blob: f3560156bd05c6886e7c1ccced19e045d7093431 [file] [log] [blame]
/*
* Copyright (c) 2017-2022 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "src/cpu/kernels/CpuDirectConv2dKernel.h"
#include "src/core/NEON/kernels/detail/NEDirectConvolutionDetail.h"
#include "src/core/NEON/wrapper/wrapper.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/IAccessWindow.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "src/core/AccessWindowStatic.h"
#include "src/core/CPP/Validate.h"
#include "src/core/NEON/NEFixedPoint.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/WindowHelpers.h"
#include <algorithm>
using namespace arm_compute::detail;
namespace arm_compute
{
namespace cpu
{
namespace kernels
{
namespace
{
Status validate_arguments(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *dst, const PadStrideInfo &conv_info)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, weights, dst);
ARM_COMPUTE_RETURN_ERROR_ON(src->data_layout() == DataLayout::UNKNOWN);
ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(src);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, weights);
const DataLayout data_layout = src->data_layout();
const int width_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
const int height_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
const int channel_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL);
ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(channel_idx) != src->dimension(channel_idx));
ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(width_idx) != weights->dimension(height_idx));
ARM_COMPUTE_RETURN_ERROR_ON(weights->num_dimensions() > 4);
ARM_COMPUTE_RETURN_ERROR_ON(data_layout == DataLayout::NHWC && src->data_type() != DataType::F32);
ARM_COMPUTE_UNUSED(width_idx);
// Checks performed when output is configured
if(dst->total_size() != 0)
{
TensorShape output_shape = misc::shape_calculator::compute_deep_convolution_shape(*src, *weights, conv_info);
DataType data_type = src->data_type();
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(dst->tensor_shape(), output_shape);
ARM_COMPUTE_RETURN_ERROR_ON(dst->data_type() != data_type);
}
return Status{};
}
std::pair<Status, Window> validate_and_configure_window(ITensorInfo *src, ITensorInfo *dst)
{
ARM_COMPUTE_ERROR_ON(src->data_layout() == DataLayout::UNKNOWN);
ARM_COMPUTE_UNUSED(src);
Window win{};
bool window_changed = false;
// Configure window without any padding
win = calculate_max_window(*dst, Steps());
Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
return std::make_pair(err, win);
}
bool have_zero_x_internal_padding(ITensorInfo *src, const ITensorInfo *weights)
{
return (src->padding().left == 0 && weights->padding().left == 0 && src->padding().right == 0 && weights->padding().right == 0);
}
} // namespace
template <typename T>
void CpuDirectConv2dKernel::convolve_nhwc_optimized(const Window &window, const ITensor *src, const ITensor *weights, ITensor *dst)
{
// This function assumes that input and weights have not padding in channel
// Declare useful types
using vtype = wrapper::traits::neon_bitvector<T, wrapper::traits::BitWidth::W128>;
using vector_type = typename vtype::type;
using tag_type = typename vtype::tag_type;
// Scalar quantities
const int element_size = src->info()->element_size();
const int input_stride_w = src->info()->strides_in_bytes().y() / element_size;
const int input_stride_h = src->info()->strides_in_bytes().z() / element_size;
const int input_stride_n = src->info()->strides_in_bytes()[3] / element_size;
const int input_dim_w = src->info()->dimension(1);
const int input_dim_h = src->info()->dimension(2);
const int output_stride_c = dst->info()->strides_in_bytes().x();
const unsigned int kernel_stride_w = weights->info()->strides_in_bytes().y() / element_size;
const unsigned int kernel_stride_h = weights->info()->strides_in_bytes().z() / element_size;
const int kernel_dim_w = weights->info()->dimension(1);
const int kernel_dim_h = weights->info()->dimension(2);
const int conv_pad_top = _conv_info.pad_top();
const int conv_pad_left = _conv_info.pad_left();
const int conv_stride_w = std::get<0>(_conv_info.stride());
const int conv_stride_h = std::get<1>(_conv_info.stride());
// Setup input window for the output iterator
Window window_out = window;
window_out.set(Window::DimX, Window::Dimension(0, 1, 1));
// Setup input window for the weights iterator
Window window_w = calculate_max_window(*weights->info(), Steps());
window_w.set(Window::DimX, Window::Dimension(0, 1, 1));
window_w.set(Window::DimY, Window::Dimension(0, 1, 1));
window_w.set(Window::DimZ, Window::Dimension(0, 1, 1));
Iterator out(dst, window_out);
Iterator wei(weights, window_w);
constexpr int num_elems_read_per_iteration = 16 / sizeof(T);
/*
* This implementation parallelize the full WC plane of input and weights by
* treating them as series of elements. So for example, a 3x3 weights and
* floating point vector operations of 4 elements per time, the first 3
* channel elements of the first row would be taken and additionally the first
* element of the second row. The 9 elements in each single WC weight plane
* would require 2 4-element vector operations and a last single element operation.
