blob: 9a099bd1b604a56ca3cfa86e07f2645b1ec1e443 [file] [log] [blame]
/*
* Copyright (c) 2017-2021,2024 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "src/cpu/kernels/CpuGemmLowpMatrixReductionKernel.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/KernelDescriptors.h"
#include "arm_compute/core/TensorInfo.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/WindowHelpers.h"
#include "src/core/NEON/wrapper/wrapper.h"
namespace arm_compute
{
namespace cpu
{
namespace kernels
{
namespace
{
Status validate_arguments_matrix_a_reduction(const ITensorInfo *src,
const ITensorInfo *dst,
const GEMMLowpReductionKernelInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, dst);
ARM_COMPUTE_ERROR_ON_MSG(info.is_reshaped == true, "Not supported");
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED,
DataType::QSYMM8, DataType::QSYMM8_PER_CHANNEL);
if (dst->total_size() > 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(dst, 1, DataType::S32);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(
dst->dimension(0) != src->dimension(1),
"Output vector must have length equal to the number of rows of the input matrix");
}
return Status{};
}
Status validate_arguments_matrix_b_reduction(const ITensorInfo *src,
const ITensorInfo *dst,
const GEMMLowpReductionKernelInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, dst);
ARM_COMPUTE_ERROR_ON_MSG(info.is_reshaped == true, "Not supported");
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED,
DataType::QSYMM8, DataType::QSYMM8_PER_CHANNEL);
if (dst->total_size() > 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(dst, 1, DataType::S32);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(
dst->dimension(0) != src->dimension(0),
"Output vector must have length equal to the number of columns of the input matrix");
}
return Status{};
}
} // namespace
void CpuGemmLowpMatrixAReductionKernel::configure(const ITensorInfo *src,
ITensorInfo *dst,
const GEMMLowpReductionKernelInfo &info)
{
// Perform validate step
ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst);
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments_matrix_a_reduction(src, dst, info));
_k = info.k;
_scalar = info.scalar;
_mul_by_scalar = info.mul_by_scalar;
switch (src->data_type())
{
case DataType::QASYMM8:
_func = &CpuGemmLowpMatrixAReductionKernel::run_internal<uint8_t>;
break;
case DataType::QASYMM8_SIGNED:
case DataType::QSYMM8:
case DataType::QSYMM8_PER_CHANNEL:
_func = &CpuGemmLowpMatrixAReductionKernel::run_internal<int8_t>;
break;
default:
ARM_COMPUTE_ERROR("Unsupported data type");
}
// Output auto initialization if not yet initialized
auto_init_if_empty(*dst, TensorShape(src->dimension(1)), 1, DataType::S32);
Window win = calculate_max_window(*dst, Steps(1));
ICpuKernel::configure(win);
}
Status CpuGemmLowpMatrixAReductionKernel::validate(const ITensorInfo *src,
const ITensorInfo *dst,
const GEMMLowpReductionKernelInfo &info)
{
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_matrix_a_reduction(src, dst, info));
return Status{};
}
template <typename T>
void CpuGemmLowpMatrixAReductionKernel::run_internal(const ITensor *src,
ITensor *dst,
const arm_compute::Window &window)
{
// Intermediate and final accumulator types
using TIAcc = wrapper::traits::promote_t<T>;
using TAcc = wrapper::traits::promote_t<TIAcc>;
