blob: 5f052f797d086a26f7a5fee61e0fd00100df333b [file] [log] [blame]
/*
* Copyright (c) 2017 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/NEON/kernels/NEGEMMLowpMatrixMultiplyKernel.h"
#include "arm_compute/core/AccessWindowStatic.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"
#include <arm_neon.h>
#include <cstddef>
#include <cstdint>
#include <tuple>
using namespace arm_compute;
namespace arm_compute
{
class Coordinates;
} // namespace arm_compute
NEGEMMLowpMatrixMultiplyKernel::NEGEMMLowpMatrixMultiplyKernel()
: _input0(nullptr), _input1(nullptr), _output(nullptr), _slide_matrix_b(true)
{
}
void NEGEMMLowpMatrixMultiplyKernel::configure(const ITensor *input0, const ITensor *input1, ITensor *output)
{
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input0, 1, DataType::QASYMM8, DataType::S8);
ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input0, input1);
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::S32);
// Check if matrix B should be slidden or not
// Don't slide matrix B along the z dimension if matrix B has just 2 dimensions and matrix A more than 2
// This scenario can happen when the the matrix multiplication is used to perform a convolution operation
TensorShape in0_shape = input0->info()->tensor_shape();
TensorShape in1_shape = input1->info()->tensor_shape();
TensorShape out_shape = output->info()->tensor_shape();
in0_shape.collapse(2);
in1_shape.collapse(2);
out_shape.collapse(2);
ARM_COMPUTE_ERROR_ON_MSG(in0_shape[2] != out_shape[2], "Output tensor must have the same number of batches of input0 tensor");
ARM_COMPUTE_ERROR_ON_MSG(in1_shape[2] != 1 && in0_shape[2] != in1_shape[2], "Input1 tensor must have the same number of batches of input0 or the number of batches must be set to 1");
_input0 = input0;
_input1 = input1;
_output = output;
_slide_matrix_b = in1_shape[2] != 1;
constexpr unsigned int num_elems_processed_per_iteration_x = 16;
constexpr unsigned int num_elems_processed_per_iteration_y = 4;
Window win = calculate_max_window(*output->info(), Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));
AccessWindowStatic in0_access(input0->info(), 0, 0, ceil_to_multiple(input0->info()->dimension(0), 8), input0->info()->dimension(1));
AccessWindowHorizontal in1_access(input1->info(), 0, num_elems_processed_per_iteration_x);
AccessWindowRectangle output_access(output->info(), 0, 0, num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y);
update_window_and_padding(win, in0_access, in1_access, output_access);
output_access.set_valid_region(win, ValidRegion(Coordinates(0, 0), output->info()->tensor_shape()));
INEKernel::configure(win);
}
void inline matrix_multiply_u8(Iterator &ina, Iterator &inb, Iterator &out, int width_b, size_t out_stride, const Window &window)
{
execute_window_loop(window, [&](const Coordinates & id)
{
const uint8_t *mtx_a0 = ina.ptr();
const uint8_t *mtx_b0 = inb.ptr();
// Note: Since the input are all positives, we can use uint32_t
// Accumulators for the block 0
uint32x4x4_t c0 =
{
{
vdupq_n_u32(0),
vdupq_n_u32(0),