*
* This works since when we create the input vector to multiply with the weights,
* the exact required elements are loaded in the same order. Therefore the
* multiplication works on the correct input/weight elements.
*/
execute_window_loop(window_out, [&](const Coordinates & id)
{
/*
* In here we create theoretical indexes which then we validate for both
* inputs and weights.
* As a reminder, this loop take each output point in NHW, C is treated
* in the weights loop.
*/
// We are computing the theoretical starting input starting points
const int in_w_start_t = static_cast<int>(id.y()) * conv_stride_w - conv_pad_left;
const int in_h_start_t = static_cast<int>(id.z()) * conv_stride_h - conv_pad_top;
const int in_w_end_t = in_w_start_t + kernel_dim_w;
const int in_h_end_t = in_h_start_t + kernel_dim_h;
// We are computing the valid initial and ending input points by checking the borders
const int in_w_start = std::max(in_w_start_t, 0);
const int in_h_start = std::max(in_h_start_t, 0);
const int in_w_end = std::min(in_w_end_t, input_dim_w);
const int in_h_end = std::min(in_h_end_t, input_dim_h);
// We use the input points to select the valid weight points to use
const int index_wc_start = (in_w_start - in_w_start_t) * kernel_stride_w;
const int index_h_start = in_h_start - in_h_start_t;
const int index_wc_end = (kernel_dim_w - (in_w_end_t - in_w_end)) * kernel_stride_w;
const int index_h_end = kernel_dim_h - (in_h_end_t - in_h_end);
execute_window_loop(window_w, [&](const Coordinates & id_w)
{
/*
* This is the loop in the weights, and it goes along N (the batches)
* As a reminder, the batches of the weights are translated into the
* channels of the output
*/
const T *in_ptr_row = reinterpret_cast<const T *>(src->buffer() + src->info()->offset_first_element_in_bytes())
+ id[3] * input_stride_n + in_w_start * input_stride_w + in_h_start * input_stride_h;
const T *weights_ptr_row = reinterpret_cast<const T *>(wei.ptr()) + index_h_start * kernel_stride_h;
uint8_t *out_ptr = out.ptr() + id_w[3] * output_stride_c;
T out_temp = static_cast<T>(0);
for(int index_h = index_h_start; index_h < index_h_end; ++index_h, in_ptr_row += input_stride_h, weights_ptr_row += kernel_stride_h)
{
const T *in_ptr_mover = in_ptr_row;
int index_wc = index_wc_start;
vector_type out_temp_vec = wrapper::vdup_n(static_cast<T>(0), tag_type());
for(; index_wc <= index_wc_end - num_elems_read_per_iteration; index_wc += num_elems_read_per_iteration, in_ptr_mover += num_elems_read_per_iteration)
{
const auto src_vec = wrapper::vloadq(in_ptr_mover);
const auto w_vec = wrapper::vloadq(weights_ptr_row + index_wc);
out_temp_vec = wrapper::vmla(out_temp_vec, w_vec, src_vec);
}
out_temp += vreduce(out_temp_vec);
for(; index_wc < index_wc_end; ++index_wc, ++in_ptr_mover)
{
const auto src_val = *(in_ptr_mover);
const auto w_val = *(weights_ptr_row + index_wc);
out_temp += src_val * w_val;
}
}
*(reinterpret_cast<T *>(out_ptr)) = out_temp;
},
wei);
},
out);
}
template <typename T>
void CpuDirectConv2dKernel::convolve_nhwc(const Window &window, const ITensor *src, const ITensor *weights, ITensor *dst)
{
// Declare useful types
using vtype = wrapper::traits::neon_bitvector<T, wrapper::traits::BitWidth::W128>;
using vector_type = typename vtype::type;
using tag_type = typename vtype::tag_type;
// Scalar quantities
const int element_size = src->info()->element_size();
const int input_stride_w = src->info()->strides_in_bytes().y() / element_size;
const int input_stride_h = src->info()->strides_in_bytes().z() / element_size;
const int input_stride_n = src->info()->strides_in_bytes()[3] / element_size;
const int input_dim_w = src->info()->dimension(1);
