blob: 6cf7b97e66a2c96ea30f3219083b4fa233f0199a [file] [log] [blame]
/*
* Copyright (c) 2017-2019 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/runtime/NEON/functions/NEDepthwiseConvolutionLayer.h"
#include "arm_compute/core/utils/misc/InfoHelpers.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
#include "arm_compute/runtime/NEON/NEScheduler.h"
using namespace arm_compute::misc;
using namespace arm_compute::misc::shape_calculator;
namespace arm_compute
{
namespace
{
Status validate_arguments_optimized(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info,
unsigned int depth_multiplier, const ActivationLayerInfo &act_info, const Size2D &dilation)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights);
ARM_COMPUTE_RETURN_ERROR_ON(input->data_layout() == DataLayout::UNKNOWN);
ARM_COMPUTE_RETURN_ERROR_ON(dilation.x() < 1 || dilation.y() < 1);
const size_t idx_w = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::WIDTH);
const size_t idx_h = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::HEIGHT);
ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(idx_w) + (weights->dimension(idx_w) - 1) * (dilation.x() - 1) > input->dimension(idx_w) + conv_info.pad_left() + conv_info.pad_right());
ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(idx_h) + (weights->dimension(idx_h) - 1) * (dilation.y() - 1) > input->dimension(idx_h) + conv_info.pad_top() + conv_info.pad_bottom());
if(biases != nullptr)
{
const unsigned int channel_idx = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::CHANNEL);
ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 1);
ARM_COMPUTE_RETURN_ERROR_ON(biases->dimension(0) != weights->dimension(channel_idx));
}
const bool is_quantized = is_data_type_quantized_asymmetric(input->data_type());
if(is_quantized)
{
const UniformQuantizationInfo iq_info = input->quantization_info().uniform();
const UniformQuantizationInfo wq_info = weights->quantization_info().uniform();
const UniformQuantizationInfo oq_info = output->quantization_info().uniform();
float multiplier = (iq_info.scale * wq_info.scale) / oq_info.scale;
ARM_COMPUTE_UNUSED(multiplier);
ARM_COMPUTE_RETURN_ERROR_ON(multiplier > 1.0f);
}
if(!NEDepthwiseConvolutionAssemblyDispatch::is_optimized_supported(input, weights, conv_info, depth_multiplier, dilation))
{
TensorInfo accumulator = TensorInfo(output->clone()->set_is_resizable(true).reset_padding().set_data_type(DataType::S32));
ARM_COMPUTE_RETURN_ON_ERROR(NEDepthwiseConvolutionLayer3x3Kernel::validate(input, weights, is_quantized ? &accumulator : output, conv_info, depth_multiplier, dilation));
if(is_quantized)
{
ARM_COMPUTE_RETURN_ON_ERROR(NEDirectConvolutionLayerOutputStageKernel::validate(&accumulator, biases, output));
}
}
else
{
ARM_COMPUTE_RETURN_ON_ERROR(NEDepthwiseConvolutionAssemblyDispatch::validate(input, weights, biases, output, conv_info, depth_multiplier, act_info, dilation));
}
//Validate Activation Layer
if(act_info.enabled())
{
ARM_COMPUTE_RETURN_ON_ERROR(NEActivationLayer::validate(output, nullptr, act_info));
}
return Status{};
}
} // namespace
NEDepthwiseConvolutionLayerOptimized::NEDepthwiseConvolutionLayerOptimized(std::shared_ptr<IMemoryManager> memory_manager)
: _func(std::move(memory_manager))
{
}
void NEDepthwiseConvolutionLayerOptimized::configure(ITensor *input,
const ITensor *weights,
const ITensor *biases,
ITensor *output, const PadStrideInfo &conv_info,
unsigned int depth_multiplier,
const ActivationLayerInfo &act_info,
const Size2D &dilation)
{
_func.configure(input, weights, biases, output, conv_info, depth_multiplier, act_info, dilation);
}