vdupq_n_u32(0),
vdupq_n_u32(0)
}
};
// Accumulators for the block 1
uint32x4x4_t c1 =
{
{
vdupq_n_u32(0),
vdupq_n_u32(0),
vdupq_n_u32(0),
vdupq_n_u32(0)
}
};
// Accumulators for the block 2
uint32x4x4_t c2 =
{
{
vdupq_n_u32(0),
vdupq_n_u32(0),
vdupq_n_u32(0),
vdupq_n_u32(0)
}
};
// Accumulators for the block 3
uint32x4x4_t c3 =
{
{
vdupq_n_u32(0),
vdupq_n_u32(0),
vdupq_n_u32(0),
vdupq_n_u32(0)
}
};
for(int k = 0; k < width_b; k += 16, mtx_a0 += 4, mtx_b0 += 16)
{
const uint8x8_t a00_u8 = vld1_u8(mtx_a0);
const uint8x16_t b00_u8 = vld1q_u8(mtx_b0);
// Convert a00_s8 to uint16_t and get the lower part
const uint16x4_t a00_u16 = vget_low_u16(vmovl_u8(a00_u8));
// Convert b00_s8 to uint16_t
const uint16x4x4_t b00_u16 =
{
{
vget_low_u16(vmovl_u8(vget_low_u8(b00_u8))),
vget_high_u16(vmovl_u8(vget_low_u8(b00_u8))),
vget_low_u16(vmovl_u8(vget_high_u8(b00_u8))),
vget_high_u16(vmovl_u8(vget_high_u8(b00_u8)))
}
};
// 4x4 block 0
c0.val[0] = vmlal_lane_u16(c0.val[0], b00_u16.val[0], a00_u16, 0);
c0.val[1] = vmlal_lane_u16(c0.val[1], b00_u16.val[1], a00_u16, 0);
c0.val[2] = vmlal_lane_u16(c0.val[2], b00_u16.val[2], a00_u16, 0);
c0.val[3] = vmlal_lane_u16(c0.val[3], b00_u16.val[3], a00_u16, 0);
// 4x4 block 1
c1.val[0] = vmlal_lane_u16(c1.val[0], b00_u16.val[0], a00_u16, 1);
c1.val[1] = vmlal_lane_u16(c1.val[1], b00_u16.val[1], a00_u16, 1);
c1.val[2] = vmlal_lane_u16(c1.val[2], b00_u16.val[2], a00_u16, 1);
c1.val[3] = vmlal_lane_u16(c1.val[3], b00_u16.val[3], a00_u16, 1);
// 4x4 block 2
c2.val[0] = vmlal_lane_u16(c2.val[0], b00_u16.val[0], a00_u16, 2);
c2.val[1] = vmlal_lane_u16(c2.val[1], b00_u16.val[1], a00_u16, 2);
c2.val[2] = vmlal_lane_u16(c2.val[2], b00_u16.val[2], a00_u16, 2);
c2.val[3] = vmlal_lane_u16(c2.val[3], b00_u16.val[3], a00_u16, 2);
// 4x4 block 3
c3.val[0] = vmlal_lane_u16(c3.val[0], b00_u16.val[0], a00_u16, 3);
c3.val[1] = vmlal_lane_u16(c3.val[1], b00_u16.val[1], a00_u16, 3);
c3.val[2] = vmlal_lane_u16(c3.val[2], b00_u16.val[2], a00_u16, 3);
c3.val[3] = vmlal_lane_u16(c3.val[3], b00_u16.val[3], a00_u16, 3);
}
auto mtx_out = reinterpret_cast<int32_t *>(out.ptr());
vst1q_s32(mtx_out + 0 * out_stride + 0, vreinterpretq_s32_u32(c0.val[0]));
vst1q_s32(mtx_out + 0 * out_stride + 4, vreinterpretq_s32_u32(c0.val[1]));
vst1q_s32(mtx_out + 0 * out_stride + 8, vreinterpretq_s32_u32(c0.val[2]));
vst1q_s32(mtx_out + 0 * out_stride + 12, vreinterpretq_s32_u32(c0.val[3]));
vst1q_s32(mtx_out + 1 * out_stride + 0, vreinterpretq_s32_u32(c1.val[0]));
vst1q_s32(mtx_out + 1 * out_stride + 4, vreinterpretq_s32_u32(c1.val[1]));
vst1q_s32(mtx_out + 1 * out_stride + 8, vreinterpretq_s32_u32(c1.val[2]));
vst1q_s32(mtx_out + 1 * out_stride + 12, vreinterpretq_s32_u32(c1.val[3]));
vst1q_s32(mtx_out + 2 * out_stride + 0, vreinterpretq_s32_u32(c2.val[0]));
vst1q_s32(mtx_out + 2 * out_stride + 4, vreinterpretq_s32_u32(c2.val[1]));
vst1q_s32(mtx_out + 2 * out_stride + 8, vreinterpretq_s32_u32(c2.val[2]));
vst1q_s32(mtx_out + 2 * out_stride + 12, vreinterpretq_s32_u32(c2.val[3]));
vst1q_s32(mtx_out + 3 * out_stride + 0, vreinterpretq_s32_u32(c3.val[0]));
