blob: 3bc4844bd57c154edd2627d5e09a99c07df3484a [file] [log] [blame]
/*
* Copyright (c) 2017-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef ARM_COMPUTE_TEST_UNIT_MEMORY_MANAGER
#define ARM_COMPUTE_TEST_UNIT_MEMORY_MANAGER
#include "arm_compute/core/TensorShape.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/runtime/BlobLifetimeManager.h"
#include "arm_compute/runtime/MemoryManagerOnDemand.h"
#include "arm_compute/runtime/PoolManager.h"
#include "tests/AssetsLibrary.h"
#include "tests/Globals.h"
#include "tests/IAccessor.h"
#include "tests/framework/Asserts.h"
#include "tests/framework/Fixture.h"
#include "tests/validation/Helpers.h"
#include "tests/validation/reference/FullyConnectedLayer.h"
#include "tests/validation/reference/SoftmaxLayer.h"
namespace arm_compute
{
namespace test
{
namespace validation
{
/** Simple test case to run two fully connected layers using a blob affinity memory manager
*
* Runs two fully connected layers back to back
*/
template <typename TensorType, typename AccessorType, typename AllocatorType, typename FullyConnectedFunction>
class BlobMemoryManagerSimpleTestCaseFixture : public framework::Fixture
{
using T = float;
public:
void setup()
{
_target = compute_target();
_reference = compute_reference();
};
protected:
template <typename U>
void fill(U &&tensor, int i)
{
std::uniform_real_distribution<> distribution(0.5f, 1.f);
library->fill(tensor, distribution, i);
}
TensorType compute_target()
{
auto lifetime_mgr = std::make_shared<BlobLifetimeManager>();
auto pool_mgr = std::make_shared<PoolManager>();
auto mm = std::make_shared<MemoryManagerOnDemand>(lifetime_mgr, pool_mgr);
// Create tensors
TensorType w1 = create_tensor<TensorType>(TensorShape(128U, 128U), DataType::F32, 1);
TensorType b1 = create_tensor<TensorType>(TensorShape(128U), DataType::F32, 1);
TensorType w2 = create_tensor<TensorType>(TensorShape(128U, 24U), DataType::F32, 1);
TensorType b2 = create_tensor<TensorType>(TensorShape(24U), DataType::F32, 1);
TensorType src = create_tensor<TensorType>(TensorShape(128U), DataType::F32, 1);
TensorType fc1 = create_tensor<TensorType>(TensorShape(128U), DataType::F32, 1);
TensorType dst = create_tensor<TensorType>(TensorShape(24U), DataType::F32, 1);
// Create and configure function
FullyConnectedFunction fc_layer_1(mm);
FullyConnectedFunction fc_layer_2(mm);
fc_layer_1.configure(&src, &w1, &b1, &fc1);
fc_layer_2.configure(&fc1, &w2, &b2, &dst);
// Allocate tensors
w1.allocator()->allocate();
b1.allocator()->allocate();
w2.allocator()->allocate();
b2.allocator()->allocate();
src.allocator()->allocate();
fc1.allocator()->allocate();
dst.allocator()->allocate();
// Finalize memory manager
mm->populate(_allocator, 1 /* num_pools */);
ARM_COMPUTE_ASSERT(mm->lifetime_manager()->are_all_finalized());
ARM_COMPUTE_ASSERT(mm->pool_manager()->num_pools() == 1);
// Fill tensors
fill(AccessorType(src), 0);
fill(AccessorType(w1), 1);
fill(AccessorType(b1), 2);
fill(AccessorType(w2), 3);
fill(AccessorType(b2), 4);
// Compute functions
fc_layer_1.run();
fc_layer_2.run();
return dst;
}
SimpleTensor<T> compute_reference()
{
// Create reference
SimpleTensor<T> w1{ TensorShape(128U, 128U), DataType::F32 };
SimpleTensor<T> b1{ TensorShape(128U), DataType::F32 };
SimpleTensor<T> w2{ TensorShape(128U, 24U), DataType::F32 };
SimpleTensor<T> b2{ TensorShape(24U), DataType::F32 };
SimpleTensor<T> src{ TensorShape(128U), DataType::F32 };
// Fill reference
fill(src, 0);
fill(w1, 1);
fill(b1, 2);
fill(w2, 3);
fill(b2, 4);
auto fc1 = reference::fully_connected_layer(src, w1, b1, TensorShape(128U));
return reference::fully_connected_layer(fc1, w2, b2, TensorShape(24U));
}
protected:
TensorType _target{};
SimpleTensor<T> _reference{};
AllocatorType _allocator{};
};
/** Test case to run two fully connected layers using a blob affinity memory manager,
* reconfigure with different shapes and rerun
*
* Runs two fully connected layers back to back then reconfigures with different batch size and reruns
* Shapes of the reconfigure step are smaller that the initial configured step
*/
template <typename TensorType, typename AccessorType, typename AllocatorType, typename FullyConnectedFunction>
