blob: ec246efc8c4984a33534a8aca539a10ddc3f3f9a [file] [log] [blame]
/*
* Copyright (c) 2019-2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef ARM_COMPUTE_NESYMM_H
#define ARM_COMPUTE_NESYMM_H
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
#include "src/core/NEON/NEMath.h"
#include <arm_neon.h>
namespace arm_compute
{
using qsymm8_t = int8_t; /**< 8 bit quantized symmetric scalar value */
using qsymm16_t = int16_t; /**< 16 bit quantized symmetric scalar value */
using qsymm16x8_t = int16x8_t; /**< 16 bit quantized symmetric vector with 8 elements */
using qsymm16x8x2_t = int16x8x2_t; /**< 16 bit quantized symmetric vector with 16 elements */
/** Performs final quantization step on 8 signed 16-bit elements
*
* @tparam is_bounded_relu Specified if a fused bounded relu should be applied
*
* @param[in] in_s32 Input to be quantized.
* @param[in] result_fixedpoint_multiplier Result multiplier parameter
* @param[in] result_shift Result shift parameter
* @param[in] min_s16 Relu lower bound
* @param[in] max_s16 Relu upper bound
*
* @return Quantized values
*/
template <bool is_bounded_relu>
int16x8_t finalize_quantization_int16(
int32x4x2_t &in_s32, int result_fixedpoint_multiplier, int32_t result_shift, int16x8_t min_s16, int16x8_t max_s16)
{
if (result_shift < 0)
{
in_s32.val[0] = vmulq_n_s32(in_s32.val[0], (1 << -result_shift));
in_s32.val[1] = vmulq_n_s32(in_s32.val[1], (1 << -result_shift));
in_s32.val[0] = vqrdmulhq_n_s32(in_s32.val[0], result_fixedpoint_multiplier);
in_s32.val[1] = vqrdmulhq_n_s32(in_s32.val[1], result_fixedpoint_multiplier);
}
else
{
// Fixed point multiplication with vector saturating rounding doubling multiply high with scalar
in_s32.val[0] = vqrdmulhq_n_s32(in_s32.val[0], result_fixedpoint_multiplier);
in_s32.val[1] = vqrdmulhq_n_s32(in_s32.val[1], result_fixedpoint_multiplier);
// Round to the nearest division by a power-of-two using result_shift_s32
in_s32.val[0] = rounding_divide_by_pow2(in_s32.val[0], result_shift);
in_s32.val[1] = rounding_divide_by_pow2(in_s32.val[1], result_shift);
}
// Convert S32 to S16
int16x8_t out_s16 = vcombine_s16(vqmovn_s32(in_s32.val[0]), vqmovn_s32(in_s32.val[1]));
if (is_bounded_relu)
{
out_s16 = vmaxq_s16(out_s16, min_s16);
out_s16 = vminq_s16(out_s16, max_s16);
}
return out_s16;
}
/** Performs final quantization step on single signed 16-bit element
*
* @tparam is_bounded_relu Specified if a fused bounded relu should be applied
*
* @param[in] in_value Input to be quantized.
* @param[in] result_fixedpoint_multiplier Result multiplier parameter
* @param[in] result_shift Result shift parameter
* @param[in] min_s16 Relu lower bound
* @param[in] max_s16 Relu upper bound
*
* @return Quantized values
*/
template <bool is_bounded_relu>
inline int16_t finalize_quantization_int16(
int32_t in_value, int result_fixedpoint_multiplier, int32_t result_shift, int16_t min_s16, int16_t max_s16)
{
if (result_shift < 0)
{
const int64_t in_64 = static_cast<int64_t>(in_value) * (1 << (-result_shift)) *
static_cast<int64_t>(result_fixedpoint_multiplier);
in_value = static_cast<int32_t>((in_64 + (1 << 30)) >> 31);
}
else
{
// Fixed point multiplication with vector saturating rounding doubling multiply high with scalar
const int64_t in_64 = static_cast<int64_t>(in_value) * static_cast<int64_t>(result_fixedpoint_multiplier);
// Shift value by result_shift_s32
in_value = rounding_divide_by_pow2(static_cast<int32_t>((in_64 + (1 << 30)) >> 31), result_shift);
}
// Bound the result
int16_t out_s16 = static_cast<int16_t>(std::max<int32_t>(-32768, std::min<int32_t>(32767, in_value)));
if (is_bounded_relu)
{
out_s16 = static_cast<int16_t>(std::max(min_s16, std::min(max_s16, out_s16)));
}
return out_s16;
}
/** Dequantize a neon vector holding 8 16-bit quantized values.
*
* @param[in] qv Input values to be dequantized.
