blob: f8b74a985d37824a99d832b9471c2eccb7a7c31d [file] [log] [blame]
/*
* Copyright (c) 2017-2024 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/function_info/ActivationLayerInfo.h"
#include "src/core/utils/quantization/AsymmHelpers.h"
#include "support/ToolchainSupport.h"
#include <cmath>
#include <limits>
#include <numeric>
namespace arm_compute
{
namespace quantization
{
constexpr int64_t fixed_point_one_Q0 = (1LL << 31);
constexpr float epsilon = 0.00001f;
Status calculate_quantized_multiplier(float multiplier, int32_t *quant_multiplier, int32_t *shift, bool ignore_epsilon)
{
if (multiplier >= 1.f)
{
Status status = calculate_quantized_multiplier_greater_than_one(multiplier, quant_multiplier, shift);
*shift *= -1;
return status;
}
else
{
return calculate_quantized_multiplier_less_than_one(multiplier, quant_multiplier, shift, ignore_epsilon);
}
}
Status calculate_quantized_multiplier_less_than_one(float multiplier,
int32_t *quant_multiplier,
int32_t *right_shift,
bool ignore_epsilon)
{
const float internal_epsilon = ignore_epsilon ? 0.0f : epsilon;
ARM_COMPUTE_RETURN_ERROR_ON(quant_multiplier == nullptr);
ARM_COMPUTE_RETURN_ERROR_ON(right_shift == nullptr);
ARM_COMPUTE_RETURN_ERROR_ON(multiplier < -internal_epsilon);
ARM_COMPUTE_RETURN_ERROR_ON(multiplier > 1.0f + internal_epsilon);
int shift_exp = 0;
const double q = std::frexp(multiplier, &shift_exp);
*right_shift = -1 * shift_exp;
auto q_fixed = static_cast<int64_t>(support::cpp11::round(q * fixed_point_one_Q0));
ARM_COMPUTE_RETURN_ERROR_ON(q_fixed > fixed_point_one_Q0);
if (q_fixed == fixed_point_one_Q0)
{
q_fixed /= 2;
--*right_shift;
}
if (ignore_epsilon && *right_shift > 31)
{
*right_shift = 0;
q_fixed = 0;
}
ARM_COMPUTE_RETURN_ERROR_ON(*right_shift < 0);
ARM_COMPUTE_RETURN_ERROR_ON(q_fixed > std::numeric_limits<int32_t>::max());
*quant_multiplier = static_cast<int32_t>(q_fixed);
return Status{};
}
Status
calculate_quantized_multiplier_greater_than_one(float multiplier, int32_t *quantized_multiplier, int32_t *left_shift)
{
ARM_COMPUTE_RETURN_ERROR_ON(quantized_multiplier == nullptr);
ARM_COMPUTE_RETURN_ERROR_ON(left_shift == nullptr);
ARM_COMPUTE_RETURN_ERROR_ON(multiplier < 1.f);
int shift_exp = 0;
const double q = std::frexp(multiplier, &shift_exp);
*left_shift = shift_exp;
auto q_fixed = static_cast<int64_t>(support::cpp11::round(q * fixed_point_one_Q0));
ARM_COMPUTE_RETURN_ERROR_ON(q_fixed > fixed_point_one_Q0);
if (q_fixed == fixed_point_one_Q0)
{
q_fixed /= 2;
++*left_shift;
}
ARM_COMPUTE_RETURN_ERROR_ON(*left_shift < 0);
ARM_COMPUTE_RETURN_ERROR_ON(q_fixed > std::numeric_limits<int32_t>::max());
*quantized_multiplier = static_cast<int32_t>(q_fixed);
return Status{};
}
arm_compute::Status calculate_quantized_multipliers(const QuantizationInfo &iq_info,
const QuantizationInfo &wq_info,
const QuantizationInfo &oq_info,
GEMMLowpOutputStageInfo &stage_info)
{
ARM_COMPUTE_RETURN_ERROR_ON(iq_info.scale().empty());
ARM_COMPUTE_RETURN_ERROR_ON(wq_info.scale().empty());
ARM_COMPUTE_RETURN_ERROR_ON(oq_info.scale().empty());
constexpr unsigned int padding_elems = 32; // assembly kernels assume the shifts and multipliers buffers are padded
const unsigned int size = wq_info.scale().size();
const size_t padded_size = (size == 1) ? 1 : size + padding_elems;
auto &quant_multipliers = stage_info.gemmlowp_multipliers;
auto &quant_shifts = stage_info.gemmlowp_shifts;
quant_multipliers.resize(padded_size);
quant_shifts.resize(padded_size);
const auto &w_scales = wq_info.scale();
const float i_scale = iq_info.scale().at(0);
const float o_scale = oq_info.scale().at(0);
for (unsigned int i = 0; i < size; ++i)
{
const float multiplier = i_scale * w_scales[i] / o_scale;
int32_t quant_multiplier = 0;
int32_t quant_shift = 0;
ARM_COMPUTE_RETURN_ON_ERROR(calculate_quantized_multiplier(multiplier, &quant_multiplier, &quant_shift));