const int input_dim_h = src->info()->dimension(2);
const int output_stride_c = dst->info()->strides_in_bytes().x();
const unsigned int kernel_stride_w = weights->info()->strides_in_bytes().y() / element_size;
const unsigned int kernel_stride_h = weights->info()->strides_in_bytes().z() / element_size;
const int kernel_dim_w = weights->info()->dimension(1);
const int kernel_dim_h = weights->info()->dimension(2);
const int conv_pad_top = _conv_info.pad_top();
const int conv_pad_left = _conv_info.pad_left();
const int conv_stride_w = std::get<0>(_conv_info.stride());
const int conv_stride_h = std::get<1>(_conv_info.stride());
// Setup input window for the output iterator
Window window_out = window;
window_out.set(Window::DimX, Window::Dimension(0, 1, 1));
// Setup input window for the weights iterator
Window window_w = calculate_max_window(*weights->info(), Steps());
window_w.set(Window::DimX, Window::Dimension(0, 1, 1));
window_w.set(Window::DimY, Window::Dimension(0, 1, 1));
window_w.set(Window::DimZ, Window::Dimension(0, 1, 1));
Iterator out(dst, window_out);
Iterator wei(weights, window_w);
constexpr int num_elems_read_per_iteration = 16 / sizeof(T);
execute_window_loop(window_out, [&](const Coordinates & id)
{
// We are computing the theoretical starting input starting points
const int in_w_start_t = static_cast<int>(id.y()) * conv_stride_w - conv_pad_left;
const int in_h_start_t = static_cast<int>(id.z()) * conv_stride_h - conv_pad_top;
const int in_w_end_t = in_w_start_t + kernel_dim_w;
const int in_h_end_t = in_h_start_t + kernel_dim_h;
// We are computing the valid initial and ending input points by checking the borders
const int in_w_start = std::max(in_w_start_t, 0);
const int in_h_start = std::max(in_h_start_t, 0);
const int in_w_end = std::min(in_w_end_t, input_dim_w);
const int in_h_end = std::min(in_h_end_t, input_dim_h);
// We use the input points to select the valid weight points to use
const int wei_w_start = in_w_start - in_w_start_t;
const int wei_h_start = in_h_start - in_h_start_t;
const int wei_w_end = kernel_dim_w - (in_w_end_t - in_w_end);
const int wei_h_end = kernel_dim_h - (in_h_end_t - in_h_end);
const int index_c_end = weights->info()->dimension(0);
const T *const in_ptr_start = reinterpret_cast<const T *>(src->buffer() + src->info()->offset_first_element_in_bytes()) + id[3] * input_stride_n;
execute_window_loop(window_w, [&](const Coordinates & id_w)
{
const T *const weights_ptr_start = reinterpret_cast<const T *>(wei.ptr());
uint8_t *out_ptr = out.ptr() + id_w[3] * output_stride_c;
T out_temp = static_cast<T>(0);
for(int index_wei_h = wei_h_start, index_in_h = in_h_start; index_wei_h < wei_h_end; ++index_wei_h, ++index_in_h)
{
const T *const in_ptr_row = in_ptr_start + index_in_h * input_stride_h;
const T *const weights_ptr_row = weights_ptr_start + index_wei_h * kernel_stride_h;
for(int index_wei_w = wei_w_start, index_in_w = in_w_start; index_wei_w < wei_w_end; ++index_wei_w, ++index_in_w)
{
const T *in_ptr_mover = in_ptr_row + index_in_w * input_stride_w;
const T *weights_ptr_mover = weights_ptr_row + index_wei_w * kernel_stride_w;
int index_c = 0;
vector_type out_temp_vec = wrapper::vdup_n(static_cast<T>(0), tag_type());
for(; index_c <= index_c_end - num_elems_read_per_iteration; index_c += num_elems_read_per_iteration, in_ptr_mover += num_elems_read_per_iteration, weights_ptr_mover += num_elems_read_per_iteration)
{
const auto src_vec = wrapper::vloadq(in_ptr_mover);
const auto w_vec = wrapper::vloadq(weights_ptr_mover);
out_temp_vec = wrapper::vmla(out_temp_vec, w_vec, src_vec);
}
out_temp += vreduce(out_temp_vec);
for(; index_c < index_c_end; ++index_c, ++in_ptr_mover, ++weights_ptr_mover)
{