Window collapsed_window = window.collapse_if_possible(IKernel::window(), Window::DimY);
Window win_input(collapsed_window);
win_input.set(Window::DimX, Window::Dimension(0, 0, 0));
win_input.set(Window::DimY, Window::Dimension(0, 0, 0));
win_input.set(Window::DimZ, Window::Dimension(0, 0, 0));
Iterator in(src, win_input);
Iterator out(dst, collapsed_window);
execute_window_loop(
collapsed_window,
[&](const Coordinates &id)
{
auto vsum_row = wrapper::vdup_n(static_cast<TAcc>(0), wrapper::traits::vector_128_tag{});
TAcc sum_row = 0;
const T *matrix_a = reinterpret_cast<const T *>(
(in.ptr() + id.x() * src->info()->strides_in_bytes()[1] + id.y() * src->info()->strides_in_bytes()[2]));
#if __arm__
asm volatile("PLD [%0, #128*4]" ::"r"(matrix_a));
#endif /* __arm__ */
int i = 0;
// This for loop performs 16 accumulations
for (; i <= (_k - 16); i += 16)
{
const auto a0_d8 = wrapper::vloadq(matrix_a + i);
// Partial accumulations in U16
const auto tmp_sum0 = wrapper::vaddl(wrapper::vgetlow(a0_d8), wrapper::vgethigh(a0_d8));
// Accumulate to U32
vsum_row = wrapper::vadd(vsum_row, wrapper::vpaddl(tmp_sum0));
}
// This for loop performs the leftover accumulations
for (; i < _k; ++i)
{
sum_row += static_cast<TAcc>(matrix_a[i]);
}
#if defined(__aarch64__)
// Reduction operation available on 64 bit architectures only
sum_row += wrapper::vaddv(vsum_row);
#else // __aarch64__
auto tmp = wrapper::vpadd(wrapper::vgethigh(vsum_row), wrapper::vgetlow(vsum_row));
tmp = wrapper::vpadd(tmp, tmp);
sum_row += wrapper::vgetlane(tmp, 0);
#endif // __aarch64__
// Multiply by scalar if necessary
if (_mul_by_scalar)
{
sum_row *= _scalar;
}
*(reinterpret_cast<int *>(out.ptr())) = static_cast<int32_t>(sum_row);
},
in, out);
}
void CpuGemmLowpMatrixAReductionKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel::window(), window);
auto src = tensors.get_const_tensor(TensorType::ACL_SRC);
auto dst = tensors.get_tensor(TensorType::ACL_DST);
(this->*_func)(src, dst, window);
}
const char *CpuGemmLowpMatrixAReductionKernel::name() const
{
return "CpuGemmLowpMatrixAReductionKernel";
}
void CpuGemmLowpMatrixBReductionKernel::configure(const ITensorInfo *src,
ITensorInfo *dst,
const GEMMLowpReductionKernelInfo &info)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst);
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments_matrix_b_reduction(src, dst, info));
_k = info.k;
_scalar = info.scalar;
_mul_by_scalar = info.mul_by_scalar;
// Configure kernel window
constexpr unsigned int num_elems_processed_per_iteration = 16;
switch (src->data_type())
{
case DataType::QASYMM8:
_func = &CpuGemmLowpMatrixBReductionKernel::run_internal<uint8_t>;
break;
case DataType::QASYMM8_SIGNED:
case DataType::QSYMM8:
case DataType::QSYMM8_PER_CHANNEL:
_func = &CpuGemmLowpMatrixBReductionKernel::run_internal<int8_t>;
break;
default:
ARM_COMPUTE_ERROR("Unsupported data type");
}
// Output auto initialization if not yet initialized
auto_init_if_empty(*dst, TensorShape(src->dimension(0)), 1, DataType::S32);
// Configure kernel window
Window win = calculate_max_window_horizontal(*dst, Steps(num_elems_processed_per_iteration));
ICpuKernel::configure(win);
}
Status CpuGemmLowpMatrixBReductionKernel::validate(const ITensorInfo *src,
const ITensorInfo *dst,
const GEMMLowpReductionKernelInfo &info)
{
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_matrix_b_reduction(src, dst, info));
