blob: 6e2e3a384631ad64454841d1ba64a3fefdfdfa4f [file] [log] [blame]
/*
* Copyright (c) 2017-2024 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef ACL_TESTS_VALIDATION_FIXTURES_DEPTHWISECONVOLUTIONLAYERFIXTURE_H
#define ACL_TESTS_VALIDATION_FIXTURES_DEPTHWISECONVOLUTIONLAYERFIXTURE_H
#include "arm_compute/core/TensorShape.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "tests/AssetsLibrary.h"
#include "tests/Globals.h"
#include "tests/IAccessor.h"
#include "tests/framework/Asserts.h"
#include "tests/framework/Fixture.h"
#include "tests/validation/Helpers.h"
#include "tests/validation/reference/ActivationLayer.h"
#include "tests/validation/reference/DepthwiseConvolutionLayer.h"
#include "utils/Utils.h"
#include <cstdint>
#include <random>
namespace arm_compute
{
namespace test
{
namespace validation
{
using namespace arm_compute::misc::shape_calculator;
template <typename TensorType, typename AccessorType, typename FunctionType, typename T, typename TW>
class DepthwiseConvolutionLayerValidationGenericFixture : public framework::Fixture
{
public:
using TBias = typename std::conditional < std::is_same<T, uint8_t>::value || std::is_same<T, int8_t>::value, int32_t, T >::type;
void setup_quantization(TensorShape input_shape, TensorShape weights_shape, QuantizationInfo &input_q_info,
QuantizationInfo &weights_q_info, DataType data_type)
{
ARM_COMPUTE_UNUSED(input_shape);
const int32_t t_max = static_cast<int32_t>(std::numeric_limits<T>::max());
const int32_t t_min = static_cast<int32_t>(std::numeric_limits<T>::min());
std::mt19937 generator(library->seed() + _hash);
std::uniform_real_distribution<float> distribution_float(-5.0f, 3.0f);
std::uniform_int_distribution<int32_t> distribution_t(t_min, t_max);
const float scale_lhs = pow(2, distribution_float(generator)); // [2^-5, 2^3]
const float scale_rhs = pow(2, distribution_float(generator)); // [2^-5, 2^3]
const int32_t offset_lhs = distribution_t(generator);
const int32_t offset_rhs = distribution_t(generator);
_input_quantization_info = QuantizationInfo(scale_lhs, offset_lhs);
_weights_quantization_info = QuantizationInfo(scale_rhs, offset_rhs);
QuantizationHint q_hint = suggest_conv_dst_q_info_and_bias(input_q_info, weights_q_info,
weights_shape.y() /* heights */, weights_shape.x() /* width */, 1 /* channels */,
data_type, 0.5f /* bias_fraction */);
_output_quantization_info = q_hint.q_info;
_min_bias = q_hint.bias_min;
_max_bias = q_hint.bias_max;
}
public:
void setup(TensorShape in_shape, Size2D kernel_size, PadStrideInfo pad_stride_info, Size2D dilation,
unsigned int depth_multiplier, DataType input_data_type, DataType weights_data_type,
QuantizationInfo input_quantization_info, QuantizationInfo weights_quantization_info, QuantizationInfo output_quantization_info,
DataLayout data_layout, ActivationLayerInfo act_info, bool mixed_layout = false, bool in_place = false, bool run_twice = false)
{
ARM_COMPUTE_ERROR_ON(mixed_layout && in_place);
// This hash is used by random generators. There may be hash collisions but
// this is intentional as it's a very easy way to make the the current
// random generation process almost different for many test configurations,
// which were using the same set of values before.
