blob: b7de955e6a50aedaf00193c587df90af494dacd1 [file] [log] [blame]
/*
* Copyright (c) 2017-2020 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/GLES_COMPUTE/kernels/GCPoolingLayerKernel.h"
#include "arm_compute/core/AccessWindowStatic.h"
#include "arm_compute/core/GLES_COMPUTE/GCHelpers.h"
#include "arm_compute/core/GLES_COMPUTE/GCKernelLibrary.h"
#include "arm_compute/core/GLES_COMPUTE/IGCTensor.h"
#include "arm_compute/core/GLES_COMPUTE/OpenGLES.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"
#include <set>
#include <string>
#include <tuple>
using namespace arm_compute;
namespace
{
// Internal window config info
using GCPoolingConfig = std::pair<unsigned int, BorderSize>; //num_elems_processed_per_iteration, border_size
void auto_init(const ITensorInfo *input, ITensorInfo *output, unsigned int pooled_w, unsigned int pooled_h)
{
TensorShape output_shape{ input->tensor_shape() };
output_shape.set(0, pooled_w);
output_shape.set(1, pooled_h);
auto_init_if_empty(*output, input->clone()->set_tensor_shape(output_shape));
}
Status validate_arguments(const ITensorInfo *input, const ITensorInfo *output, const PoolingLayerInfo &pool_info)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_MSG((is_data_type_quantized_asymmetric(input->data_type()) && pool_info.pool_type == PoolingType::L2),
"Unsupported combination of parameters!");
ARM_COMPUTE_RETURN_ERROR_ON(!pool_info.pad_stride_info.padding_is_symmetric());
const bool is_global_pooling = pool_info.is_global_pooling;
const unsigned int pool_size = is_global_pooling ? input->tensor_shape().x() : pool_info.pool_size.width;
ARM_COMPUTE_RETURN_ERROR_ON_MSG(is_global_pooling && (input->tensor_shape().x() != input->tensor_shape().y()),
"Global pooling is supported only with rectangular inputs!");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(!is_global_pooling && ((pool_info.pad_stride_info.pad().first >= pool_size) || (pool_info.pad_stride_info.pad().second >= pool_size)),
"Invalid pool size and pool pad combination!");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(pool_info.pool_size.width != pool_info.pool_size.height, "Invalid Pool size, width not equal to height!");
// Checks performed when output is configured
if(output->total_size() != 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
unsigned int pooled_w = 0;
unsigned int pooled_h = 0;
std::tie(pooled_w, pooled_h) = scaled_dimensions(input->dimension(0),
input->dimension(1),
pool_size,
pool_size,
pool_info.pad_stride_info);
ARM_COMPUTE_RETURN_ERROR_ON_MSG((output->dimension(0) != pooled_w) || (output->dimension(1) != pooled_h),
"Invalid output pooling dimensions!");
}
return Status{};
}
std::tuple<Status, Window, GCPoolingConfig> validate_and_configure_window(ITensorInfo *input, ITensorInfo *output, const PoolingLayerInfo &pool_info)
{
int pool_pad_x = 0;
int pool_pad_y = 0;
int pool_stride_x = 0;
int pool_stride_y = 0;
unsigned int pooled_w = 0;
unsigned int pooled_h = 0;
int pool_size = pool_info.pool_size.width;
const PadStrideInfo pad_stride_info = pool_info.pad_stride_info;
std::tie(pool_pad_x, pool_pad_y) = pad_stride_info.pad();
std::tie(pool_stride_x, pool_stride_y) = pad_stride_info.stride();
ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
// Update pool size in case of global pooling
pool_size = pool_info.is_global_pooling ? input->dimension(0) : pool_size;
// Check output dimensions
std::tie(pooled_w, pooled_h) = scaled_dimensions(input->dimension(0),
input->dimension(1),
pool_size,
pool_size,
pad_stride_info);
auto_init(input, output, pooled_w, pooled_h);
BorderSize border_size = BorderSize(pool_pad_y, pool_pad_x);
const int input_width = input->dimension(0);
const int input_height = input->dimension(1);
unsigned int num_elems_processed_per_iteration = 1;
// Create kernel
if(pool_size == 3)
{
// Check if we have pool3x3 with stride_x less equal than 3. In these cases, run an optimized OpenGLES kernel where
// each thread computes 4 output elements
const bool is_pool3x3_stride_le3 = (pool_size == 3) && (pool_stride_x <= 3);
int num_elems_read_per_iteration = pool_size;
if(input->data_type() == DataType::F32)
{
if(is_pool3x3_stride_le3)
{
// Change the number of elements processed and number of elements read per iteration for pooling 3x3 with stride less equal than 3
num_elems_processed_per_iteration = 4;
num_elems_read_per_iteration = pool_size * (pool_stride_x + 1);
}
}
else
{
if(is_pool3x3_stride_le3)
