blob: b1c8665216e5cd04b68a0cfd993ef90ca906e9ff [file] [log] [blame]
/*
* Copyright (c) 2017-2018 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/runtime/GLES_COMPUTE/functions/GCConvolutionLayer.h"
#include "arm_compute/core/PixelValue.h"
#include "arm_compute/core/Size2D.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/runtime/GLES_COMPUTE/GCScheduler.h"
#include <cmath>
#include <memory>
#include <tuple>
using namespace arm_compute;
GCConvolutionLayerReshapeWeights::GCConvolutionLayerReshapeWeights()
: _weights_reshape_kernel(), _weights_transposed_kernel(), _weights_reshaped(), _transpose1xW(false)
{
}
void GCConvolutionLayerReshapeWeights::configure(const IGCTensor *weights, const IGCTensor *biases, IGCTensor *output, bool transpose1xW)
{
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(weights, 1, DataType::F16, DataType::F32);
ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(weights, output);
ARM_COMPUTE_ERROR_ON(weights->info()->num_dimensions() > 4);
if(biases != nullptr)
{
ARM_COMPUTE_ERROR_ON(is_data_type_quantized_asymmetric(weights->info()->data_type()));
ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(weights, biases);
ARM_COMPUTE_ERROR_ON(biases->info()->dimension(0) != weights->info()->dimension(3));
ARM_COMPUTE_ERROR_ON(biases->info()->num_dimensions() > 1);
}
const bool append_biases = (biases != nullptr) && !is_data_type_quantized_asymmetric(weights->info()->data_type());
const unsigned bias_element = (append_biases) ? 1 : 0;
const IGCTensor *biases_to_use = (append_biases) ? biases : nullptr;
_transpose1xW = transpose1xW;
if(transpose1xW)
{
// Create tensor to store the reshaped weights
const unsigned int mat_weights_cols = weights->info()->dimension(3);
const unsigned int mat_weights_rows = weights->info()->dimension(0) * weights->info()->dimension(1) * weights->info()->dimension(2) + bias_element;
TensorShape shape_wr(mat_weights_cols, mat_weights_rows);
const DataType dt = weights->info()->data_type();
const int fixed_point_position = weights->info()->fixed_point_position();
TensorInfo info_wr(shape_wr, 1, dt, fixed_point_position);
_weights_reshaped.allocator()->init(info_wr);
_weights_reshape_kernel.configure(weights, biases_to_use, &_weights_reshaped);
_weights_transposed_kernel.configure(&_weights_reshaped, output);
_weights_reshaped.allocator()->allocate();
}
else
{
_weights_reshape_kernel.configure(weights, biases_to_use, output);
}
}
void GCConvolutionLayerReshapeWeights::run()
{
GCScheduler::get().dispatch(_weights_reshape_kernel);
if(_transpose1xW)
{
GCScheduler::get().dispatch(_weights_transposed_kernel);
}
}
GCConvolutionLayer::GCConvolutionLayer(std::shared_ptr<IMemoryManager> memory_manager)
: _memory_group(std::move(memory_manager)), _reshape_weights(), _input_im2col_kernel(), _input_interleave_kernel(), _mm_kernel(), _output_col2im_kernel(), _fill_border(), _activationlayer_function(),
_input_im2col_reshaped(), _input_interleaved_reshaped(), _weights_reshaped(), _weights_transposed(), _gemm_output(), _tmp_output(), _append_bias(false), _is_fully_connected_convolution(false),
_are_weights_reshaped(false), _is_activationlayer_enabled(false)
{
}
void GCConvolutionLayer::configure_mm(const IGCTensor *input, const IGCTensor *weights, IGCTensor *output, bool is_interleaved_transposed)
{
_mm_kernel.configure(input, weights, output, 1.f, is_interleaved_transposed);
}
void GCConvolutionLayer::configure(const IGCTensor *input, const IGCTensor *weights, const IGCTensor *biases, IGCTensor *output, const PadStrideInfo &conv_info, const WeightsInfo &weights_info,
const Size2D &dilation, const ActivationLayerInfo &act_info)
{
