blob: 453983c0770252bd6069a95e2adfee715e0fcc77 [file] [log] [blame]
/*
* Copyright (c) 2022-2024 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/CL/CLKernelLibrary.h"
#include "arm_compute/core/QuantizationInfo.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/dynamic_fusion/runtime/gpu/cl/ClWorkloadRuntime.h"
#include "arm_compute/dynamic_fusion/sketch/attributes/CastAttributes.h"
#include "arm_compute/dynamic_fusion/sketch/attributes/Conv2dAttributes.h"
#include "arm_compute/dynamic_fusion/sketch/attributes/DepthwiseConv2dAttributes.h"
#include "arm_compute/dynamic_fusion/sketch/gpu/GpuWorkloadSketch.h"
#include "arm_compute/dynamic_fusion/sketch/gpu/operators/GpuAdd.h"
#include "arm_compute/dynamic_fusion/sketch/gpu/operators/GpuCast.h"
#include "arm_compute/dynamic_fusion/sketch/gpu/operators/GpuConv2d.h"
#include "arm_compute/dynamic_fusion/sketch/gpu/operators/GpuDepthwiseConv2d.h"
#include "arm_compute/dynamic_fusion/sketch/gpu/operators/GpuMul.h"
#include "arm_compute/dynamic_fusion/sketch/gpu/operators/GpuOutput.h"
#include "arm_compute/dynamic_fusion/sketch/gpu/operators/GpuSigmoid.h"
#include "tests/CL/CLAccessor.h"
#include "tests/framework/Macros.h"
#include "tests/validation/dynamic_fusion/Utils.h"
#include "tests/validation/reference/ActivationLayer.h"
#include "tests/validation/reference/ConvolutionLayer.h"
#include "tests/validation/reference/DepthConvertLayer.h"
#include "tests/validation/reference/DepthwiseConvolutionLayer.h"
#include "tests/validation/reference/ElementwiseOperations.h"
#include "tests/validation/reference/Permute.h"
#include "tests/validation/reference/PixelWiseMultiplication.h"
#include "tests/validation/Validation.h"
using namespace arm_compute::experimental::dynamic_fusion;
using namespace arm_compute::test::validation::utils;
namespace arm_compute
{
namespace test
{
namespace validation
{
TEST_SUITE(CL)
TEST_SUITE(INTEGRATION)
TEST_SUITE(DYNAMIC_FUSION)
TEST_CASE(Conv2d, framework::DatasetMode::ALL)
{
/* Computation:
* out = conv2d1x1(direct_conv)(input, weights, bias)
*/
CLScheduler::get().default_reinit();
const auto data_type = DataType::F32;
const auto data_layout = DataLayout::NHWC;
const auto t_input_shape = TensorShape(384, 12, 12);
const auto t_weight_shape = TensorShape(384, 1, 1, 16);
const auto t_dst_shape = TensorShape(16, 12, 12);
// Create a new workload sketch
auto cl_compile_ctx = CLKernelLibrary::get().get_compile_context();
auto context = GpuWorkloadContext{&cl_compile_ctx};
GpuWorkloadSketch sketch{&context};
// Fuse conv2d
Conv2dAttributes conv2d_attr{};
ITensorInfo *input_info = context.create_tensor_info(t_input_shape, 1, data_type, data_layout);
ITensorInfo *weight_info = context.create_tensor_info(TensorInfo(t_weight_shape, 1, data_type, data_layout));
ITensorInfo *conv_out_info = GpuConv2d::create_op(sketch, input_info, weight_info, nullptr, conv2d_attr);
ITensorInfo *dst_info = context.create_tensor_info();
GpuOutput::create_op(sketch, conv_out_info, dst_info);
// Configure runtime
ClWorkloadRuntime runtime;
runtime.configure(sketch);
// (Important) Allocate auxiliary tensor memory if there are any
// Instead of using ACL allocated memory, the user can choose to import memory into the tensors
for (auto &data : runtime.get_auxiliary_tensors())
{
CLTensor *tensor = std::get<0>(data);
TensorInfo info = std::get<1>(data);
AuxMemoryInfo aux_mem_req = std::get<2>(data);