{
num_elems_processed_per_iteration = 4;
}
else
{
num_elems_processed_per_iteration = 2;
}
}
const int upper_bound_w = ((pooled_w - 1) * pool_stride_x - pool_pad_x + num_elems_read_per_iteration) - input_width;
const int upper_bound_h = ((pooled_h - 1) * pool_stride_y - pool_pad_y + pool_size) - input_height;
border_size.right = std::max(upper_bound_w, pool_pad_x);
border_size.bottom = std::max(upper_bound_h, pool_pad_y);
}
else // Run general case
{
if(input->data_type() == DataType::F32)
{
num_elems_processed_per_iteration = 1;
}
else
{
num_elems_processed_per_iteration = 2;
}
const int upper_bound_w = ((pooled_w - 1) * pool_stride_x - pool_pad_x + pool_size) - input_width;
const int upper_bound_h = ((pooled_h - 1) * pool_stride_y - pool_pad_y + pool_size) - input_height;
border_size.right = std::max(upper_bound_w, pool_pad_x);
border_size.bottom = std::max(upper_bound_h, pool_pad_y);
}
// Configure kernel window
Window win = calculate_max_window(*output, Steps(num_elems_processed_per_iteration));
if(input->data_type() == DataType::F32)
{
AccessWindowStatic input_access(input, -pool_pad_x, -pool_pad_y, input_width + border_size.right, input_height + border_size.bottom);
AccessWindowHorizontal output_access(output, 0, num_elems_processed_per_iteration);
bool window_changed = update_window_and_padding(win, input_access, output_access);
output_access.set_valid_region(win, ValidRegion(Coordinates(), output->tensor_shape()));
Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
return std::make_tuple(err, win, GCPoolingConfig(num_elems_processed_per_iteration, border_size));
}
else
{
// Calculate output right and bottom border
const int output_width = output->dimension(0);
const int output_height = output->dimension(1);
const int output_padding_right = ceil_to_multiple(output_width, num_elems_processed_per_iteration) - output_width;
const int output_padding_bottom = ceil_to_multiple(output_height, 1) - output_height;
const int input_total_width = std::max(int(input->padding().left), int(pool_pad_x)) + input_width + std::max(int(input->padding().right), int(pool_pad_x));
const int input_padding_right = ceil_to_multiple(input_total_width, num_elems_processed_per_iteration) - input_width - pool_pad_x;
const int input_total_height = std::max(int(input->padding().top), int(pool_pad_y)) + input_height + std::max(int(input->padding().bottom), int(pool_pad_y));
const int input_padding_bottom = input_total_height - input_height - pool_pad_y;
// Configure kernel window
AccessWindowStatic input_access(input, -pool_pad_x, -pool_pad_y, input_width + input_padding_right, input_height + input_padding_bottom);
AccessWindowStatic output_access(output, 0, 0, output_width + output_padding_right, output_height + output_padding_bottom);
bool window_changed = update_window_and_padding(win, input_access, output_access);
output_access.set_valid_region(win, ValidRegion(Coordinates(), output->tensor_shape()));
Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
return std::make_tuple(err, win, GCPoolingConfig(num_elems_processed_per_iteration, border_size));
}
}
} // namespace
GCPoolingLayerKernel::GCPoolingLayerKernel()
: _input(nullptr), _output(nullptr), _pool_info(), _border_size(0), _num_elems_processed_per_iteration(1)
{
}
BorderSize GCPoolingLayerKernel::border_size() const
{
return _border_size;
}
void GCPoolingLayerKernel::configure(const IGCTensor *input, IGCTensor *output, const PoolingLayerInfo &pool_info)
{
int pool_pad_x = 0;
int pool_pad_y = 0;
int pool_stride_x = 0;
int pool_stride_y = 0;
unsigned int pooled_w = 0;
unsigned int pooled_h = 0;
const PoolingType pool_type = pool_info.pool_type;
int pool_size = pool_info.pool_size.width;
const PadStrideInfo pad_stride_info = pool_info.pad_stride_info;
const bool exclude_padding = pool_info.exclude_padding;
std::tie(pool_pad_x, pool_pad_y) = pad_stride_info.pad();
std::tie(pool_stride_x, pool_stride_y) = pad_stride_info.stride();
ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
// Update pool size in case of global pooling
pool_size = pool_info.is_global_pooling ? input->info()->dimension(0) : pool_size;
// Check output dimensions
std::tie(pooled_w, pooled_h) = scaled_dimensions(input->info()->dimension(0),
input->info()->dimension(1),
pool_size,
pool_size,
pad_stride_info);
auto_init(input->info(), output->info(), pooled_w, pooled_h);
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), output->info(), pool_info));