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F16, DataType::F32);
ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights);
ARM_COMPUTE_ERROR_ON(!weights_info.are_reshaped() && weights->info()->dimension(2) != input->info()->dimension(2));
ARM_COMPUTE_ERROR_ON(weights->info()->num_dimensions() > 4);
if(biases != nullptr)
{
ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, biases);
ARM_COMPUTE_ERROR_ON(!weights_info.are_reshaped() && biases->info()->dimension(0) != weights->info()->dimension(3));
ARM_COMPUTE_ERROR_ON(biases->info()->num_dimensions() > 1);
}
const DataType dt = input->info()->data_type();
_append_bias = (biases != nullptr);
_are_weights_reshaped = weights_info.are_reshaped();
const unsigned bias_element = (_append_bias) ? 1 : 0;
const IGCTensor *biases_to_use = (_append_bias) ? biases : nullptr;
// Get parameters from conv_info
unsigned int stride_x = 0;
unsigned int stride_y = 0;
std::tie(stride_x, stride_y) = conv_info.stride();
// Get convolved dimensions
unsigned int conv_w = 0;
unsigned int conv_h = 0;
const unsigned int kernel_width = (_are_weights_reshaped) ? weights_info.kernel_size().first : weights->info()->dimension(0);
const unsigned int kernel_height = (_are_weights_reshaped) ? weights_info.kernel_size().second : weights->info()->dimension(1);
std::tie(conv_w, conv_h) = scaled_dimensions(input->info()->dimension(0), input->info()->dimension(1), kernel_width, kernel_height,
conv_info, dilation);
// Check if its a "fully connected" convolution
_is_fully_connected_convolution = ((conv_w == 1) && (conv_h == 1));
const bool run_interleaved = (!_is_fully_connected_convolution);
unsigned int mat_weights_cols = weights->info()->dimension(3);
unsigned int mat_weights_rows = weights->info()->dimension(0) * weights->info()->dimension(1) * weights->info()->dimension(2) + bias_element;
// Reshape weights if needed
if(_are_weights_reshaped)
{
if(_is_fully_connected_convolution)
{
mat_weights_cols = weights->info()->dimension(0);
mat_weights_rows = weights->info()->dimension(1);
}
else
{
mat_weights_cols = weights_info.num_kernels();
const unsigned int quarter_reshaped_cols = weights->info()->dimension(0) / 4;
mat_weights_rows = quarter_reshaped_cols + bias_element;
}
}
else
{
if(_is_fully_connected_convolution)
{
// Create tensor to store the reshaped weights
int num_elems_read_per_iteration_x = 1;
if(dt == DataType::F16)
{
num_elems_read_per_iteration_x = 2;
}
TensorShape shape_wr((ceil_to_multiple(mat_weights_cols, num_elems_read_per_iteration_x)), mat_weights_rows);
_weights_reshaped.allocator()->init(weights->info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(shape_wr));
_reshape_weights.configure(weights, biases_to_use, &_weights_reshaped, false /* 1xW transpose */);
}
else
{
// Create tensor to store transposed weights
const float transpose_width = 16.0f / input->info()->element_size();
TensorShape shape_wt(mat_weights_rows * static_cast<unsigned int>(transpose_width), static_cast<unsigned int>(std::ceil(mat_weights_cols / transpose_width)));
_weights_reshaped.allocator()->init(weights->info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(shape_wt));
_reshape_weights.configure(weights, biases_to_use, &_weights_reshaped, true /* 1xW transpose */);
}
weights = &_weights_reshaped;
}
// Create tensor to store im2col reshaped inputs
const unsigned int mat_input_cols = mat_weights_rows;
const unsigned int mat_input_rows = conv_w * conv_h;
TensorShape shape_im2col = input->info()->tensor_shape();
shape_im2col.set(0, mat_input_cols);
shape_im2col.set(1, mat_input_rows);
shape_im2col.set(2, 1);
// FIXME: input->clone() doesn't work with subtensors for grouped convolutions.