_hash = in_shape[0] + in_shape[1] + in_shape[2] + in_shape[3] +
kernel_size.width + kernel_size.height + dilation.x() +
dilation.y() + pad_stride_info.pad_bottom() + pad_stride_info.pad_left() + pad_stride_info.pad_right() + pad_stride_info.pad_top();
_mixed_layout = mixed_layout;
_input_shape = in_shape;
_input_data_type = input_data_type;
_weights_data_type = weights_data_type;
_data_layout = data_layout;
_pad_stride_info = pad_stride_info;
_act_info = act_info;
_depth_multiplier = depth_multiplier;
_dilation = dilation;
_in_place = in_place;
_run_twice = run_twice;
_bias_data_type = is_data_type_quantized(_input_data_type) ? DataType::S32 : _input_data_type;
_weights_shape = TensorShape(kernel_size.width, kernel_size.height);
const TensorInfo in_info(_input_shape, 1, _input_data_type);
const TensorInfo we_info(_weights_shape, 1, _weights_data_type);
const ConvolutionInfo info{ _pad_stride_info, _depth_multiplier, _act_info, _dilation };
_output_shape = compute_depthwise_convolution_shape(in_info, we_info, info);
_weights_shape.set(2, _output_shape.z());
_biases_shape = TensorShape(_weights_shape[2]);
_input_quantization_info = input_quantization_info;
_weights_quantization_info = weights_quantization_info;
_output_quantization_info = output_quantization_info;
if(is_data_type_quantized(_input_data_type) && !is_data_type_quantized_symmetric(weights_data_type) && (!act_info.enabled() || act_info.activation() == ActivationFunction::IDENTITY))
{
setup_quantization(in_shape, _weights_shape, _input_quantization_info, _weights_quantization_info, _input_data_type);
_use_dynamic_output_quant = true;
}
}
void configure_target()
{
TensorShape input_shape = _input_shape;
TensorShape weights_shape = _weights_shape;
TensorShape output_shape = _output_shape;
if(_data_layout == DataLayout::NHWC)
{
permute(input_shape, PermutationVector(2U, 0U, 1U));
permute(weights_shape, PermutationVector(2U, 0U, 1U));
permute(output_shape, PermutationVector(2U, 0U, 1U));
}
// Create tensors
_src = create_tensor<TensorType>(input_shape, _input_data_type, 1, _input_quantization_info, _data_layout);
_weights = create_tensor<TensorType>(weights_shape, _weights_data_type, 1, _weights_quantization_info, _data_layout);
if(_run_twice) {
_weights.info()->set_are_values_constant(false);
}
_biases = create_tensor<TensorType>(_biases_shape, _bias_data_type, 1, _input_quantization_info, _data_layout);
TensorType *target_to_use = nullptr;
if(!_in_place)
{
_target = create_tensor<TensorType>(output_shape, _input_data_type, 1, _output_quantization_info, _data_layout);
target_to_use = &_target;
}
add_padding_x({ &_src, &_biases }, _data_layout);
add_padding_x({ &_weights }, _data_layout, true);
if(!_in_place)
{
add_padding_x({ &_target }, _data_layout);
}
// Create Depthwise Convolution configure function
_dwc.configure(&_src, &_weights, &_biases, target_to_use, _pad_stride_info, _depth_multiplier, _act_info, _dilation);
ARM_COMPUTE_ASSERT(_src.info()->is_resizable());
ARM_COMPUTE_ASSERT(_weights.info()->is_resizable());
ARM_COMPUTE_ASSERT(_biases.info()->is_resizable());
ARM_COMPUTE_ASSERT(_target.info()->is_resizable());
}
void allocate_and_run_target()
{
// Allocate tensors
_src.allocator()->allocate();
_weights.allocator()->allocate();
_biases.allocator()->allocate();
ARM_COMPUTE_ASSERT(!_src.info()->is_resizable());
ARM_COMPUTE_ASSERT(!_weights.info()->is_resizable());
ARM_COMPUTE_ASSERT(!_biases.info()->is_resizable());
if(!_in_place)
{
_target.allocator()->allocate();
ARM_COMPUTE_ASSERT(!_target.info()->is_resizable());
}
// Fill tensors
fill(AccessorType(_src), 0 + _hash);
fill(AccessorType(_weights), 1 + _hash);
fill(AccessorType(_biases), 2 + _hash);
// Run with variable input