tensor->allocator()->init(info, aux_mem_req.alignment);
tensor->allocator()->allocate(); // Use ACL allocated memory
// auto buf = cl::Buffer();
// tensor->allocator()->import_memory(buf); // Or, import external memory
}
// Construct user tensors
CLTensor t_input{};
CLTensor t_weight{};
CLTensor t_dst{};
// Initialize user tensors
t_input.allocator()->init(*input_info);
t_weight.allocator()->init(*weight_info);
t_dst.allocator()->init(*dst_info);
// Allocate and fill user tensors
// Instead of using ACL allocator, the user can choose to import memory into the tensors
t_input.allocator()->allocate();
t_weight.allocator()->allocate();
t_dst.allocator()->allocate();
fill<float>(CLAccessor(t_input), 0, library.get());
fill<float>(CLAccessor(t_weight), 1, library.get());
// Run runtime
runtime.run({&t_input, &t_weight, &t_dst});
// Create reference
SimpleTensor<float> ref_t_input{t_input_shape, data_type, 1, QuantizationInfo(), DataLayout::NHWC};
SimpleTensor<float> ref_t_weight{t_weight_shape, data_type, 1, QuantizationInfo(), DataLayout::NHWC};
SimpleTensor<float> ref_t_bias_placeholder{t_dst_shape, data_type, 1, QuantizationInfo(), DataLayout::NHWC};
// Fill reference
fill<float>(ref_t_input, 0, library.get());
fill<float>(ref_t_weight, 1, library.get());
auto ref_t_input_nchw = reference::permute(ref_t_input, PermutationVector(1U, 2U, 0U));
auto ref_t_weight_nchw = reference::permute(ref_t_weight, PermutationVector(1U, 2U, 0U));
auto ref_t_bias_placeholder_nchw = reference::permute(ref_t_bias_placeholder, PermutationVector(1U, 2U, 0U));
auto t_dst_shape_nchw = t_dst_shape;
permute(t_dst_shape_nchw, PermutationVector(1U, 2U, 0U));
PadStrideInfo legacy_pad_stride(conv2d_attr.stride().x(), conv2d_attr.stride().y(), conv2d_attr.pad().left,
conv2d_attr.pad().right, conv2d_attr.pad().top, conv2d_attr.pad().bottom,
DimensionRoundingType{});
auto ref_t_dst_nchw = reference::convolution_layer(ref_t_input_nchw, ref_t_weight_nchw, ref_t_bias_placeholder_nchw,
t_dst_shape_nchw, legacy_pad_stride, conv2d_attr.dilation());
const auto ref_t_dst = reference::permute(ref_t_dst_nchw, PermutationVector(2U, 0U, 1U));
RelativeTolerance<float> tolerance_f32(
0.001f); /**< Tolerance value for comparing reference's output against implementation's output for floating point data types */
validate(CLAccessor(t_dst), ref_t_dst_nchw, tolerance_f32);
}
TEST_CASE(Add_Output_Add_Output, framework::DatasetMode::ALL)
{
/* Computation:
* out_0 = in_0 + in_1
* out_1 = out_0 + in_2
*/
CLScheduler::get().default_reinit();
const auto data_type = DataType::F32;
const auto t_input_shape = TensorShape(33, 3, 2);
// Create a new workload sketch
auto cl_compile_ctx = CLKernelLibrary::get().get_compile_context();
auto context = GpuWorkloadContext{&cl_compile_ctx};
GpuWorkloadSketch sketch{&context};
ITensorInfo *in_0_info = context.create_tensor_info(t_input_shape, 1, data_type);
ITensorInfo *in_1_info = context.create_tensor_info(t_input_shape, 1, data_type);
ITensorInfo *in_2_info = context.create_tensor_info(t_input_shape, 1, data_type);
ITensorInfo *out_0_info = context.create_tensor_info();
ITensorInfo *out_1_info = context.create_tensor_info();
ITensorInfo *ans_0_info = GpuAdd::create_op(sketch, in_0_info, in_1_info);
GpuOutput::create_op(sketch, ans_0_info, out_0_info);
ITensorInfo *ans_1_info = GpuAdd::create_op(sketch, ans_0_info, in_2_info);
GpuOutput::create_op(sketch, ans_1_info, out_1_info);