TensorInfo im2col_reshaped_info(shape_im2col, 1, dt, input->info()->fixed_point_position());
_input_im2col_reshaped.allocator()->init(im2col_reshaped_info);
_memory_group.manage(&_input_im2col_reshaped);
// Create tensor (interleave) to prepare input tensor for GEMM
if(run_interleaved)
{
TensorShape shape_interleaved = shape_im2col;
shape_interleaved.set(0, shape_interleaved.x() * 4);
shape_interleaved.set(1, std::ceil(shape_interleaved.y() / 4.f));
// FIXME: input->clone() doesn't work with subtensors for grouped convolutions.
TensorInfo interleaved_info(shape_interleaved, 1, dt, input->info()->fixed_point_position());
_input_interleaved_reshaped.allocator()->init(interleaved_info);
_memory_group.manage(&_input_interleaved_reshaped);
}
// Create GEMM output tensor
TensorShape shape_gemm = _input_im2col_reshaped.info()->tensor_shape();
shape_gemm.set(0, mat_weights_cols);
shape_gemm.set(1, mat_input_rows);
const DataType gemm_data_type = dt;
// FIXME: input->clone() doesn't work with subtensors for grouped convolutions.
TensorInfo info_gemm(shape_gemm, 1, gemm_data_type, input->info()->fixed_point_position());
_gemm_output.allocator()->init(info_gemm);
_memory_group.manage(&_gemm_output);
// Configure kernels
if(dt == DataType::F16)
{
BorderSize border_size = BorderSize(conv_info.pad_top(), conv_info.pad_right(), conv_info.pad_bottom(), conv_info.pad_left());
input->info()->extend_padding(border_size);
_fill_border.configure(input, border_size, BorderMode::CONSTANT, PixelValue(0)); // for PAD of im2col fp16: consider it as border
}
_input_im2col_kernel.configure(input, &_input_im2col_reshaped, Size2D(kernel_width, kernel_height), conv_info, _append_bias, dilation);
// Configure matrix multiply
if(run_interleaved)
{
_input_interleave_kernel.configure(&_input_im2col_reshaped, &_input_interleaved_reshaped);
configure_mm(&_input_interleaved_reshaped, weights, &_gemm_output);
_input_interleaved_reshaped.allocator()->allocate();
}
else
{
configure_mm(&_input_im2col_reshaped, weights, &_gemm_output, false);
}
_input_im2col_reshaped.allocator()->allocate();
// Configure Col2Im
_output_col2im_kernel.configure(&_gemm_output, output, std::make_pair(conv_w, conv_h));
_gemm_output.allocator()->allocate();
ARM_COMPUTE_ERROR_ON_MSG((output->info()->dimension(0) != conv_w) || (output->info()->dimension(1) != conv_h), "Output shape does not match the expected one");
// Allocate intermediate tensor
if(!_are_weights_reshaped)
{
_weights_reshaped.allocator()->allocate();
}
//Configure Activation Layer
_is_activationlayer_enabled = act_info.enabled();
if(_is_activationlayer_enabled)
{
_activationlayer_function.configure(output, nullptr, act_info);
}
}
void GCConvolutionLayer::run()
{
// Run weights reshaping (Runs once for every configure)
if(!_are_weights_reshaped)
{
_are_weights_reshaped = true;
_reshape_weights.run();
}
_memory_group.acquire();
// Run im2col
GCScheduler::get().dispatch(_fill_border);
GCScheduler::get().memory_barrier();
GCScheduler::get().dispatch(_input_im2col_kernel);
if(!_is_fully_connected_convolution)
{
GCScheduler::get().memory_barrier();
// Run interleave4x4
GCScheduler::get().dispatch(_input_interleave_kernel);
}
GCScheduler::get().memory_barrier();
// Runs matrix multiply on reshaped matrices
GCScheduler::get().dispatch(_mm_kernel);
GCScheduler::get().memory_barrier();
// Reshape output matrix
GCScheduler::get().dispatch(_output_col2im_kernel, false);
_memory_group.release();
GCScheduler::get().memory_barrier();
// Run Activation Layer
if(_is_activationlayer_enabled)
{
_activationlayer_function.run();
}
}