if(_run_twice) {
_dwc.run();
// Fill tensors with a new seed
fill(AccessorType(_src), 3 + _hash);
fill(AccessorType(_weights), 4 + _hash);
fill(AccessorType(_biases), 5 + _hash);
}
if(_mixed_layout)
{
mix_layout(_dwc, _src, _target);
}
else
{
// Compute function
_dwc.run();
}
}
void compute_reference()
{
SimpleTensor<T> src{ _input_shape, _input_data_type, 1, _input_quantization_info };
SimpleTensor<TW> weights{ _weights_shape, _weights_data_type, 1, _weights_quantization_info };
SimpleTensor<TBias> biases{ _biases_shape, _bias_data_type, 1, _input_quantization_info };
fill(src, 0 + _hash);
fill(weights, 1 + _hash);
fill(biases, 2 + _hash);
if(_run_twice) {
SimpleTensor<T> depth_out = reference::depthwise_convolution(src, weights, biases, _output_shape, _pad_stride_info, _depth_multiplier, _dilation, _output_quantization_info);
if(_act_info.enabled()) {
reference::activation_layer<T>(depth_out, _act_info);
}
fill(src, 3 + _hash);
fill(weights, 4 + _hash);
fill(biases, 5 + _hash);
}
SimpleTensor<T> depth_out = reference::depthwise_convolution(src, weights, biases, _output_shape, _pad_stride_info, _depth_multiplier, _dilation, _output_quantization_info);
_reference = (_act_info.enabled()) ? reference::activation_layer<T>(depth_out, _act_info) : depth_out;
}
protected:
void mix_layout(FunctionType &layer, TensorType &src, TensorType &dst)
{
ARM_COMPUTE_ERROR_ON(_in_place);
// Test Multi DataLayout graph cases, when the data layout changes after configure
src.info()->set_data_layout(_data_layout == DataLayout::NCHW ? DataLayout::NHWC : DataLayout::NCHW);
dst.info()->set_data_layout(_data_layout == DataLayout::NCHW ? DataLayout::NHWC : DataLayout::NCHW);
// Compute Convolution function
layer.run();
// Reinstating original data layout for the test suite to properly check the values
src.info()->set_data_layout(_data_layout);
dst.info()->set_data_layout(_data_layout);
}
template <typename U>
void fill(U &&tensor, int i)
{
switch(tensor.data_type())
{
case DataType::QASYMM8:
{
if(_use_dynamic_output_quant)
{
std::uniform_int_distribution<int32_t> distribution(0, 255);
library->fill(tensor, distribution, i);
}
else
{
// Legacy initialization in case the output quantization info can't be reliably estimated
std::pair<int, int> bounds = get_quantized_bounds(tensor.quantization_info(), -1.0f, 1.0f);
std::uniform_int_distribution<uint32_t> distribution(bounds.first, bounds.second);
library->fill(tensor, distribution, i);
}
break;
}
case DataType::QASYMM8_SIGNED:
{
if(_use_dynamic_output_quant)
{
std::uniform_int_distribution<int32_t> distribution(-128, 127);
library->fill(tensor, distribution, i);
}
else
{
// Legacy initialization in case the output quantization info can't be reliably estimated
std::pair<int, int> bounds = get_quantized_qasymm8_signed_bounds(tensor.quantization_info(), -1.0f, 1.0f);
std::uniform_int_distribution<int32_t> distribution(bounds.first, bounds.second);
library->fill(tensor, distribution, i);
}
break;
}
case DataType::QSYMM8_PER_CHANNEL:
{
int min_bound = 128;
int max_bound = -127;
for(size_t i = 0; i < _weights_quantization_info.scale().size(); i++)
{
std::pair<int, int> bounds = get_symm_quantized_per_channel_bounds(tensor.quantization_info(), -1.0f, 1.0f, i);
if(bounds.first < min_bound)
{
min_bound = bounds.first;
}
if(bounds.second > max_bound)
{
max_bound = bounds.second;
}
}
std::uniform_int_distribution<int32_t> distribution(min_bound, max_bound);
library->fill(tensor, distribution, i);
break;
}
case DataType::S32:
{
std::uniform_int_distribution<int32_t> distribution(_min_bias, _max_bias);
library->fill(tensor, distribution, i);
break;
}
case DataType::BFLOAT16:
{
arm_compute::utils::uniform_real_distribution_16bit<bfloat16> distribution{ -1.0f, 1.0f };