class BlobMemoryManagerReconfigureTestCaseFixture : public framework::Fixture
{
using T = float;
public:
void setup()
{
_max_batches = 8;
_cur_batches = 6;
_target = compute_target();
_reference = compute_reference();
};
protected:
template <typename U>
void fill(U &&tensor, int i)
{
std::uniform_real_distribution<> distribution(0.5f, 1.f);
library->fill(tensor, distribution, i);
}
TensorType compute_target()
{
AllocatorType allocator{};
auto lifetime_mgr = std::make_shared<BlobLifetimeManager>();
auto pool_mgr = std::make_shared<PoolManager>();
auto mm = std::make_shared<MemoryManagerOnDemand>(lifetime_mgr, pool_mgr);
// Create tensors
TensorType w1 = create_tensor<TensorType>(TensorShape(128U, 128U), DataType::F32, 1);
TensorType b1 = create_tensor<TensorType>(TensorShape(128U), DataType::F32, 1);
TensorType w2 = create_tensor<TensorType>(TensorShape(128U, 24U), DataType::F32, 1);
TensorType b2 = create_tensor<TensorType>(TensorShape(24U), DataType::F32, 1);
TensorType src = create_tensor<TensorType>(TensorShape(128U, _max_batches), DataType::F32, 1);
TensorType fc1 = create_tensor<TensorType>(TensorShape(128U, _max_batches), DataType::F32, 1);
TensorType dst = create_tensor<TensorType>(TensorShape(24U, _max_batches), DataType::F32, 1);
// Create and configure function
FullyConnectedFunction fc_layer_1(mm);
FullyConnectedFunction fc_layer_2(mm);
fc_layer_1.configure(&src, &w1, &b1, &fc1);
fc_layer_2.configure(&fc1, &w2, &b2, &dst);
// Allocate persistent tensors
w1.allocator()->allocate();
b1.allocator()->allocate();
w2.allocator()->allocate();
b2.allocator()->allocate();
// Allocate tensors (1st iteration)
src.allocator()->allocate();
fc1.allocator()->allocate();
dst.allocator()->allocate();
// Finalize memory manager
mm->populate(_allocator, 1 /* num_pools */);
ARM_COMPUTE_ASSERT(mm->lifetime_manager()->are_all_finalized());
ARM_COMPUTE_ASSERT(mm->pool_manager()->num_pools() == 1);
// Fill tensors (1st iteration)
fill(AccessorType(src), 0);
fill(AccessorType(w1), 1);
fill(AccessorType(b1), 2);
fill(AccessorType(w2), 3);
fill(AccessorType(b2), 4);
// Compute functions (1st iteration)
fc_layer_1.run();
fc_layer_2.run();
// Update tensor shapes (2nd iteration)
auto src_padding = src.allocator()->info().padding();
auto fc1_padding = fc1.allocator()->info().padding();
auto dst_padding = dst.allocator()->info().padding();
int diff = _max_batches - _cur_batches;
auto new_src_padding = PaddingSize(src_padding.top, src_padding.right, src_padding.bottom + diff, src_padding.left);
auto new_fc1_padding = PaddingSize(fc1_padding.top, fc1_padding.right, fc1_padding.bottom + diff, fc1_padding.left);
auto new_dst_padding = PaddingSize(dst_padding.top, dst_padding.right, dst_padding.bottom + diff, dst_padding.left);
src.allocator()->info().set_tensor_shape(TensorShape(128U, _cur_batches)).set_is_resizable(true).extend_padding(new_src_padding);
src.allocator()->info().set_is_resizable(false);
fc1.allocator()->info().set_tensor_shape(TensorShape(128U, _cur_batches)).set_is_resizable(true).extend_padding(new_fc1_padding);
fc1.allocator()->info().set_is_resizable(false);
dst.allocator()->info().set_tensor_shape(TensorShape(24U, _cur_batches)).set_is_resizable(true).extend_padding(new_dst_padding);
dst.allocator()->info().set_is_resizable(false);
// Configure FC info
FullyConnectedLayerInfo fc_info;
fc_info.retain_internal_weights = true;
// Configure functions (2nd iteration)
fc_layer_1.configure(&src, &w1, &b1, &fc1, fc_info);
fc_layer_2.configure(&fc1, &w2, &b2, &dst, fc_info);
// Fill tensors (2nd iteration)
fill(AccessorType(src), 5);
// Compute functions (2nd iteration)
fc_layer_1.run();
fc_layer_2.run();
return dst;
}
SimpleTensor<T> compute_reference()
{
// Create reference
SimpleTensor<T> w1{ TensorShape(128U, 128U), DataType::F32 };
SimpleTensor<T> b1{ TensorShape(128U), DataType::F32 };
SimpleTensor<T> w2{ TensorShape(128U, 24U), DataType::F32 };
SimpleTensor<T> b2{ TensorShape(24U), DataType::F32 };
SimpleTensor<T> src{ TensorShape(128U, _cur_batches), DataType::F32 };
// Fill reference
fill(src, 5);
fill(w1, 1);
fill(b1, 2);
fill(w2, 3);
fill(b2, 4);
auto fc1 = reference::fully_connected_layer(src, w1, b1, TensorShape(128U, _cur_batches));