// Configure runtime
ClWorkloadRuntime runtime;
runtime.configure(sketch);
// (Important) Allocate auxiliary tensor memory if there are any
// Instead of using ACL allocated memory, the user can choose to import memory into the tensors
for (auto &data : runtime.get_auxiliary_tensors())
{
CLTensor *tensor = std::get<0>(data);
TensorInfo info = std::get<1>(data);
AuxMemoryInfo aux_mem_req = std::get<2>(data);
tensor->allocator()->init(info, aux_mem_req.alignment);
tensor->allocator()->allocate(); // Use ACL allocated memory
// auto buf = cl::Buffer();
// tensor->allocator()->import_memory(buf); // Or, import external memory
}
// Construct user tensors
CLTensor t_in_0{};
CLTensor t_in_1{};
CLTensor t_in_2{};
CLTensor t_out_0{};
CLTensor t_out_1{};
// Initialize user tensors
t_in_0.allocator()->init(*in_0_info);
t_in_1.allocator()->init(*in_1_info);
t_in_2.allocator()->init(*in_2_info);
t_out_0.allocator()->init(*out_0_info);
t_out_1.allocator()->init(*out_1_info);
// Allocate and fill user tensors
// Instead of using ACL allocator, the user can choose to import memory into the tensors
t_in_0.allocator()->allocate();
t_in_1.allocator()->allocate();
t_in_2.allocator()->allocate();
t_out_0.allocator()->allocate();
t_out_1.allocator()->allocate();
fill<float>(CLAccessor(t_in_0), 0, library.get());
fill<float>(CLAccessor(t_in_1), 1, library.get());
fill<float>(CLAccessor(t_in_2), 2, library.get());
// Run runtime
runtime.run({&t_in_0, &t_in_1, &t_in_2, &t_out_0, &t_out_1});
// Create reference
SimpleTensor<float> ref_t_in_0{t_input_shape, data_type, 1, QuantizationInfo()};
SimpleTensor<float> ref_t_in_1{t_input_shape, data_type, 1, QuantizationInfo()};
SimpleTensor<float> ref_t_in_2{t_input_shape, data_type, 1, QuantizationInfo()};
SimpleTensor<float> ref_t_out_0{t_input_shape, data_type, 1, QuantizationInfo()};
SimpleTensor<float> ref_t_out_1{t_input_shape, data_type, 1, QuantizationInfo()};
// Fill reference
fill<float>(ref_t_in_0, 0, library.get());
fill<float>(ref_t_in_1, 1, library.get());
fill<float>(ref_t_in_2, 2, library.get());
reference::arithmetic_operation(ArithmeticOperation::ADD, ref_t_in_0, ref_t_in_1, ref_t_out_0, ConvertPolicy::WRAP);
reference::arithmetic_operation(ArithmeticOperation::ADD, ref_t_out_0, ref_t_in_2, ref_t_out_1,
ConvertPolicy::WRAP);
RelativeTolerance<float> tolerance_f32(
0.001f); /**< Tolerance value for comparing reference's output against implementation's output for floating point data types */
validate(CLAccessor(t_out_0), ref_t_out_0, tolerance_f32);
validate(CLAccessor(t_out_1), ref_t_out_1, tolerance_f32);
}
TEST_CASE(Add_Output_Add_Cast_Cast_Output, framework::DatasetMode::ALL)
{
/* Computation:
* out_0 = in_0 + in_1
* out_1 = float(int32_t(out_0 + in_2))
*/
CLScheduler::get().default_reinit();
const auto data_type = DataType::F32;
const auto t_input_shape = TensorShape(3, 8, 5);
// Create a new workload sketch
auto cl_compile_ctx = CLKernelLibrary::get().get_compile_context();
auto context = GpuWorkloadContext{&cl_compile_ctx};
GpuWorkloadSketch sketch{&context};
ITensorInfo *in_0_info = context.create_tensor_info(t_input_shape, 1, data_type);
ITensorInfo *in_1_info = context.create_tensor_info(t_input_shape, 1, data_type);
ITensorInfo *in_2_info = context.create_tensor_info(t_input_shape, 1, data_type);
ITensorInfo *out_0_info = context.create_tensor_info();
ITensorInfo *out_1_info = context.create_tensor_info();