Status NEDepthwiseConvolutionLayerOptimized::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info,
unsigned int depth_multiplier, const ActivationLayerInfo &act_info, const Size2D &dilation)
{
return validate_arguments_optimized(input, weights, biases, output, conv_info, depth_multiplier, act_info, dilation);
}
void NEDepthwiseConvolutionLayerOptimized::run()
{
_func.run();
}
void NEDepthwiseConvolutionLayerOptimized::prepare()
{
_func.prepare();
}
NEDepthwiseConvolutionLayer::NEDepthwiseConvolutionLayerOptimizedInternal::NEDepthwiseConvolutionLayerOptimizedInternal(std::shared_ptr<IMemoryManager> memory_manager)
: _memory_group(memory_manager), _dwc_kernel(), _dwc_optimized_func(memory_manager), _output_stage_kernel(), _border_handler(), _permute_input(), _permute_weights(), _permute_output(),
_activationlayer_function(), _accumulator(), _permuted_input(), _permuted_weights(), _permuted_output(), _original_weights(nullptr), _has_bias(false), _is_quantized(false), _is_optimized(false),
_is_nchw(true), _permute(false), _is_activationlayer_enabled(false), _is_prepared(false)
{
}
void NEDepthwiseConvolutionLayer::NEDepthwiseConvolutionLayerOptimizedInternal::configure_generic(ITensor *input,
const ITensor *weights,
const ITensor *biases,
ITensor *output,
const PadStrideInfo &conv_info,
unsigned int depth_multiplier,
const ActivationLayerInfo &act_info,
const Size2D &dilation)
{
ARM_COMPUTE_UNUSED(act_info);
PixelValue zero_value(0.f);
// Initialize the intermediate accumulator tensor in case of quantized input
if(_is_quantized)
{
TensorShape accum_shape = output->info()->tensor_shape();
DataLayout accum_layout = output->info()->data_layout();
if(!_is_nchw)
{
permute(accum_shape, PermutationVector(1U, 2U, 0U));
accum_layout = DataLayout::NCHW;
}
_memory_group.manage(&_accumulator);
_accumulator.allocator()->init(TensorInfo(accum_shape, 1, DataType::S32, output->info()->quantization_info()));
_accumulator.info()->set_data_layout(accum_layout);
zero_value = PixelValue(static_cast<uint32_t>(input->info()->quantization_info().uniform().offset));
}
if(!_is_nchw)
{
_memory_group.manage(&_permuted_input);
_memory_group.manage(&_permuted_output);
// Configure the function to transform the input tensor from NHWC -> NCHW
_permute_input.configure(input, &_permuted_input, PermutationVector(1U, 2U, 0U));
_permuted_input.info()->set_data_layout(DataLayout::NCHW);
// Configure the function to transform the weights tensor from HWI -> IHW
_permute_weights.configure(weights, &_permuted_weights, PermutationVector(1U, 2U, 0U));
_permuted_weights.info()->set_data_layout(DataLayout::NCHW);
_permuted_output.info()->set_quantization_info(output->info()->quantization_info());
// Configure depthwise
_dwc_kernel.configure(&_permuted_input, &_permuted_weights, (_is_quantized) ? &_accumulator : &_permuted_output, conv_info, depth_multiplier, dilation);
// Configure border handler
_border_handler.configure(&_permuted_input, _dwc_kernel.border_size(), BorderMode::CONSTANT, zero_value);
// Allocate tensors
_permuted_input.allocator()->allocate();
}
else
{
// Configure depthwise convolution kernel
_dwc_kernel.configure(input, weights, (_is_quantized) ? &_accumulator : output, conv_info, depth_multiplier, dilation);
// Configure border handler
_border_handler.configure(input, _dwc_kernel.border_size(), BorderMode::CONSTANT, zero_value);
}
// Configure biases accumulation
if(_is_quantized)
{
const UniformQuantizationInfo iq_info = input->info()->quantization_info().uniform();
const UniformQuantizationInfo wq_info = weights->info()->quantization_info().uniform();