quant_multipliers[i] = quant_multiplier;
quant_shifts[i] = quant_shift;
}
// Legacy part
stage_info.gemmlowp_shift = quant_shifts[0];
stage_info.gemmlowp_multiplier = quant_multipliers[0];
return Status{};
}
std::pair<int, int> get_min_max_values_from_quantized_data_type(DataType data_type)
{
int min_quant_val = 0;
int max_quant_val = 0;
switch (data_type)
{
case DataType::QASYMM8:
min_quant_val = std::numeric_limits<uint8_t>::min();
max_quant_val = std::numeric_limits<uint8_t>::max();
break;
case DataType::QSYMM8:
case DataType::QASYMM8_SIGNED:
min_quant_val = std::numeric_limits<int8_t>::min();
max_quant_val = std::numeric_limits<int8_t>::max();
break;
case DataType::QASYMM16:
min_quant_val = std::numeric_limits<uint16_t>::min();
max_quant_val = std::numeric_limits<uint16_t>::max();
break;
case DataType::QSYMM16:
min_quant_val = std::numeric_limits<int16_t>::min();
max_quant_val = std::numeric_limits<int16_t>::max();
break;
default:
ARM_COMPUTE_ERROR("Unsupported data type");
}
return std::make_pair(min_quant_val, max_quant_val);
}
std::tuple<int32_t, int32_t> get_quantized_asymmetric_output_min_max(const QuantizationInfo &q_info,
const ActivationLayerInfo &act_info,
DataType data_type)
{
ARM_COMPUTE_ERROR_ON(data_type != DataType::QASYMM8 && data_type != DataType::QASYMM8_SIGNED);
const auto min_max = get_min_max(data_type);
int32_t type_min = std::get<0>(min_max).get<int32_t>();
int32_t type_max = std::get<1>(min_max).get<int32_t>();
const UniformQuantizationInfo q_unif = q_info.uniform();
if (act_info.enabled())
{
switch (act_info.activation())
{
case ActivationLayerInfo::ActivationFunction::RELU:
type_min = q_unif.offset;
break;
case ActivationLayerInfo::ActivationFunction::BOUNDED_RELU:
type_min = q_unif.offset;
type_max = (data_type == DataType::QASYMM8) ? quantize_qasymm8(act_info.a(), q_info)
: quantize_qasymm8_signed(act_info.a(), q_info);
break;
case ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU:
type_min = (data_type == DataType::QASYMM8) ? quantize_qasymm8(act_info.b(), q_info)
: quantize_qasymm8_signed(act_info.b(), q_info);
type_max = (data_type == DataType::QASYMM8) ? quantize_qasymm8(act_info.a(), q_info)
: quantize_qasymm8_signed(act_info.a(), q_info);
break;
default:
ARM_COMPUTE_ERROR("Activation function not supported.");
break;
}
}
return std::make_tuple(type_min, type_max);
}
void compute_quantized_multipliers_and_shifts(const ITensorInfo *input,
const ITensorInfo *weights,
const ITensorInfo *output,
int32_t *output_multipliers_ptr,
int32_t *output_shifts_ptr)
{
const UniformQuantizationInfo iq_info = input->quantization_info().uniform();
const QuantizationInfo wq_info = weights->quantization_info();
const UniformQuantizationInfo oq_info = output->quantization_info().uniform();
const unsigned int num_filters = wq_info.scale().size();
for (unsigned int i = 0; i < num_filters; ++i)
{
int32_t output_multiplier = 0;
int32_t output_shift = 0;
const float multiplier = iq_info.scale * wq_info.scale()[i] / oq_info.scale;
calculate_quantized_multiplier(multiplier, &output_multiplier, &output_shift);
output_multipliers_ptr[i] = output_multiplier;
output_shifts_ptr[i] = output_shift;
}
}
int32_t saturating_rounding_doubling_highmul(int32_t a, int32_t b)
{
bool overflow = a == b && a == std::numeric_limits<int32_t>::min();
int64_t a_64(a);
int64_t b_64(b);
int64_t ab_64 = a_64 * b_64;
const bool is_positive_or_zero =
a == 0 || b == 0 || (std::signbit(static_cast<double>(a)) == std::signbit(static_cast<double>(b)));
int32_t nudge = is_positive_or_zero ? (1 << 30) : (1 - (1 << 30));
int32_t ab_x2_high32 = static_cast<int32_t>((ab_64 + nudge) / (1ll << 31));
return overflow ? std::numeric_limits<int32_t>::max() : ab_x2_high32;
}
inline int32_t rounding_divide_by_pow2(int32_t x, int exponent)
{
const int32_t mask = (1 << exponent) - 1;