const auto src_val = *(in_ptr_mover);
const auto w_val = *(weights_ptr_mover);
out_temp += src_val * w_val;
}
}
}
*(reinterpret_cast<T *>(out_ptr)) = out_temp;
},
wei);
},
out);
}
template <typename T>
void CpuDirectConv2dKernel::convolve_nchw(const Window &window, const ITensor *src, const ITensor *weights, ITensor *dst)
{
// Declare useful types
using vtype = wrapper::traits::neon_bitvector<T, wrapper::traits::BitWidth::W128>;
using vector_type = typename vtype::type;
using tag_type = typename vtype::tag_type;
// Scalar quantities
const int element_size = src->info()->element_size();
const int input_stride_w = src->info()->strides_in_bytes()[0] / element_size;
const int input_stride_h = src->info()->strides_in_bytes()[1] / element_size;
const int input_stride_c = src->info()->strides_in_bytes()[2] / element_size;
const int input_stride_n = src->info()->strides_in_bytes()[3] / element_size;
const int input_dim_w = src->info()->dimension(0);
const int input_dim_h = src->info()->dimension(1);
const int output_stride_c = dst->info()->strides_in_bytes()[2];
const unsigned int kernel_stride_w = weights->info()->strides_in_bytes().x() / element_size;
const unsigned int kernel_stride_h = weights->info()->strides_in_bytes().y() / element_size;
const unsigned int kernel_stride_c = weights->info()->strides_in_bytes().z() / element_size;
const int kernel_dim_w = weights->info()->dimension(0);
const int kernel_dim_h = weights->info()->dimension(1);
const int conv_pad_top = _conv_info.pad_top();
const int conv_pad_left = _conv_info.pad_left();
const int conv_stride_w = std::get<0>(_conv_info.stride());
const int conv_stride_h = std::get<1>(_conv_info.stride());
// Setup input window for the output iterator
Window window_out = window;
window_out.set(Window::DimZ, Window::Dimension(0, 1, 1));
// Setup input window for the weights iterator
Window window_w = calculate_max_window(*weights->info(), Steps());
window_w.set(Window::DimX, Window::Dimension(0, 1, 1));
window_w.set(Window::DimY, Window::Dimension(0, 1, 1));
window_w.set(Window::DimZ, Window::Dimension(0, 1, 1));
Iterator out(dst, window_out);
Iterator wei(weights, window_w);
constexpr int num_elems_read_per_iteration = 16 / sizeof(T);
execute_window_loop(window_out, [&](const Coordinates & id)
{
// We are computing the theoretical starting input starting points
const int in_w_start_t = static_cast<int>(id.x()) * conv_stride_w - conv_pad_left;
const int in_h_start_t = static_cast<int>(id.y()) * conv_stride_h - conv_pad_top;
const int in_w_end_t = in_w_start_t + kernel_dim_w;
const int in_h_end_t = in_h_start_t + kernel_dim_h;
// We are computing the valid initial and ending input points by checking the borders
const int in_w_start = std::max(in_w_start_t, 0);
const int in_h_start = std::max(in_h_start_t, 0);
const int in_w_end = std::min(in_w_end_t, input_dim_w);
const int in_h_end = std::min(in_h_end_t, input_dim_h);
// We use the input points to select the valid weight points to use
const int wei_w_start = in_w_start - in_w_start_t;
const int wei_h_start = in_h_start - in_h_start_t;
const int wei_h_end = kernel_dim_h - (in_h_end_t - in_h_end);
const int index_c_end = weights->info()->dimension(2);
const T *const in_ptr_start = reinterpret_cast<const T *>(src->buffer() + src->info()->offset_first_element_in_bytes()) + id[3] * input_stride_n;
execute_window_loop(window_w, [&](const Coordinates & id_w)
{
const T *const weights_ptr_start = reinterpret_cast<const T *>(wei.ptr());
uint8_t *out_ptr = out.ptr() + id_w[3] * output_stride_c;
T out_temp = static_cast<T>(0);
for(int index_wei_c = 0, index_in_c = 0; index_wei_c < index_c_end; ++index_wei_c, ++index_in_c)
{