return Status{};
}
template <typename T>
void CpuGemmLowpMatrixBReductionKernel::run_internal(const ITensor *src,
ITensor *dst,
const Window &window,
const ThreadInfo &info)
{
// Intermediate and final accumulator types
using TIAcc = wrapper::traits::promote_t<T>;
using TAcc = wrapper::traits::promote_t<TIAcc>;
Window collapsed_window = window.collapse_if_possible(IKernel::window(), Window::DimY);
const auto vec_scalar = wrapper::vdup_n(static_cast<TAcc>(_scalar), wrapper::traits::vector_128_tag{});
const auto width_matrix_b = static_cast<int>(src->info()->dimension(0));
const auto in_b_stride = static_cast<int>(src->info()->strides_in_bytes()[1]);
// The implementation computes 16 elements per iteration
const int window_start_x = 16 * info.thread_id;
const int window_step_x = 16 * info.num_threads;
// Make sure (window_end_x - window_start_x) is a multiple of window_step_x
const int window_end_x = ceil_to_multiple(width_matrix_b - window_start_x, window_step_x) + window_start_x;
Window win_out(collapsed_window);
win_out.set(Window::DimX, Window::Dimension(window_start_x, window_end_x, window_step_x));
Window win_in(win_out);
win_in.set(Window::DimY, Window::Dimension(0, 0, 0));
win_in.set(Window::DimZ, Window::Dimension(0, 0, 0));
Iterator inb(src, win_in);
Iterator out(dst, win_out);
execute_window_loop(
win_out,
[&](const Coordinates &id)
{
if (id.x() > width_matrix_b)
{
return;
}
// Note: Since the input is unsigned char, we can safely use unsigned int for the accumulation
// 4 x u/int32x4_t = 16 column accumulators
typename wrapper::traits::neon_bitvector<TAcc, wrapper::traits::BitWidth::W128>::type sum_col[4] = {
wrapper::vdup_n(static_cast<TAcc>(0), wrapper::traits::vector_128_tag{}),
wrapper::vdup_n(static_cast<TAcc>(0), wrapper::traits::vector_128_tag{}),
wrapper::vdup_n(static_cast<TAcc>(0), wrapper::traits::vector_128_tag{}),
wrapper::vdup_n(static_cast<TAcc>(0), wrapper::traits::vector_128_tag{})};
const auto *matrix_b = reinterpret_cast<const T *>(inb.ptr() + id.y() * src->info()->strides_in_bytes()[2]);
#if __arm__
asm volatile("PLD [%0, #128*4]" ::"r"(matrix_b));
asm volatile("PLD [%0, #128*4]" ::"r"(matrix_b + in_b_stride));
#endif /* __arm__ */
// If we have less than 16 columns left, we can't use the main unrolled loop
if ((width_matrix_b - id.x()) >= 16)
{
// Row index
int i = 0;
// 4 x u/int32x4_t = 16 columns unrolled across 4 rows
for (; i <= (_k - 4); i += 4)
{
// Load 4 rows of 16 columns of 8bit elements
// (| | )
// (| | )
// (| | )
// (| | )
const auto b0_u8 = wrapper::vloadq(matrix_b + 0 * in_b_stride);
const auto b1_u8 = wrapper::vloadq(matrix_b + 1 * in_b_stride);
const auto b2_u8 = wrapper::vloadq(matrix_b + 2 * in_b_stride);
const auto b3_u8 = wrapper::vloadq(matrix_b + 3 * in_b_stride);
#if __arm__
asm volatile("PLD [%0, #128*1]" ::"r"(matrix_b + 1 * in_b_stride));
asm volatile("PLD [%0, #128*1]" ::"r"(matrix_b + 2 * in_b_stride));
asm volatile("PLD [%0, #128*1]" ::"r"(matrix_b + 3 * in_b_stride));
asm volatile("PLD [%0, #128*1]" ::"r"(matrix_b + 4 * in_b_stride));
#endif /* __arm__ */
// Partial accumulation to 16bit (4 rows => 2 rows)
// (| | | )
// (| | | )
typename wrapper::traits::neon_bitvector<TIAcc, wrapper::traits::BitWidth::W128>::type tmp_sum[2] =
{wrapper::vdup_n(static_cast<TIAcc>(0), wrapper::traits::vector_128_tag{}),