CastAttributes cast_0_attr;
cast_0_attr.data_type(DataType::F16);
CastAttributes cast_1_attr;
cast_1_attr.data_type(DataType::F32);
ITensorInfo *ans_0_info = GpuAdd::create_op(sketch, in_0_info, in_1_info);
GpuOutput::create_op(sketch, ans_0_info, out_0_info);
ITensorInfo *ans_1_info = GpuAdd::create_op(sketch, ans_0_info, in_2_info);
ITensorInfo *ans_2_info = GpuCast::create_op(sketch, ans_1_info, cast_0_attr);
ITensorInfo *ans_3_info = GpuCast::create_op(sketch, ans_2_info, cast_1_attr);
GpuOutput::create_op(sketch, ans_3_info, out_1_info);
// Configure runtime
ClWorkloadRuntime runtime;
runtime.configure(sketch);
// (Important) Allocate auxiliary tensor memory if there are any
// Instead of using ACL allocated memory, the user can choose to import memory into the tensors
for (auto &data : runtime.get_auxiliary_tensors())
{
CLTensor *tensor = std::get<0>(data);
TensorInfo info = std::get<1>(data);
AuxMemoryInfo aux_mem_req = std::get<2>(data);
tensor->allocator()->init(info, aux_mem_req.alignment);
tensor->allocator()->allocate(); // Use ACL allocated memory
// auto buf = cl::Buffer();
// tensor->allocator()->import_memory(buf); // Or, import external memory
}
// Construct user tensors
CLTensor t_in_0{};
CLTensor t_in_1{};
CLTensor t_in_2{};
CLTensor t_out_0{};
CLTensor t_out_1{};
// Initialize user tensors
t_in_0.allocator()->init(*in_0_info);
t_in_1.allocator()->init(*in_1_info);
t_in_2.allocator()->init(*in_2_info);
t_out_0.allocator()->init(*out_0_info);
t_out_1.allocator()->init(*out_1_info);
// Allocate and fill user tensors
// Instead of using ACL allocator, the user can choose to import memory into the tensors
t_in_0.allocator()->allocate();
t_in_1.allocator()->allocate();
t_in_2.allocator()->allocate();
t_out_0.allocator()->allocate();
t_out_1.allocator()->allocate();
fill<float>(CLAccessor(t_in_0), 0, library.get());
fill<float>(CLAccessor(t_in_1), 1, library.get());
fill<float>(CLAccessor(t_in_2), 2, library.get());
// Run runtime
runtime.run({&t_in_0, &t_in_1, &t_in_2, &t_out_0, &t_out_1});
// Create reference
SimpleTensor<float> ref_t_in_0{t_input_shape, data_type, 1, QuantizationInfo()};
SimpleTensor<float> ref_t_in_1{t_input_shape, data_type, 1, QuantizationInfo()};
SimpleTensor<float> ref_t_in_2{t_input_shape, data_type, 1, QuantizationInfo()};
SimpleTensor<float> ref_t_out_0{t_input_shape, data_type, 1, QuantizationInfo()};
SimpleTensor<float> ref_t_ans_1{t_input_shape, data_type, 1, QuantizationInfo()};
// Fill reference
fill<float>(ref_t_in_0, 0, library.get());
fill<float>(ref_t_in_1, 1, library.get());
fill<float>(ref_t_in_2, 2, library.get());
reference::arithmetic_operation(ArithmeticOperation::ADD, ref_t_in_0, ref_t_in_1, ref_t_out_0, ConvertPolicy::WRAP);
reference::arithmetic_operation(ArithmeticOperation::ADD, ref_t_out_0, ref_t_in_2, ref_t_ans_1,
ConvertPolicy::WRAP);
const auto ref_t_ans_2 =
reference::depth_convert<float, int32_t>(ref_t_ans_1, DataType::S32, ConvertPolicy::SATURATE, 0);
const auto ref_t_out_1 =
reference::depth_convert<int32_t, float>(ref_t_ans_2, DataType::F32, ConvertPolicy::SATURATE, 0);
RelativeTolerance<float> tolerance_add_f32(0.001f);
AbsoluteTolerance<float> tolerance_cast_f32(1.0f);
validate(CLAccessor(t_out_0), ref_t_out_0, tolerance_add_f32);
validate(CLAccessor(t_out_1), ref_t_out_1, tolerance_cast_f32);
}
/// TODO: COMPMID-6593 : This integration test fails with CKW backend.
