_input->info()->dimension(2)));
}
// Create kernel
std::string kernel_name = "winograd_input_transform_" + output_tile_size.to_string() + "_" + kernel_size.to_string();
// Get the maximum dimension from the tile size
const unsigned int tile_max_dim = std::max(output_tile_size.width, output_tile_size.height);
// Check optimized kernel if output_dims == 2x2
if((tile_max_dim == 2) && (_data_layout == DataLayout::NCHW))
{
_step_z = (_input->info()->dimension(2) % 2) != 0 ? 1 : 2;
}
// Append stepz and data layout
kernel_name += "_stepz";
kernel_name += support::cpp11::to_string(_step_z);
kernel_name += "_" + lower_string(string_from_data_layout(_data_layout));
_kernel = create_kernel(compile_context, kernel_name, build_opts.options());
// Create window and update padding
auto win_config = validate_and_configure_window(input->info(), output->info(), winograd_info);
ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
ICLKernel::configure_internal(win_config.second, cl::NDRange(1, 1, 8));
ARM_COMPUTE_ERROR_ON((input->info()->data_layout() == DataLayout::NHWC) && has_padding_changed(padding_info));
_config_id = kernel_name;
_config_id += support::cpp11::to_string(input->info()->dimension(0));
_config_id += "_";
_config_id += support::cpp11::to_string(input->info()->dimension(1));
_config_id += "_";
_config_id += support::cpp11::to_string(input->info()->dimension(2));
_config_id += "_";
_config_id += support::cpp11::to_string(conv_info.pad_left());
_config_id += "_";
_config_id += support::cpp11::to_string(conv_info.pad_top());
_config_id += "_";
_config_id += lower_string(string_from_data_layout(_data_layout));
}
Status CLWinogradInputTransformKernel::validate(const ITensorInfo *input, const ITensorInfo *output, const WinogradInfo &winograd_info)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output);
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, output, winograd_info));
ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(), output->clone().get(), winograd_info).first);
return Status{};
}
void CLWinogradInputTransformKernel::run(const Window &window, cl::CommandQueue &queue)
{
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IKernel::window(), window);
const size_t idx_w = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::WIDTH);
const size_t idx_h = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::HEIGHT);
const size_t idx_c = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::CHANNEL);
const size_t total_batches = window.shape().total_size_upper(3);
// Collapse window
Window window_collapsed = window.collapse_if_possible(ICLKernel::window(), Window::DimZ);
Window slice = window_collapsed.first_slice_window_3D();
slice.set(idx_w, Window::Dimension(0, _num_tiles_x, 1));
slice.set(idx_h, Window::Dimension(0, _num_tiles_y, 1));
if(_data_layout == DataLayout::NHWC)
{
slice.set(idx_h, Window::Dimension(0, _num_tiles_y * total_batches, 1));
}
ARM_COMPUTE_ERROR_ON(((slice[idx_c].end() - slice[idx_c].start()) % _step_z) != 0);
slice.set(idx_c, Window::Dimension(slice[idx_c].start(), slice[idx_c].end(), _step_z));
unsigned int idx = 2 * num_arguments_per_3D_tensor();
_kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(_input->info()->strides_in_bytes()[3]));
_kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(_output->info()->strides_in_bytes()[3]));
do
{
unsigned int idx = 0;
add_3D_tensor_argument(idx, _input, slice);
add_3D_tensor_argument(idx, _output, slice);
enqueue(queue, *this, slice, lws_hint());
}
while(window_collapsed.slide_window_slice_3D(slice));
}