const T *const in_ptr_row_0 = in_ptr_start + index_in_c * input_stride_c;
const T *const weights_ptr_row_0 = weights_ptr_start + index_wei_c * kernel_stride_c;
for(int index_wei_h = wei_h_start, index_in_h = in_h_start; index_wei_h < wei_h_end; ++index_wei_h, ++index_in_h)
{
const T *in_ptr_row = in_ptr_row_0 + index_in_h * input_stride_h;
const T *weights_ptr_row = weights_ptr_row_0 + index_wei_h * kernel_stride_h;
int index_w = in_w_start;
int index_wei_w = wei_w_start;
vector_type out_temp_vec = wrapper::vdup_n(static_cast<T>(0), tag_type());
for(; index_w <= ((in_w_end - num_elems_read_per_iteration)); index_w += num_elems_read_per_iteration, index_wei_w += num_elems_read_per_iteration)
{
const auto src_vec = wrapper::vloadq(in_ptr_row + index_w * input_stride_w);
const auto w_vec = wrapper::vloadq(weights_ptr_row + index_wei_w * kernel_stride_w);
out_temp_vec = wrapper::vmla(out_temp_vec, w_vec, src_vec);
}
out_temp += vreduce(out_temp_vec);
for(; index_w < in_w_end; ++index_w, ++index_wei_w)
{
const auto src_val = *(in_ptr_row + index_w * input_stride_w);
const auto w_val = *(weights_ptr_row + index_wei_w * kernel_stride_w);
out_temp += src_val * w_val;
}
}
}
*(reinterpret_cast<T *>(out_ptr)) = out_temp;
},
wei);
},
out);
}
void CpuDirectConv2dKernel::configure(ITensorInfo *src, ITensorInfo *weights, ITensorInfo *dst, const PadStrideInfo &conv_info)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(src, weights, dst);
_conv_info = conv_info;
_data_layout = src->data_layout();
_kernel_size = weights->dimension(get_data_layout_dimension_index(_data_layout, DataLayoutDimension::WIDTH));
// Get convolved dimensions
TensorShape output_shape = misc::shape_calculator::compute_deep_convolution_shape(*src, *weights, conv_info);
DataType data_type = src->data_type();
// Output auto inizialitation if not yet initialized
auto_init_if_empty(*dst, output_shape, 1, data_type);
// Perform validation step
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src, weights, dst, conv_info));
// Configure kernel window
auto win_config = validate_and_configure_window(src, dst);
ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
ICpuKernel::configure(win_config.second);
}
Status CpuDirectConv2dKernel::validate(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *dst, const PadStrideInfo &conv_info)
{
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(src, weights, dst, conv_info));
ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(src->clone().get(),
dst->clone().get())
.first);
return Status{};
}
void CpuDirectConv2dKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel::window(), window);
auto src = tensors.get_const_tensor(TensorType::ACL_SRC_0);
auto weights = tensors.get_const_tensor(TensorType::ACL_SRC_1);
auto dst = tensors.get_tensor(TensorType::ACL_DST);
if(_data_layout == DataLayout::NCHW)
{
switch(src->info()->data_type())
{
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
case DataType::F16:
{
convolve_nchw<float16_t>(window, src, weights, dst);
break;
}
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
case DataType::F32:
{
convolve_nchw<float>(window, src, weights, dst);
break;
}
default:
ARM_COMPUTE_ERROR("Data type not supported");
break;
}
}
else
{
switch(src->info()->data_type())
{
case DataType::F32:
{
if(have_zero_x_internal_padding(src->info(), weights->info()))
{
convolve_nhwc_optimized<float>(window, src, weights, dst);
}
else
{
convolve_nhwc<float>(window, src, weights, dst);
}
break;
}
default:
ARM_COMPUTE_ERROR("Data type not supported");
break;
}
}
}
const char *CpuDirectConv2dKernel::name() const
{
return "CpuDirectConvolutionLayerKernel";
}
} // namespace kernels
} // namespace cpu
} // namespace arm_compute