/// It was not enabled for CKW before, therefore went unnoticed.
TEST_CASE(Conv2d_Sigmoid_DepthwiseConv2d_Mul, framework::DatasetMode::DISABLED)
{
// (tensor0)
// |
// ======|============================================== Sketch 0
// | (tensor1) +---- (tensor2)
// | | | |
// +-- input -- weights -- biases --+ |
// | | |
// | Conv2d | |
// | | |
// +----------- output -------------+ |
// | |
// +-- input ---+ |
// | | |
// | Sigmoid | |
// | | |
// +-- output --+ |
// | |
// +-- input ---+ |
// | | |
// | Output | |
// | | |
// +-- output --+ |
// | |
// (tensor5) |
// | |
// +--------+ |
// ======|=============================|================ Sketch 1
// | (tensor3) (tensor4) |
// | | | |
// +-- input -- weights -- biases --+ |
// | | |
// | DepthwiseConv2d | |
// | | |
// +----------- output -------------+ |
// | |
// +--+ +----------------+
// | |
// +-- lhs -- rhs --+
// | |
// | Multiply |
// | |
// +---- output ----+
// |
// +-- input ---+
// | |
// | Output |
// | |
// +-- output --+
// |
// (tensor6)
TensorShape conv2d_src_shape(10, 20, 30);
TensorShape conv2d_wei_shape(10, 3, 3, 5);
TensorShape conv2d_bia_shape(5);
TensorShape conv2d_dst_shape(5, 18, 28);
TensorShape dwc_wei_shape(5, 3, 3);
TensorShape dwc_bia_shape(5);
TensorShape dwc_dst_shape(5, 16, 26);
// Initialize the context.
CLScheduler::get().default_reinit();
auto cl_compile_ctx = CLKernelLibrary::get().get_compile_context();
GpuWorkloadContext context(&cl_compile_ctx);
auto tensor0_info = context.create_tensor_info(conv2d_src_shape, 1, DataType::F32, DataLayout::NHWC);
// Create the first sketch: conv2d + cast + output.
GpuWorkloadSketch sketch0(&context);
Conv2dAttributes conv2d_attr;
auto tensor1_info = context.create_tensor_info(conv2d_wei_shape, 1, DataType::F32, DataLayout::NHWC);
auto tensor2_info = context.create_tensor_info(conv2d_bia_shape, 1, DataType::F32, DataLayout::NHWC);
ARM_COMPUTE_EXPECT(GpuConv2d::validate_op(sketch0, tensor0_info, tensor1_info, tensor2_info, conv2d_attr),
framework::LogLevel::ERRORS);
auto ans_info = GpuConv2d::create_op(sketch0, tensor0_info, tensor1_info, tensor2_info, conv2d_attr);
ARM_COMPUTE_EXPECT(GpuSigmoid::validate_op(sketch0, ans_info), framework::LogLevel::ERRORS);
ans_info = GpuSigmoid::create_op(sketch0, ans_info);
DepthwiseConv2dAttributes dwc_attr;
auto tensor3_info = context.create_tensor_info(dwc_wei_shape, 1, DataType::F32, DataLayout::NHWC);
auto tensor4_info = context.create_tensor_info(dwc_bia_shape, 1, DataType::F32, DataLayout::NHWC);
ARM_COMPUTE_EXPECT(!GpuDepthwiseConv2d::validate_op(sketch0, ans_info, tensor3_info, tensor4_info, dwc_attr),
framework::LogLevel::ERRORS);
auto tensor5_info = context.create_tensor_info();
ARM_COMPUTE_EXPECT(GpuOutput::validate_op(sketch0, ans_info, tensor5_info), framework::LogLevel::ERRORS);
GpuOutput::create_op(sketch0, ans_info, tensor5_info);
// Create the first workload runtime.
ClWorkloadRuntime runtime0;
runtime0.configure(sketch0);
// Create the second sketch: dwc + sigmoid + output.