* @param[in] scale Quantization scale
*
* @return Dequantized values in a neon vector
*/
inline float32x4x2_t vdequantize_int16(const int16x8_t &qv, float scale)
{
const float32x4_t vscale = vdupq_n_f32(scale);
const float32x4x2_t vdequantized_input = {{vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(qv))), vscale),
vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(qv))), vscale)}};
return vdequantized_input;
}
/** Quantize a neon vector holding 8 floating point values.
*
* @param[in] qv Input values to be quantized.
* @param[in] scale Quantization scale
*
* @return A neon vector holding the quantized values
*/
inline int16x8_t vquantize_int16(const float32x4x2_t &qv, float scale)
{
const float32x4_t vinvscale = vdupq_n_f32(1.f / scale);
const int32x4x2_t rf = {{
#ifdef __aarch64__
vcvtnq_s32_f32(vmulq_f32(qv.val[0], vinvscale)), vcvtnq_s32_f32(vmulq_f32(qv.val[1], vinvscale))
#else //__aarch64__
vcvtq_s32_f32(vmulq_f32(qv.val[0], vinvscale)), vcvtq_s32_f32(vmulq_f32(qv.val[1], vinvscale))
#endif //__aarch64__
}};
return vcombine_s16(vqmovn_s32(rf.val[0]), vqmovn_s32(rf.val[1]));
}
/** Dequantize a neon vector holding 16 16-bit quantized values.
*
* @param[in] qv Input values to be dequantized.
* @param[in] qi Quantization information to be used in the computation.
*
* @return Dequantized values in a neon vector
*/
inline float32x4x4_t vdequantize(const int16x8x2_t &qv, const UniformQuantizationInfo &qi)
{
const float scale = qi.scale;
const float32x4_t vscale = vdupq_n_f32(scale);
const float32x4x4_t vdequantized_input = {{
vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(qv.val[0]))), vscale),
vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(qv.val[0]))), vscale),
vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(qv.val[1]))), vscale),
vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(qv.val[1]))), vscale),
}};
return vdequantized_input;
}
/** Quantize a neon vector holding 16 floating point values.
*
* @param[in] qv Input values to be quantized.
* @param[in] qi Quantization information to be used in the computation.
*
* @return A neon vector holding the quantized values
*/
inline qsymm16x8x2_t vquantize_qsymm16(const float32x4x4_t &qv, const UniformQuantizationInfo &qi)
{
const float scale = qi.scale;
ARM_COMPUTE_ERROR_ON(scale == 0.f);
const float32x4_t vinvscale = vdupq_n_f32(1.f / scale);
const int32x4x4_t rf = {{
#ifdef __aarch64__
vcvtnq_s32_f32(vmulq_f32(qv.val[0], vinvscale)),
vcvtnq_s32_f32(vmulq_f32(qv.val[1], vinvscale)),
vcvtnq_s32_f32(vmulq_f32(qv.val[2], vinvscale)),
vcvtnq_s32_f32(vmulq_f32(qv.val[3], vinvscale)),
#else //__aarch64__
vcvtq_s32_f32(vmulq_f32(qv.val[0], vinvscale)),
vcvtq_s32_f32(vmulq_f32(qv.val[1], vinvscale)),
vcvtq_s32_f32(vmulq_f32(qv.val[2], vinvscale)),
vcvtq_s32_f32(vmulq_f32(qv.val[3], vinvscale)),
#endif //__aarch64__
}};
const qsymm16x8x2_t res = {
vcombine_s16(vqmovn_s32(rf.val[0]), vqmovn_s32(rf.val[1])),
vcombine_s16(vqmovn_s32(rf.val[2]), vqmovn_s32(rf.val[3])),
};
return res;
}
/** Multiply a neon vector using quantized multiplier and shift
*
* @param[in] input Input vector to mutiply values to be quantized.
* @param[in] qmul Quantized multipler
* @param[in] shift Left bit shift
*
* @return A neon vector holding the multiplied value
*/
inline int32x4x2_t multiply_by_quantized_multiplier_2row(int32x4x2_t input, int32_t qmul, int32_t shift)
{
const auto left_shift = shift > 0 ? shift : 0;
const auto right_shift = shift > 0 ? 0 : -shift;
const auto one_shifted = 1 << left_shift;
int32x4x2_t result;
result.val[0] = rounding_divide_by_pow2(vqrdmulhq_n_s32(vmulq_n_s32(input.val[0], one_shifted), qmul), right_shift);
result.val[1] = rounding_divide_by_pow2(vqrdmulhq_n_s32(vmulq_n_s32(input.val[1], one_shifted), qmul), right_shift);
return result;
}
} // namespace arm_compute
#endif // ARM_COMPUTE_NESYMM_H