const UniformQuantizationInfo oq_info = (output->info()->total_size() == 0) ? iq_info : output->info()->quantization_info().uniform();
float multiplier = (iq_info.scale * wq_info.scale) / oq_info.scale;
int output_multiplier;
int output_shift;
quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift);
_output_stage_kernel.configure(&_accumulator, biases, _is_nchw ? output : &_permuted_output, output_multiplier, output_shift, oq_info.offset);
_accumulator.allocator()->allocate();
}
else if(_has_bias)
{
_output_stage_kernel.configure(_is_nchw ? output : &_permuted_output, biases);
}
// Permute output
if(!_is_nchw)
{
// Configure the function to transform the convoluted output to NHWC
_permute_output.configure(&_permuted_output, output, PermutationVector(2U, 0U, 1U));
_permuted_output.allocator()->allocate();
}
}
void NEDepthwiseConvolutionLayer::NEDepthwiseConvolutionLayerOptimizedInternal::configure_optimized(const ITensor *input,
const ITensor *weights,
const ITensor *biases,
ITensor *output,
const PadStrideInfo &conv_info,
unsigned int depth_multiplier,
const ActivationLayerInfo &act_info,
const Size2D &dilation)
{
ActivationLayerInfo act_info_to_use = ActivationLayerInfo();
const bool is_relu = arm_compute::utils::info_helpers::is_relu(act_info);
const bool is_relu6 = arm_compute::utils::info_helpers::is_relu6(act_info);
_is_activationlayer_enabled = act_info.enabled() && !(is_relu || is_relu6);
if(!_is_activationlayer_enabled)
{
act_info_to_use = act_info;
}
if(_is_nchw)
{
_memory_group.manage(&_permuted_input);
_memory_group.manage(&_permuted_output);
// Configure the function to transform the input tensor from NCHW -> NHWC
_permute_input.configure(input, &_permuted_input, PermutationVector(2U, 0U, 1U));
_permuted_input.info()->set_data_layout(DataLayout::NHWC);
// Configure the function to transform the weights tensor from IHW -> HWI
_permute_weights.configure(weights, &_permuted_weights, PermutationVector(2U, 0U, 1U));
_permuted_weights.info()->set_data_layout(DataLayout::NHWC);
_permuted_output.info()->set_data_layout(DataLayout::NHWC);
_permuted_output.info()->set_quantization_info(output->info()->quantization_info());
// Configure optimized depthwise
_dwc_optimized_func.configure(&_permuted_input, &_permuted_weights, biases, &_permuted_output, conv_info, depth_multiplier, act_info_to_use, dilation);
// Configure the function to transform the convoluted output to ACL's native ordering format NCHW
_permuted_output.info()->set_data_layout(DataLayout::NHWC);
_permute_output.configure(&_permuted_output, output, PermutationVector(1U, 2U, 0U));
// Allocate tensors
_permuted_input.allocator()->allocate();
_permuted_output.allocator()->allocate();
}
else
{
_dwc_optimized_func.configure(input, weights, biases, output, conv_info, depth_multiplier, act_info_to_use, dilation);
}
}
void NEDepthwiseConvolutionLayer::NEDepthwiseConvolutionLayerOptimizedInternal::configure(ITensor *input,
const ITensor *weights,
const ITensor *biases,
ITensor *output, const PadStrideInfo &conv_info,
unsigned int depth_multiplier,
const ActivationLayerInfo &act_info,
const Size2D &dilation)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output);
// Perform validation step
ARM_COMPUTE_ERROR_THROW_ON(NEDepthwiseConvolutionLayerOptimizedInternal::validate(input->info(), weights->info(), (biases == nullptr) ? nullptr : biases->info(),
output->info(), conv_info, depth_multiplier, act_info, dilation));
_original_weights = weights;
_is_quantized = is_data_type_quantized_asymmetric(input->info()->data_type());
_has_bias = biases != nullptr;