return reference::fully_connected_layer(fc1, w2, b2, TensorShape(24U, _cur_batches));
}
protected:
TensorType _target{};
SimpleTensor<T> _reference{};
AllocatorType _allocator{};
unsigned int _max_batches{};
unsigned int _cur_batches{};
};
/** Test case to run a fully connected layer followed by a softmax layer using a blob affinity memory manager,
* reconfigure with different shapes and rerun
*
* Runs a fully connected convolution layer followed by a softmax layer then reconfigures with different batch size and reruns
* Shapes of the reconfigure step are smaller that the initial configured step
*/
template <typename TensorType, typename AccessorType, typename AllocatorType, typename FullyConnectedFunction, typename SoftmaxFunction>
class BlobMemoryManagerReconfigure2TestCaseFixture : public framework::Fixture
{
using T = float;
public:
void setup()
{
_max_batches = 30;
_cur_batches = 3;
_target = compute_target();
_reference = compute_reference();
};
protected:
template <typename U>
void fill(U &&tensor, int i)
{
std::uniform_real_distribution<> distribution(0.5f, 1.f);
library->fill(tensor, distribution, i);
}
TensorType compute_target()
{
AllocatorType allocator{};
auto lifetime_mgr = std::make_shared<BlobLifetimeManager>();
auto pool_mgr = std::make_shared<PoolManager>();
auto mm = std::make_shared<MemoryManagerOnDemand>(lifetime_mgr, pool_mgr);
// Create tensors
TensorType w = create_tensor<TensorType>(TensorShape(112U, 8U), DataType::F32, 1);
TensorType b = create_tensor<TensorType>(TensorShape(8U), DataType::F32, 1);
TensorType src = create_tensor<TensorType>(TensorShape(1U, 1U, 112U, _max_batches), DataType::F32, 1);
TensorType fc = create_tensor<TensorType>(TensorShape(8U, _max_batches), DataType::F32, 1);
TensorType dst = create_tensor<TensorType>(TensorShape(8U, _max_batches), DataType::F32, 1);
// Create and configure function
FullyConnectedFunction fc_layer(mm);
SoftmaxFunction smx_layer(mm);
fc_layer.configure(&src, &w, &b, &fc);
smx_layer.configure(&fc, &dst);
// Allocate persistent tensors
w.allocator()->allocate();
b.allocator()->allocate();
// Allocate tensors (1st iteration)
src.allocator()->allocate();
fc.allocator()->allocate();
dst.allocator()->allocate();
// Finalize memory manager
mm->populate(_allocator, 1 /* num_pools */);
ARM_COMPUTE_ASSERT(mm->lifetime_manager()->are_all_finalized());
ARM_COMPUTE_ASSERT(mm->pool_manager()->num_pools() == 1);
// Fill tensors (1st iteration)
fill(AccessorType(src), 0);
fill(AccessorType(w), 1);
fill(AccessorType(b), 2);
// Compute functions (1st iteration)
fc_layer.run();
smx_layer.run();
// Get padding requirements
auto fc_padding = fc.allocator()->info().padding();
// Configure FC info
FullyConnectedLayerInfo fc_info;
fc_info.retain_internal_weights = true;
// Run rest iterations
for(int i = _max_batches; i >= static_cast<int>(_cur_batches); --i)
{
int diff = _max_batches - i;
auto new_fc_padding = PaddingSize(fc_padding.top, fc_padding.right, fc_padding.bottom + diff, fc_padding.left);
src.allocator()->info().set_tensor_shape(TensorShape(1U, 1U, 112U, i));
fc.allocator()->info().set_tensor_shape(TensorShape(8U, i)).set_is_resizable(true).extend_padding(new_fc_padding);
fc.allocator()->info().set_is_resizable(false);
dst.allocator()->info().set_tensor_shape(TensorShape(8U, i));
// Configure functions
fc_layer.configure(&src, &w, &b, &fc, fc_info);
smx_layer.configure(&fc, &dst);
// Fill tensors
fill(AccessorType(src), 3);
// Compute functions
fc_layer.run();
smx_layer.run();
}
return dst;
}
SimpleTensor<T> compute_reference()
{
// Create reference
SimpleTensor<T> w{ TensorShape(112U, 8U), DataType::F32 };
SimpleTensor<T> b{ TensorShape(8U), DataType::F32 };
SimpleTensor<T> src{ TensorShape(1U, 1U, 112U, _cur_batches), DataType::F32 };
// Fill reference
fill(src, 3);
fill(w, 1);
fill(b, 2);
auto fc = reference::fully_connected_layer(src, w, b, TensorShape(8U, _cur_batches));
return reference::softmax_layer(fc, 1.f);
}
protected:
TensorType _target{};
SimpleTensor<T> _reference{};
AllocatorType _allocator{};
unsigned int _max_batches{};
unsigned int _cur_batches{};
};
} // namespace validation
} // namespace test
} // namespace arm_compute
#endif /* ARM_COMPUTE_TEST_UNIT_MEMORY_MANAGER */