wrapper::vdup_n(static_cast<TIAcc>(0), wrapper::traits::vector_128_tag{})};
tmp_sum[0] = wrapper::vaddw(tmp_sum[0], wrapper::vgetlow(b1_u8));
tmp_sum[0] = wrapper::vaddw(tmp_sum[0], wrapper::vgetlow(b0_u8));
tmp_sum[0] = wrapper::vaddw(tmp_sum[0], wrapper::vgetlow(b2_u8));
tmp_sum[0] = wrapper::vaddw(tmp_sum[0], wrapper::vgetlow(b3_u8));
tmp_sum[1] = wrapper::vaddw(tmp_sum[1], wrapper::vgethigh(b0_u8));
tmp_sum[1] = wrapper::vaddw(tmp_sum[1], wrapper::vgethigh(b1_u8));
tmp_sum[1] = wrapper::vaddw(tmp_sum[1], wrapper::vgethigh(b2_u8));
tmp_sum[1] = wrapper::vaddw(tmp_sum[1], wrapper::vgethigh(b3_u8));
// Accumulate to 32bit (2 rows => 1 row)
// (| | | | | )
sum_col[0] = wrapper::vaddw(sum_col[0], wrapper::vgetlow(tmp_sum[0]));
sum_col[1] = wrapper::vaddw(sum_col[1], wrapper::vgethigh(tmp_sum[0]));
sum_col[2] = wrapper::vaddw(sum_col[2], wrapper::vgetlow(tmp_sum[1]));
sum_col[3] = wrapper::vaddw(sum_col[3], wrapper::vgethigh(tmp_sum[1]));
matrix_b += 4 * in_b_stride;
}
// This for loop accumulates the rows left over from the 4x unrolling above
for (; i < _k; ++i)
{
const auto b0_b8 = wrapper::vloadq(matrix_b + 0 * in_b_stride);
// Convert 8bit => 16bit
const typename wrapper::traits::neon_bitvector<TIAcc, wrapper::traits::BitWidth::W128>::type
b0_b16[2]{wrapper::vmovl(wrapper::vgetlow(b0_b8)), wrapper::vmovl(wrapper::vgethigh(b0_b8))};
// Accumulate to 32bit
sum_col[0] = wrapper::vaddw(sum_col[0], wrapper::vgetlow(b0_b16[0]));
sum_col[1] = wrapper::vaddw(sum_col[1], wrapper::vgethigh(b0_b16[0]));
sum_col[2] = wrapper::vaddw(sum_col[2], wrapper::vgetlow(b0_b16[1]));
sum_col[3] = wrapper::vaddw(sum_col[3], wrapper::vgethigh(b0_b16[1]));
matrix_b += in_b_stride;
}
}
else
{
// Accumulate left over columns to sum_cols
for (int i = 0; i < _k; ++i) // row loop
{
auto left_over_cols = width_matrix_b - id.x();
auto l = left_over_cols;
for (auto k = 0; k < 4 && l; ++k)
{
for (auto j = 0; j < 4 && l; ++j, --l)
{
sum_col[k][j] += matrix_b[left_over_cols - l];
}
}
matrix_b += in_b_stride;
}
}
// Multiply by scalar if necessary
if (_mul_by_scalar)
{
sum_col[0] = wrapper::vmul(sum_col[0], vec_scalar);
sum_col[1] = wrapper::vmul(sum_col[1], vec_scalar);
sum_col[2] = wrapper::vmul(sum_col[2], vec_scalar);
sum_col[3] = wrapper::vmul(sum_col[3], vec_scalar);
}
auto vector_sum_col = reinterpret_cast<int32_t *>(out.ptr());
if ((width_matrix_b - id.x()) >= 16)
{
wrapper::vstore(vector_sum_col + 0, wrapper::vreinterpret(sum_col[0]));
wrapper::vstore(vector_sum_col + 4, wrapper::vreinterpret(sum_col[1]));
wrapper::vstore(vector_sum_col + 8, wrapper::vreinterpret(sum_col[2]));
wrapper::vstore(vector_sum_col + 12, wrapper::vreinterpret(sum_col[3]));
}
else
{
auto left_over = width_matrix_b - id.x();
for (auto k = 0; k < 4 && left_over; ++k)
{
for (auto j = 0; j < 4 && left_over; ++j, --left_over)
{
*(vector_sum_col + k * 4 + j) = sum_col[k][j];
}
}
}
},
inb, out);
}
void CpuGemmLowpMatrixBReductionKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel::window(), window);
auto src = tensors.get_const_tensor(TensorType::ACL_SRC);
auto dst = tensors.get_tensor(TensorType::ACL_DST);
(this->*_func)(src, dst, window, info);
}
const char *CpuGemmLowpMatrixBReductionKernel::name() const
{
return "CpuGemmLowpMatrixBReductionKernel";
}
} // namespace kernels
} // namespace cpu
} // namespace arm_compute