const int32_t threshold = (mask >> 1) + (x < 0 ? 1 : 0);
return (x >> exponent) + ((x & mask) > threshold ? 1 : 0);
}
int32_t multiply_by_quantized_multiplier(int32_t input, int32_t qmul, int32_t shift)
{
const auto left_shift = shift > 0 ? shift : 0;
const auto right_shift = shift > 0 ? 0 : -shift;
return rounding_divide_by_pow2(saturating_rounding_doubling_highmul(input * (1 << left_shift), qmul), right_shift);
}
int32_t saturating_rounding_multiply_by_pow2(int32_t exponent, int32_t v)
{
if (exponent == 0)
{
return v;
}
else if (exponent < 0)
{
return rounding_divide_by_pow2(v, -exponent);
}
else
{
constexpr auto min = std::numeric_limits<int32_t>::min();
constexpr auto max = std::numeric_limits<int32_t>::max();
const auto width = sizeof(int32_t) * 8;
const int32_t threshold = ((1 << (width - 1 - exponent)) - 1);
bool pos_mask = v > threshold;
bool neg_mask = v < -threshold;
int32_t result = v << exponent;
result = pos_mask ? max : result;
result = neg_mask ? min : result;
return result;
}
}
void get_invsqrt_quantized_multiplier_exp(int32_t input,
int32_t reverse_shift,
int32_t &output_inv_sqrt,
int32_t &output_shift)
{
ARM_COMPUTE_ERROR_ON(input < 0);
if (input <= 1)
{
// dealing the inputs (0 and 1) separately to avoid overflow
output_inv_sqrt = std::numeric_limits<std::int32_t>::max();
output_shift = 0;
return;
}
// prepare input for fixed point operation and compute shift value
output_shift = 11;
while (input >= (1 << 29))
{
input /= 4;
++output_shift;
}
const uint32_t max_left_shift_bits = __builtin_clz(static_cast<uint32_t>(input)) - 1;
const uint32_t max_left_shift_bits_pairs = max_left_shift_bits / 2;
const uint32_t left_shift_bit_pairs = max_left_shift_bits_pairs - 1;
output_shift -= left_shift_bit_pairs;
input <<= 2 * left_shift_bit_pairs;
// Calculation in fixed point domain with 3 integer bits.
using FixedPointRawType = int32_t;
constexpr uint32_t fixedpoint_position = 3;
constexpr uint32_t fixedpoint_int_position = sizeof(FixedPointRawType) * 8 - 1 - fixedpoint_position;
using FixedPoint3 = FixedPointRawType;
using FixedPoint0 = FixedPointRawType;
// fixed point representation of input divided by 2 and 1.5 for Newton-Raphson iteration
const FixedPoint3 fixedpoint_input = (input >> 1);
const FixedPoint3 fixedpoint_half_input = rounding_divide_by_pow2(fixedpoint_input, 1);
const FixedPoint3 fixedpoint_half_three = (0x1 << fixedpoint_int_position) + (0x1 << (fixedpoint_int_position - 1));
// initial guess (1) in fixed point representation
FixedPoint3 x = 0x1 << fixedpoint_int_position;
// multiplication of two fixed point numbers, defined for readability
auto fixed_point_mul = [](FixedPointRawType a, FixedPointRawType b) -> FixedPointRawType
{ return saturating_rounding_doubling_highmul(a, b); };
// rescaling of fixed point to have dst_bit integer bits, defined for readability
auto fixed_point_rescale = [](FixedPointRawType a, uint32_t src_bit, uint32_t dst_bit) -> FixedPointRawType
{
const uint32_t exponent = src_bit - dst_bit;
return saturating_rounding_multiply_by_pow2(exponent, a);
};
// 5 iterations of Newton-Raphson method for inverse square root - 1.5 * x_n = input/2 * (x_n)^3
constexpr int32_t num_iteration = 5;
for (int32_t i = 0; i < num_iteration; ++i)
{
const auto x3 = fixed_point_rescale(fixed_point_mul(fixed_point_mul(x, x), x), 9, fixedpoint_position);
x = fixed_point_rescale(fixed_point_mul(fixedpoint_half_three, x) - fixed_point_mul(fixedpoint_half_input, x3),
6, fixedpoint_position);
}
// fixed point representation of sqrt(1/2)
const FixedPoint0 fixedpoint_half_sqrt_2 = 1518500250;
x = fixed_point_mul(fixedpoint_half_sqrt_2, x);
output_inv_sqrt = x;
if (output_shift < 0)
{
output_inv_sqrt <<= -output_shift;
output_shift = 0;
}
// convert right shift to left shift
output_shift *= reverse_shift;
}
} // namespace quantization
} // namespace arm_compute