library->fill(tensor, distribution, i);
break;
}
case DataType::F16:
{
arm_compute::utils::uniform_real_distribution_16bit<half> distribution{ -1.0f, 1.0f };
library->fill(tensor, distribution, i);
break;
}
case DataType::F32:
{
std::uniform_real_distribution<float> distribution(-1.0f, 1.0f);
library->fill(tensor, distribution, i);
break;
}
default:
library->fill_tensor_uniform(tensor, i);
}
}
TensorType _target{};
SimpleTensor<T> _reference{};
TensorType _src{};
TensorType _weights{};
TensorType _biases{};
FunctionType _dwc{};
TensorShape _input_shape{};
TensorShape _weights_shape{};
TensorShape _biases_shape{};
TensorShape _output_shape{};
DataType _input_data_type{};
DataType _weights_data_type{};
DataType _bias_data_type{};
QuantizationInfo _input_quantization_info{};
QuantizationInfo _weights_quantization_info{};
QuantizationInfo _output_quantization_info{};
DataLayout _data_layout{};
PadStrideInfo _pad_stride_info{};
ActivationLayerInfo _act_info{};
unsigned int _depth_multiplier{};
Size2D _dilation{};
bool _mixed_layout{ false };
bool _in_place{ false };
bool _run_twice{ false };
bool _use_dynamic_output_quant{false};
int32_t _hash{0};
// Random initialization limits
// Default values are previously handcrafted limits
// that sould be used when we don't use dynamic quantization
int32_t _min_bias{-100};
int32_t _max_bias{100};
int32_t _min_u8{0};
int32_t _max_u8{50};
int32_t _min_s8{-25};
int32_t _max_s8{25};
};
template <typename TensorType, typename AccessorType, typename FunctionType, typename T, bool mixed_layout = false, bool in_place = false, bool run_twice = false>
class DepthwiseConvolutionLayerValidationFixture : public DepthwiseConvolutionLayerValidationGenericFixture<TensorType, AccessorType, FunctionType, T, T>
{
public:
void setup(TensorShape in_shape, Size2D kernel_size, PadStrideInfo pad_stride_info, Size2D dilation, unsigned int depth_multiplier, DataType data_type, DataLayout data_layout,
ActivationLayerInfo act_info)
{
DepthwiseConvolutionLayerValidationGenericFixture<TensorType, AccessorType, FunctionType, T, T>::setup(in_shape, kernel_size, pad_stride_info, dilation, depth_multiplier,
data_type, data_type, QuantizationInfo(), QuantizationInfo(), QuantizationInfo(),
data_layout, act_info, mixed_layout, in_place, run_twice);
}
};
template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
class DepthwiseConvolutionLayerNativeValidationFixture : public DepthwiseConvolutionLayerValidationGenericFixture<TensorType, AccessorType, FunctionType, T, T>
{
public:
void setup(size_t width, size_t height, size_t channel, size_t batch, Size2D kernel_size, size_t depth_multiplier, Size2D dilation, Size2D stride, bool padding_valid, DataType data_type,
DataLayout data_layout)
{
_dilation = dilation;
_depth_multiplier = depth_multiplier;
_data_type = data_type;
_data_layout = data_layout;
_input_shape = TensorShape(width, height, channel, batch);
_weights_shape = TensorShape(kernel_size.width, kernel_size.height, channel * _depth_multiplier);
_biases_shape = TensorShape(_weights_shape.z());
if(padding_valid)
{
_conv_info = PadStrideInfo(stride.width, stride.height);
}
else
{
_conv_info = calculate_same_pad(_input_shape, _weights_shape, PadStrideInfo(stride.width, stride.height), DataLayout::NCHW, _dilation);
}
}
void configure_target()
{
TensorShape input_shape = _input_shape;
TensorShape weights_shape = _weights_shape;
if(_data_layout == DataLayout::NHWC)
{
permute(input_shape, PermutationVector(2U, 0U, 1U));
permute(weights_shape, PermutationVector(2U, 0U, 1U));
}
// Create tensors
_src = create_tensor<TensorType>(input_shape, _data_type, 1, QuantizationInfo(), _data_layout);