// Set instance variables
_input = input;
_output = output;
_pool_info = pool_info;
// Set build options
std::set<std::string> build_opts;
build_opts.emplace("#define LOCAL_SIZE_X " + support::cpp11::to_string(1));
build_opts.emplace("#define LOCAL_SIZE_Y " + support::cpp11::to_string(1));
build_opts.emplace("#define LOCAL_SIZE_Z " + support::cpp11::to_string(1));
if(input->info()->data_type() == DataType::F32)
{
build_opts.insert("#define DATA_TYPE_FP32");
}
else
{
build_opts.insert("#define DATA_TYPE_FP16");
}
if(exclude_padding)
{
build_opts.emplace("#define EXCLUDE_PADDING");
}
build_opts.emplace(("#define POOL_" + string_from_pooling_type(pool_type)));
build_opts.emplace(("#define STRIDE_X " + support::cpp11::to_string(pool_stride_x)));
build_opts.emplace(("#define MAX_WIDTH " + support::cpp11::to_string(input->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_x))));
build_opts.emplace(("#define MAX_HEIGHT " + support::cpp11::to_string(input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_y))));
build_opts.emplace(("#define STRIDE_Y " + support::cpp11::to_string(pool_stride_y)));
build_opts.emplace(("#define PAD_X " + support::cpp11::to_string(pool_pad_x)));
build_opts.emplace(("#define PAD_Y " + support::cpp11::to_string(pool_pad_y)));
// Create kernel
if((pool_size == 2) || (pool_size == 3) || (pool_size == 7))
{
// Check if we have pool3x3 with stride_x less equal than 3. In these cases, run an optimized OpenGLES kernel where
// each thread computes 4 output elements
const bool is_pool3x3_stride_le3 = (pool_size == 3) && (pool_stride_x <= 3);
std::string kernel_name = "pooling_layer_" + support::cpp11::to_string(pool_size);
if(is_pool3x3_stride_le3)
{
build_opts.insert("#define POOLING_LAYER_3_OPTIMIZED");
_kernel = static_cast<GCKernel>(GCKernelLibrary::get().create_kernel(kernel_name + "_optimized", build_opts));
}
else
{
build_opts.insert("#define POOLING_LAYER_" + support::cpp11::to_string(pool_size));
_kernel = static_cast<GCKernel>(GCKernelLibrary::get().create_kernel(kernel_name, build_opts));
}
}
else // Run general case
{
build_opts.emplace(("#define POOL_SIZE " + support::cpp11::to_string(pool_size)));
build_opts.insert("#define POOLING_LAYER_N");
_kernel = static_cast<GCKernel>(GCKernelLibrary::get().create_kernel("pooling_layer_n", build_opts));
}
// Configure kernel window
auto win_config = validate_and_configure_window(input->info(), output->info(), pool_info);
ARM_COMPUTE_ERROR_THROW_ON(std::get<0>(win_config));
IGCKernel::configure(std::get<1>(win_config));
GCPoolingConfig pooling_config = std::get<2>(win_config);
_num_elems_processed_per_iteration = pooling_config.first;
_border_size = pooling_config.second;
}
Status GCPoolingLayerKernel::validate(const ITensorInfo *input, const ITensorInfo *output, const PoolingLayerInfo &pool_info)
{
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, output, pool_info));
ARM_COMPUTE_RETURN_ON_ERROR(std::get<0>(validate_and_configure_window(input->clone().get(), output->clone().get(), pool_info)));
return Status{};
}
void GCPoolingLayerKernel::run(const Window &window)
{
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IKernel::window(), window);
unsigned int pool_pad_x;
unsigned int pool_pad_y;
unsigned int pool_stride_x;
unsigned int pool_stride_y;
std::tie(pool_pad_x, pool_pad_y) = _pool_info.pad_stride_info.pad();
std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
_kernel.use();
_output->set_needs_shifting(true);
Window window_collapsed = window.collapse_if_possible(IGCKernel::window(), Window::DimZ);
Window slice = window_collapsed.first_slice_window_3D();
Window slice_in_orig = window_collapsed.first_slice_window_3D();
slice.shift(Window::DimX, -(_output->info()->padding()).left);
do
{
// Upsample input by pool size
Window in_slice(slice_in_orig); // NOLINT
in_slice.set(Window::DimX, Window::Dimension(in_slice.x().start() - pool_pad_x, in_slice.x().end() * pool_stride_x, pool_stride_x * _num_elems_processed_per_iteration));
in_slice.set(Window::DimY, Window::Dimension(in_slice.y().start() - pool_pad_y, in_slice.y().end() * pool_stride_y, pool_stride_y));
// Set inputs
unsigned int idx = 0;
add_3D_tensor_argument(idx, _input, 1, in_slice);
add_3D_tensor_argument(idx, _output, 2, slice);
_kernel.update_shader_params();
enqueue(*this, slice);
}
while(window_collapsed.slide_window_slice_3D(slice) && window_collapsed.slide_window_slice_3D(slice_in_orig));
}