_is_optimized = NEDepthwiseConvolutionAssemblyDispatch::is_optimized_supported(input->info(),
weights->info(),
conv_info,
depth_multiplier,
dilation);
_is_nchw = input->info()->data_layout() == DataLayout::NCHW;
_permute = _is_optimized == _is_nchw;
_is_prepared = false;
_is_activationlayer_enabled = act_info.enabled();
// Configure appropriate pipeline
if(_is_optimized)
{
configure_optimized(input, weights, biases, output, conv_info, depth_multiplier, act_info, dilation);
}
else
{
configure_generic(input, weights, biases, output, conv_info, depth_multiplier, act_info, dilation);
}
// Configure activation
if(_is_activationlayer_enabled)
{
_activationlayer_function.configure(output, nullptr, act_info);
}
}
Status NEDepthwiseConvolutionLayer::NEDepthwiseConvolutionLayerOptimizedInternal::validate(const ITensorInfo *input,
const ITensorInfo *weights,
const ITensorInfo *biases,
const ITensorInfo *output,
const PadStrideInfo &conv_info,
unsigned int depth_multiplier,
const ActivationLayerInfo &act_info,
const Size2D &dilation)
{
return validate_arguments_optimized(input, weights, biases, output, conv_info, depth_multiplier, act_info, dilation);
}
void NEDepthwiseConvolutionLayer::NEDepthwiseConvolutionLayerOptimizedInternal::run_generic()
{
// Fill border
NEScheduler::get().schedule(&_border_handler, Window::DimX);
// Execute depthwise convolution
NEScheduler::get().schedule(&_dwc_kernel, Window::DimX);
// Add biases
if(_has_bias || _is_quantized)
{
NEScheduler::get().schedule(&_output_stage_kernel, Window::DimX);
}
// Permute output
if(!_is_nchw)
{
_permute_output.run();
}
}
void NEDepthwiseConvolutionLayer::NEDepthwiseConvolutionLayerOptimizedInternal::run_optimized()
{
// Run assembly function
_dwc_optimized_func.run();
// Permute output
if(_is_nchw)
{
_permute_output.run();
}
}
void NEDepthwiseConvolutionLayer::NEDepthwiseConvolutionLayerOptimizedInternal::run()
{
prepare();
MemoryGroupResourceScope scope_mg(_memory_group);
// Permute input
if(_permute)
{
_permute_input.run();
}
_is_optimized ? run_optimized() : run_generic();
// Run activation
if(_is_activationlayer_enabled)
{
_activationlayer_function.run();
}
}
void NEDepthwiseConvolutionLayer::NEDepthwiseConvolutionLayerOptimizedInternal::prepare()
{
if(!_is_prepared)
{
// Permute weights
if(_permute)
{
_permuted_weights.allocator()->allocate();
_permute_weights.run();
_original_weights->mark_as_unused();
}
// Prepare optimized function
if(_is_optimized)
{
_dwc_optimized_func.prepare();
if(!_permuted_weights.is_used())
{
_permuted_weights.allocator()->free();
}
}
_is_prepared = true;
}
}
NEDepthwiseConvolutionLayer::NEDepthwiseConvolutionLayerGeneric::NEDepthwiseConvolutionLayerGeneric()
: _depthwise_conv_kernel(), _fill_border(), _permute_input(), _permute_weights(), _permute_output(), _activationlayer_function(), _permuted_input(), _permuted_weights(), _permuted_output(),
_is_prepared(false), _is_nchw(false), _is_activationlayer_enabled(false), _original_weights(nullptr)
{
}
void NEDepthwiseConvolutionLayer::NEDepthwiseConvolutionLayerGeneric::configure(ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, const PadStrideInfo &conv_info,
unsigned int depth_multiplier, const ActivationLayerInfo &act_info, const Size2D &dilation)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output);
ARM_COMPUTE_ERROR_THROW_ON(NEDepthwiseConvolutionLayer::validate(input->info(), weights->info(), (biases == nullptr) ? nullptr : biases->info(),
output->info(), conv_info, depth_multiplier, act_info, dilation));
_is_nchw = input->info()->data_layout() == DataLayout::NCHW;
_is_prepared = !_is_nchw;
ITensor *input_to_use = input;