GpuWorkloadSketch sketch1(&context);
ARM_COMPUTE_EXPECT(GpuDepthwiseConv2d::validate_op(sketch1, tensor5_info, tensor3_info, tensor4_info, dwc_attr),
framework::LogLevel::ERRORS);
ans_info = GpuDepthwiseConv2d::create_op(sketch1, tensor5_info, tensor3_info, tensor4_info, dwc_attr);
ARM_COMPUTE_EXPECT(GpuMul::validate_op(sketch1, ans_info, tensor2_info), framework::LogLevel::ERRORS);
ans_info = GpuMul::create_op(sketch1, ans_info, tensor2_info);
auto tensor6_info = context.create_tensor_info();
ARM_COMPUTE_EXPECT(GpuOutput::validate_op(sketch1, ans_info, tensor6_info), framework::LogLevel::ERRORS);
GpuOutput::create_op(sketch1, ans_info, tensor6_info);
// Create the second workload runtime.
ClWorkloadRuntime runtime1;
runtime1.configure(sketch1);
// Create the user tensors.
CLTensor tensor0;
CLTensor tensor1;
CLTensor tensor2;
CLTensor tensor3;
CLTensor tensor4;
CLTensor tensor5;
CLTensor tensor6;
tensor0.allocator()->init(*tensor0_info);
tensor1.allocator()->init(*tensor1_info);
tensor2.allocator()->init(*tensor2_info);
tensor3.allocator()->init(*tensor3_info);
tensor4.allocator()->init(*tensor4_info);
tensor5.allocator()->init(*tensor5_info);
tensor6.allocator()->init(*tensor6_info);
tensor0.allocator()->allocate();
tensor1.allocator()->allocate();
tensor2.allocator()->allocate();
tensor3.allocator()->allocate();
tensor4.allocator()->allocate();
tensor5.allocator()->allocate();
tensor6.allocator()->allocate();
// Allocate the auxiliary tensors.
for (auto &data : runtime0.get_auxiliary_tensors())
{
auto tensor = std::get<0>(data);
auto &tensor_info = std::get<1>(data);
auto mem_req = std::get<2>(data);
tensor->allocator()->init(tensor_info, mem_req.alignment);
tensor->allocator()->allocate();
}
for (auto &data : runtime1.get_auxiliary_tensors())
{
auto tensor = std::get<0>(data);
auto &tensor_info = std::get<1>(data);
auto mem_req = std::get<2>(data);
tensor->allocator()->init(tensor_info, mem_req.alignment);
tensor->allocator()->allocate();
}
// Fill the input tensors with random data.
fill<float>(CLAccessor(tensor0), 0, library.get());
fill<float>(CLAccessor(tensor1), 1, library.get());
fill<float>(CLAccessor(tensor2), 2, library.get());
fill<float>(CLAccessor(tensor3), 3, library.get());
fill<float>(CLAccessor(tensor4), 4, library.get());
// Run each runtime.
runtime0.run({&tensor0, &tensor1, &tensor2, &tensor5});
runtime1.run({&tensor5, &tensor3, &tensor4, &tensor2, &tensor6});
// Compute the reference result.
SimpleTensor<float> ref_conv2d_src(conv2d_src_shape, DataType::F32, 1, QuantizationInfo(), DataLayout::NHWC);
SimpleTensor<float> ref_conv2d_wei(conv2d_wei_shape, DataType::F32, 1, QuantizationInfo(), DataLayout::NHWC);
SimpleTensor<float> ref_conv2d_bia(conv2d_bia_shape, DataType::F32, 1, QuantizationInfo(), DataLayout::NHWC);
SimpleTensor<float> ref_dwc_wei(dwc_wei_shape, DataType::F32, 1, QuantizationInfo(), DataLayout::NHWC);
SimpleTensor<float> ref_dwc_bia(dwc_bia_shape, DataType::F32, 1, QuantizationInfo(), DataLayout::NHWC);
fill<float>(ref_conv2d_src, 0, library.get());
fill<float>(ref_conv2d_wei, 1, library.get());
fill<float>(ref_conv2d_bia, 2, library.get());
fill<float>(ref_dwc_wei, 3, library.get());
fill<float>(ref_dwc_bia, 4, library.get());
PermutationVector nhwc_to_nchw(1, 2, 0);
auto conv2d_dst_shape_nchw = conv2d_dst_shape;
permute(conv2d_dst_shape_nchw, nhwc_to_nchw);