_weights = create_tensor<TensorType>(weights_shape, _data_type, 1, QuantizationInfo(), _data_layout);
_biases = create_tensor<TensorType>(_biases_shape, _data_type, 1, QuantizationInfo(), _data_layout);
_target = create_tensor<TensorType>(TensorShape(), _data_type, 1, QuantizationInfo(), _data_layout);
add_padding_x({ &_src, &_biases, &_target }, _data_layout);
add_padding_x({ &_weights }, _data_layout, true);
// Create Depthwise Convolution configure function
const ConvolutionInfo info
{
_conv_info, _depth_multiplier, ActivationLayerInfo(), _dilation
};
_dwc.configure(_src.info(), _weights.info(), _biases.info(), _target.info(), info);
ARM_COMPUTE_ASSERT(_src.info()->is_resizable());
ARM_COMPUTE_ASSERT(_weights.info()->is_resizable());
ARM_COMPUTE_ASSERT(_biases.info()->is_resizable());
ARM_COMPUTE_ASSERT(_target.info()->is_resizable());
}
void allocate_and_run_target()
{
// Allocate tensors
_src.allocator()->allocate();
_weights.allocator()->allocate();
_biases.allocator()->allocate();
_target.allocator()->allocate();
ARM_COMPUTE_ASSERT(!_src.info()->is_resizable());
ARM_COMPUTE_ASSERT(!_weights.info()->is_resizable());
ARM_COMPUTE_ASSERT(!_biases.info()->is_resizable());
ARM_COMPUTE_ASSERT(!_target.info()->is_resizable());
// Fill tensors
fill(AccessorType(_src), 0);
fill(AccessorType(_weights), 1);
fill(AccessorType(_biases), 2);
arm_compute::ITensorPack pack;
pack.add_const_tensor(arm_compute::TensorType::ACL_SRC_0, &_src);
pack.add_const_tensor(arm_compute::TensorType::ACL_SRC_1, &_weights);
pack.add_const_tensor(arm_compute::TensorType::ACL_SRC_2, &_biases);
pack.add_tensor(arm_compute::TensorType::ACL_DST, &_target);
// Compute function
_dwc.run(pack);
}
void compute_reference()
{
SimpleTensor<T> src{ _input_shape, _data_type };
SimpleTensor<T> weights{ _weights_shape, _data_type };
SimpleTensor<T> biases{ _biases_shape, _data_type };
fill(src, 0);
fill(weights, 1);
fill(biases, 2);
const ConvolutionInfo info{ _conv_info, _depth_multiplier, ActivationLayerInfo(), _dilation };
const TensorShape dst_shape = compute_depthwise_convolution_shape(TensorInfo(_input_shape, 1, _data_type), TensorInfo(_weights_shape, 1, _data_type), info);
_reference = reference::depthwise_convolution(src, weights, biases, dst_shape, _conv_info, _depth_multiplier, _dilation);
}
protected:
template <typename U>
void fill(U &&tensor, int i)
{
switch(tensor.data_type())
{
case DataType::F32:
{
std::uniform_real_distribution<float> distribution(-1.0f, 1.0f);
library->fill(tensor, distribution, i);
break;
}
default:
library->fill_tensor_uniform(tensor, i);
}
}
TensorType _target{};
SimpleTensor<T> _reference{};
TensorType _src{};
TensorType _weights{};
TensorType _biases{};
FunctionType _dwc{};
TensorShape _input_shape{};
TensorShape _weights_shape{};
TensorShape _biases_shape{};
DataType _data_type{};
DataLayout _data_layout{};
PadStrideInfo _conv_info{};
Size2D _dilation{};
unsigned int _depth_multiplier{};
};
template <typename TensorType, typename AccessorType, typename FunctionType, typename T, bool in_place = false>
class DepthwiseConvolutionLayerNativeConfigurableValidationFixture : public DepthwiseConvolutionLayerValidationGenericFixture<TensorType, AccessorType, FunctionType, T, T>
{
public:
void setup(size_t width, size_t height, size_t channel, size_t batch, Size2D kernel_size, size_t depth_multiplier, Size2D dilation, Size2D stride, bool padding_valid, DataType data_type,
DataLayout data_layout, const ActivationLayerInfo &act_info, unsigned int n0, bool export_to_cl_image)
{
_dilation = dilation;
_depth_multiplier = depth_multiplier;
_data_type = data_type;
_data_layout = data_layout;
_act_info = act_info;
_n0 = n0;
_export_to_cl_image = export_to_cl_image;
_in_place = in_place;