const ITensor *weights_to_use = weights;
ITensor *output_to_use = output;
if(_is_nchw)
{
_permute_input.configure(input, &_permuted_input, PermutationVector(2U, 0U, 1U));
_permuted_input.info()->set_data_layout(DataLayout::NHWC);
input_to_use = &_permuted_input;
_permute_weights.configure(weights, &_permuted_weights, PermutationVector(2U, 0U, 1U));
_permuted_weights.info()->set_data_layout(DataLayout::NHWC);
weights_to_use = &_permuted_weights;
_permuted_output.allocator()->init(output->info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(TensorShape()));
output_to_use = &_permuted_output;
}
_original_weights = weights_to_use;
_depthwise_conv_kernel.configure(input_to_use, weights_to_use, biases, output_to_use, conv_info, depth_multiplier, dilation);
_fill_border.configure(input_to_use, _depthwise_conv_kernel.border_size(), BorderMode::CONSTANT, PixelValue(static_cast<uint64_t>(0), input->info()->data_type(), input->info()->quantization_info()));
if(_is_nchw)
{
_permute_output.configure(&_permuted_output, output, PermutationVector(1U, 2U, 0U));
_permuted_output.info()->set_data_layout(DataLayout::NHWC);
_permuted_input.allocator()->allocate();
_permuted_weights.allocator()->allocate();
_permuted_output.allocator()->allocate();
}
//Configure Activation Layer
_is_activationlayer_enabled = act_info.enabled();
if(_is_activationlayer_enabled)
{
_activationlayer_function.configure(output, nullptr, act_info);
}
}
Status NEDepthwiseConvolutionLayer::NEDepthwiseConvolutionLayerGeneric::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output,
const PadStrideInfo &conv_info,
unsigned int depth_multiplier, const ActivationLayerInfo &act_info, const Size2D &dilation)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output);
if(input->data_layout() == DataLayout::NCHW)
{
TensorShape permuted_input_shape = input->tensor_shape();
TensorShape permuted_weights_shape = weights->tensor_shape();
TensorShape permuted_output_shape = misc::shape_calculator::compute_depthwise_convolution_shape(*input, *weights, conv_info, depth_multiplier, dilation);
permute(permuted_input_shape, PermutationVector(2U, 0U, 1U));
permute(permuted_weights_shape, PermutationVector(2U, 0U, 1U));
permute(permuted_output_shape, PermutationVector(2U, 0U, 1U));
const TensorInfo permuted_input = TensorInfo(input->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(permuted_input_shape).set_data_layout(DataLayout::NHWC));
const TensorInfo permuted_weights = TensorInfo(weights->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(permuted_weights_shape).set_data_layout(DataLayout::NHWC));
const TensorInfo permuted_output = TensorInfo(output->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(permuted_output_shape).set_data_layout(DataLayout::NCHW));
ARM_COMPUTE_RETURN_ON_ERROR(NEPermute::validate(input, &permuted_input, PermutationVector(2U, 0U, 1U)));
ARM_COMPUTE_RETURN_ON_ERROR(NEPermute::validate(weights, &permuted_weights, PermutationVector(2U, 0U, 1U)));
ARM_COMPUTE_RETURN_ON_ERROR(NEPermute::validate(&permuted_output, output, PermutationVector(1U, 2U, 0U)));
ARM_COMPUTE_RETURN_ON_ERROR(NEDepthwiseConvolutionLayerNativeKernel::validate(&permuted_input, &permuted_weights, biases, &permuted_output, conv_info, depth_multiplier, dilation));
}
else
{
ARM_COMPUTE_RETURN_ON_ERROR(NEDepthwiseConvolutionLayerNativeKernel::validate(input, weights, biases, output, conv_info, depth_multiplier, dilation));
}
// Validate Activation Layer
if(act_info.enabled())
{
ARM_COMPUTE_RETURN_ON_ERROR(NEActivationLayer::validate(output, nullptr, act_info));
}
return Status{};
}