const auto ref_conv2d_src_nchw = reference::permute(ref_conv2d_src, nhwc_to_nchw);
const auto ref_conv2d_wei_nchw = reference::permute(ref_conv2d_wei, nhwc_to_nchw);
const auto ref_conv2d_bia_nchw = reference::permute(ref_conv2d_bia, nhwc_to_nchw);
const auto ref_conv2d_dst_nchw = reference::convolution_layer(
ref_conv2d_src_nchw, ref_conv2d_wei_nchw, ref_conv2d_bia_nchw, conv2d_dst_shape_nchw, PadStrideInfo());
const auto ref_sigmoid_dst_nchw = reference::activation_layer(
ref_conv2d_dst_nchw, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC));
auto dwc_dst_shape_nchw = dwc_dst_shape;
permute(dwc_dst_shape_nchw, nhwc_to_nchw);
const auto ref_dwc_wei_nchw = reference::permute(ref_dwc_wei, nhwc_to_nchw);
const auto ref_dwc_bia_nchw = reference::permute(ref_dwc_bia, nhwc_to_nchw);
const auto ref_dwc_dst_nchw = reference::depthwise_convolution(
ref_sigmoid_dst_nchw, ref_dwc_wei_nchw, ref_dwc_bia_nchw, dwc_dst_shape_nchw, PadStrideInfo(), 1);
const auto ref_mul_dst_nchw = reference::pixel_wise_multiplication<float, float, float>(
ref_dwc_dst_nchw, ref_conv2d_bia_nchw, 1.0, ConvertPolicy::SATURATE, RoundingPolicy::TO_NEAREST_UP,
DataType::F32);
constexpr RelativeTolerance<float> tolerance(0.001f);
validate(CLAccessor(tensor6), ref_mul_dst_nchw, tolerance);
}
TEST_SUITE(Invalid_Fusion_Should_Fail)
TEST_CASE(Multiple_Complex_Ops_0, framework::DatasetMode::ALL)
{
/* Computation:
* out = conv2d(conv2d(l0_input, l0_weight), l1_weight)
*/
CLScheduler::get().default_reinit();
const auto data_type = DataType::F32;
const auto data_layout = DataLayout::NHWC;
const auto t_input_shape = TensorShape(384, 12, 12);
const auto t_weight_shape = TensorShape(384, 1, 1, 16);
auto t_input_info = TensorInfo(t_input_shape, 1, data_type, data_layout);
auto t_weight_info = TensorInfo(t_weight_shape, 1, data_type, data_layout);
auto t_dst_info = TensorInfo();
Conv2dAttributes conv2d_attr{};
// Create a new workload sketch
auto cl_compile_ctx = CLKernelLibrary::get().get_compile_context();
auto context = GpuWorkloadContext{&cl_compile_ctx};
GpuWorkloadSketch sketch{&context};
// Create tensor infos
ITensorInfo *input_info = context.create_tensor_info(t_input_shape, 1, data_type, data_layout);
ITensorInfo *weight_info = context.create_tensor_info(TensorInfo(t_weight_shape, 1, data_type, data_layout));
ITensorInfo *dst_info;
// Fuse conv2d into the workload
{
// Validate operator
const Status success = GpuConv2d::validate_op(sketch, input_info, weight_info, nullptr, conv2d_attr);
ARM_COMPUTE_EXPECT(bool(success), framework::LogLevel::ERRORS);
dst_info = GpuConv2d::create_op(sketch, input_info, weight_info, nullptr, conv2d_attr);
}
// Create tensor infos
ITensorInfo *weight_info_2 = context.create_tensor_info(t_weight_info);
// Fuse conv2d into the workload
{
// Validate operator, should fail
const Status success = GpuConv2d::validate_op(sketch, dst_info, weight_info_2, nullptr, conv2d_attr);
const auto expected_error_str = "Operator fusion test failed. This operator cannot be fused into the workload";
ARM_COMPUTE_EXPECT(!bool(success), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT((success.error_description().find(expected_error_str) != std::string::npos),
framework::LogLevel::ERRORS);
}
}
TEST_SUITE_END() // Invalid_Fusion_Should_Fail
TEST_SUITE_END() // DYNAMIC_FUSION
TEST_SUITE_END() // INTEGRATION
TEST_SUITE_END() // CL
} // namespace validation
} // namespace test
} // namespace arm_compute