_input_shape = TensorShape(width, height, channel, batch);
_weights_shape = TensorShape(kernel_size.width, kernel_size.height, channel * _depth_multiplier);
_biases_shape = TensorShape(_weights_shape.z());
if(padding_valid)
{
_conv_info = calculate_same_pad(_input_shape, _weights_shape, PadStrideInfo(stride.width, stride.height), DataLayout::NCHW, _dilation);
}
else
{
_conv_info = PadStrideInfo(stride.width, stride.height);
}
}
void configure_target()
{
#if defined(ARM_COMPUTE_OPENCL_ENABLED)
if(_export_to_cl_image)
{
_validate_output &= image2d_from_buffer_supported(CLKernelLibrary::get().get_device());
_validate_output &= (get_cl_image_pitch_alignment(CLKernelLibrary::get().get_device()) != 0);
}
#endif // ARM_COMPUTE_OPENCL_ENABLED
if(!_validate_output)
{
return;
}
TensorShape input_shape = _input_shape;
TensorShape weights_shape = _weights_shape;
if(_data_layout == DataLayout::NHWC)
{
permute(input_shape, PermutationVector(2U, 0U, 1U));
permute(weights_shape, PermutationVector(2U, 0U, 1U));
}
// Create tensors
_src = create_tensor<TensorType>(input_shape, _data_type, 1, QuantizationInfo(), _data_layout);
_weights = create_tensor<TensorType>(weights_shape, _data_type, 1, QuantizationInfo(), _data_layout);
_biases = create_tensor<TensorType>(_biases_shape, _data_type, 1, QuantizationInfo(), _data_layout);
TensorType *target_to_use = nullptr;
if(!_in_place)
{
_target = create_tensor<TensorType>(TensorShape(), _data_type, 1, QuantizationInfo(), _data_layout);
target_to_use = &_target;
}
DWCComputeKernelInfo dwc_info;
dwc_info.n0 = _n0;
dwc_info.m0 = _conv_info.stride().first == 1 && _dilation.x() == 1 ? 8 : 1;
dwc_info.export_input_to_cl_image = false;
dwc_info.export_weights_to_cl_image = _export_to_cl_image;
const ConvolutionInfo conv_kernel_info
{
_conv_info, _depth_multiplier, _act_info, _dilation
};
add_padding_x({ &_src, &_biases, &_target }, _data_layout);
add_padding_x({ &_weights }, _data_layout, _export_to_cl_image); // Don't add left padding if cl image will be used
// Create Depthwise Convolution configure function
_dwc.configure(&_src, &_weights, &_biases, target_to_use, dwc_info, conv_kernel_info);
ARM_COMPUTE_ASSERT(_src.info()->is_resizable());
ARM_COMPUTE_ASSERT(_weights.info()->is_resizable());
ARM_COMPUTE_ASSERT(_biases.info()->is_resizable());
ARM_COMPUTE_ASSERT(_target.info()->is_resizable());
}
void allocate_and_run_target()
{
if(!_validate_output)
{
return;
}
// Allocate tensors
_src.allocator()->allocate();
_weights.allocator()->allocate();
_biases.allocator()->allocate();
ARM_COMPUTE_ASSERT(!_src.info()->is_resizable());
ARM_COMPUTE_ASSERT(!_weights.info()->is_resizable());
ARM_COMPUTE_ASSERT(!_biases.info()->is_resizable());
if(!_in_place)
{
_target.allocator()->allocate();
ARM_COMPUTE_ASSERT(!_target.info()->is_resizable());
}
// Fill tensors
fill(AccessorType(_src), 0);
fill(AccessorType(_weights), 1);
fill(AccessorType(_biases), 2);
// Test Multi DataLayout graph cases, when the data layout changes after configure
_src.info()->set_data_layout(_data_layout == DataLayout::NCHW ? DataLayout::NHWC : DataLayout::NCHW);
if(!_in_place)
{
_target.info()->set_data_layout(_data_layout == DataLayout::NCHW ? DataLayout::NHWC : DataLayout::NCHW);
}
// Compute function
_dwc.run();
// Reinstating original data layout for the test suite to properly check the values
if(!_in_place)
{
_target.info()->set_data_layout(_data_layout);
}
}
void compute_reference()
{
if(!_validate_output)
{
return;
}
SimpleTensor<T> src{ _input_shape, _data_type };
SimpleTensor<T> weights{ _weights_shape, _data_type };
SimpleTensor<T> biases{ _biases_shape, _data_type };
fill(src, 0);
fill(weights, 1);
fill(biases, 2);
const ConvolutionInfo info{ _conv_info, _depth_multiplier, _act_info, _dilation };