void NEDepthwiseConvolutionLayer::NEDepthwiseConvolutionLayerGeneric::run()
{
if(_is_nchw)
{
prepare();
_permute_input.run();
}
NEScheduler::get().schedule(&_fill_border, Window::DimX);
NEScheduler::get().schedule(&_depthwise_conv_kernel, Window::DimY);
if(_is_nchw)
{
_permute_output.run();
}
if(_is_activationlayer_enabled)
{
_activationlayer_function.run();
}
}
void NEDepthwiseConvolutionLayer::NEDepthwiseConvolutionLayerGeneric::prepare()
{
if(!_is_prepared)
{
ARM_COMPUTE_ERROR_ON(!_original_weights->is_used());
_permute_weights.run();
_original_weights->mark_as_unused();
_is_prepared = true;
}
}
NEDepthwiseConvolutionLayer::NEDepthwiseConvolutionLayer(std::shared_ptr<IMemoryManager> memory_manager)
: _depth_conv_func(DepthwiseConvolutionFunction::GENERIC), _func_optimized(std::move(memory_manager)), _func_generic()
{
}
void NEDepthwiseConvolutionLayer::configure(ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier,
const ActivationLayerInfo &act_info, const Size2D &dilation)
{
_depth_conv_func = get_depthwiseconvolution_function(input->info(), weights->info(), (biases != nullptr) ? biases->info() : nullptr, output->info(), conv_info, depth_multiplier, act_info, dilation);
switch(_depth_conv_func)
{
case DepthwiseConvolutionFunction::OPTIMIZED:
_func_optimized.configure(input, weights, biases, output, conv_info, depth_multiplier, act_info, dilation);
break;
case DepthwiseConvolutionFunction::GENERIC:
_func_generic.configure(input, weights, biases, output, conv_info, depth_multiplier, act_info, dilation);
break;
default:
ARM_COMPUTE_ERROR("Unsupported DepthwiseConvolutionFunction");
}
}
Status NEDepthwiseConvolutionLayer::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info,
unsigned int depth_multiplier, const ActivationLayerInfo &act_info, const Size2D &dilation)
{
DepthwiseConvolutionFunction depth_conv_func = get_depthwiseconvolution_function(input, weights, biases, output, conv_info, depth_multiplier, act_info, dilation);
switch(depth_conv_func)
{
case DepthwiseConvolutionFunction::OPTIMIZED:
return NEDepthwiseConvolutionLayerOptimized::validate(input, weights, biases, output, conv_info, depth_multiplier, act_info, dilation);
break;
case DepthwiseConvolutionFunction::GENERIC:
return NEDepthwiseConvolutionLayerGeneric::validate(input, weights, biases, output, conv_info, depth_multiplier, act_info, dilation);
break;
default:
ARM_COMPUTE_ERROR("Unsupported DepthwiseConvolutionFunction");
}
}
DepthwiseConvolutionFunction NEDepthwiseConvolutionLayer::get_depthwiseconvolution_function(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output,
const PadStrideInfo &conv_info,
unsigned int depth_multiplier, ActivationLayerInfo act_info, const Size2D &dilation)
{
if(bool(NEDepthwiseConvolutionLayerOptimized::validate(input, weights, biases, output, conv_info, depth_multiplier, act_info, dilation)))
{
return DepthwiseConvolutionFunction::OPTIMIZED;
}
else
{
return DepthwiseConvolutionFunction::GENERIC;
}
}
void NEDepthwiseConvolutionLayer::run()
{
switch(_depth_conv_func)
{
case DepthwiseConvolutionFunction::OPTIMIZED:
_func_optimized.run();
break;
case DepthwiseConvolutionFunction::GENERIC:
_func_generic.run();
break;
default:
ARM_COMPUTE_ERROR("DepthwiseConvolutionFunction not properly configured");
}
}
void NEDepthwiseConvolutionLayer::prepare()
{
switch(_depth_conv_func)
{
case DepthwiseConvolutionFunction::OPTIMIZED:
_func_optimized.prepare();
break;
case DepthwiseConvolutionFunction::GENERIC:
_func_generic.prepare();
break;
default:
ARM_COMPUTE_ERROR("DepthwiseConvolutionFunction not properly configured");
}
}
} // namespace arm_compute