const TensorShape dst_shape = compute_depthwise_convolution_shape(TensorInfo(_input_shape, 1, _data_type), TensorInfo(_weights_shape, 1, _data_type), info);
_reference = reference::activation_layer(reference::depthwise_convolution(src, weights, biases, dst_shape, _conv_info, _depth_multiplier, _dilation), _act_info);
}
protected:
template <typename U>
void fill(U &&tensor, int i)
{
switch(tensor.data_type())
{
case DataType::F32:
{
std::uniform_real_distribution<float> distribution(-1.0f, 1.0f);
library->fill(tensor, distribution, i);
break;
}
case DataType::F16:
{
arm_compute::utils::uniform_real_distribution_16bit<half> distribution{ -1.0f, 1.0f };
library->fill(tensor, distribution, i);
break;
}
default:
library->fill_tensor_uniform(tensor, i);
}
}
TensorType _target{};
SimpleTensor<T> _reference{};
TensorType _src{};
TensorType _weights{};
TensorType _biases{};
FunctionType _dwc{};
TensorShape _input_shape{};
TensorShape _weights_shape{};
TensorShape _biases_shape{};
DataType _data_type{};
DataLayout _data_layout{};
PadStrideInfo _conv_info{};
ActivationLayerInfo _act_info{};
Size2D _dilation{};
unsigned int _depth_multiplier{};
unsigned int _n0{};
bool _export_to_cl_image{};
bool _validate_output{ true };
bool _in_place{ false };
};
template <typename TensorType, typename AccessorType, typename FunctionType, typename T, bool mixed_layout = false, bool in_place = false>
class DepthwiseConvolutionLayerValidationQuantizedFixture : public DepthwiseConvolutionLayerValidationGenericFixture<TensorType, AccessorType, FunctionType, T, T>
{
public:
void setup(TensorShape in_shape, Size2D kernel_size, PadStrideInfo pad_stride_info, Size2D dilation, unsigned int depth_multiplier, DataType data_type,
QuantizationInfo input_quantization_info, QuantizationInfo output_quantization_info, DataLayout data_layout, ActivationLayerInfo act_info)
{
DepthwiseConvolutionLayerValidationGenericFixture<TensorType, AccessorType, FunctionType, T, T>::setup(in_shape, kernel_size, pad_stride_info, dilation, depth_multiplier, data_type,
data_type, input_quantization_info, input_quantization_info, output_quantization_info,
data_layout, act_info, mixed_layout, in_place);
}
};
template <typename TensorType, typename AccessorType, typename FunctionType, typename T, typename TW, bool in_place = false>
class DepthwiseConvolutionLayerValidationQuantizedPerChannelFixture : public DepthwiseConvolutionLayerValidationGenericFixture<TensorType, AccessorType, FunctionType, T, TW>
{
public:
void setup(TensorShape in_shape, Size2D kernel_size, PadStrideInfo pad_stride_info, Size2D dilation, unsigned int depth_multiplier, DataType input_data_type, DataType weights_data_type,
QuantizationInfo input_quantization_info, QuantizationInfo output_quantization_info, DataLayout data_layout, ActivationLayerInfo act_info)
{
const float out_scale = output_quantization_info.uniform().scale;
const float in_scale = input_quantization_info.uniform().scale;
std::vector<float> weights_scales{};
std::mt19937 gen(library->seed());
std::uniform_real_distribution<float> dis(0.01f, out_scale / in_scale);
for(size_t i = 0; i < in_shape.z() * depth_multiplier; ++i)
{
weights_scales.push_back(dis(gen));
}
DepthwiseConvolutionLayerValidationGenericFixture<TensorType, AccessorType, FunctionType, T, TW>::setup(in_shape, kernel_size, pad_stride_info, dilation, depth_multiplier,
input_data_type, weights_data_type,
input_quantization_info, QuantizationInfo(weights_scales), output_quantization_info,
data_layout, act_info, false, in_place);
}
};
} // namespace validation
} // namespace test
} // namespace arm_compute
#endif // ACL_TESTS_VALIDATION_FIXTURES_DEPTHWISECONVOLUTIONLAYERFIXTURE_H