vst1q_s32(mtx_out + 3 * out_stride + 4, vreinterpretq_s32_u32(c3.val[1]));
vst1q_s32(mtx_out + 3 * out_stride + 8, vreinterpretq_s32_u32(c3.val[2]));
vst1q_s32(mtx_out + 3 * out_stride + 12, vreinterpretq_s32_u32(c3.val[3]));
},
ina, inb, out);
}
void inline matrix_multiply_s8(Iterator &ina, Iterator &inb, Iterator &out, int width_b, size_t out_stride, const Window &window)
{
// The implementation assumes that the matrix A and Matrix B have been reshaped respectively with NEGEMMInterleave4x4 and NEGEMMTranspose1xW
// The reshaping of the matrices helps to have a cache friendly implementation and helps to avoid the data re-arrangements needed for computing 16x4 elements per iteration
// All the values needed for computing a single 4x4 block will be read from consecutive memory positions
execute_window_loop(window, [&](const Coordinates & id)
{
auto *mtx_a0 = reinterpret_cast<const int8_t *>(ina.ptr());
auto *mtx_b0 = reinterpret_cast<const int8_t *>(inb.ptr());
// Note: Since the input are all positives, we can use uint32_t
// Accumulators for the block 0
int32x4x4_t c0 =
{
{
vdupq_n_s32(0),
vdupq_n_s32(0),
vdupq_n_s32(0),
vdupq_n_s32(0)
}
};
// Accumulators for the block 1
int32x4x4_t c1 =
{
{
vdupq_n_s32(0),
vdupq_n_s32(0),
vdupq_n_s32(0),
vdupq_n_s32(0)
}
};
// Accumulators for the block 2
int32x4x4_t c2 =
{
{
vdupq_n_s32(0),
vdupq_n_s32(0),
vdupq_n_s32(0),
vdupq_n_s32(0)
}
};
// Accumulators for the block 3
int32x4x4_t c3 =
{
{
vdupq_n_s32(0),
vdupq_n_s32(0),
vdupq_n_s32(0),
vdupq_n_s32(0)
}
};
for(int k = 0; k < width_b; k += 16, mtx_a0 += 4, mtx_b0 += 16)
{
const int8x8_t a00_s8 = vld1_s8(mtx_a0);
const int8x16_t b00_s8 = vld1q_s8(mtx_b0);
// Convert a00_s8 to uint16_t and get the lower part
const int16x4_t a00_s16 = vget_low_s16(vmovl_s8(a00_s8));
// Convert b00_s8 to int16_t
const int16x4x4_t b00_s16 =
{
{
vget_low_s16(vmovl_s8(vget_low_s8(b00_s8))),
vget_high_s16(vmovl_s8(vget_low_s8(b00_s8))),
vget_low_s16(vmovl_s8(vget_high_s8(b00_s8))),
vget_high_s16(vmovl_s8(vget_high_s8(b00_s8)))
}
};
// 4x4 block 0
c0.val[0] = vmlal_lane_s16(c0.val[0], b00_s16.val[0], a00_s16, 0);
c0.val[1] = vmlal_lane_s16(c0.val[1], b00_s16.val[1], a00_s16, 0);
c0.val[2] = vmlal_lane_s16(c0.val[2], b00_s16.val[2], a00_s16, 0);
c0.val[3] = vmlal_lane_s16(c0.val[3], b00_s16.val[3], a00_s16, 0);
// 4x4 block 1
c1.val[0] = vmlal_lane_s16(c1.val[0], b00_s16.val[0], a00_s16, 1);
c1.val[1] = vmlal_lane_s16(c1.val[1], b00_s16.val[1], a00_s16, 1);
c1.val[2] = vmlal_lane_s16(c1.val[2], b00_s16.val[2], a00_s16, 1);
c1.val[3] = vmlal_lane_s16(c1.val[3], b00_s16.val[3], a00_s16, 1);
// 4x4 block 2
c2.val[0] = vmlal_lane_s16(c2.val[0], b00_s16.val[0], a00_s16, 2);
c2.val[1] = vmlal_lane_s16(c2.val[1], b00_s16.val[1], a00_s16, 2);
c2.val[2] = vmlal_lane_s16(c2.val[2], b00_s16.val[2], a00_s16, 2);
c2.val[3] = vmlal_lane_s16(c2.val[3], b00_s16.val[3], a00_s16, 2);
// 4x4 block 3
c3.val[0] = vmlal_lane_s16(c3.val[0], b00_s16.val[0], a00_s16, 3);
c3.val[1] = vmlal_lane_s16(c3.val[1], b00_s16.val[1], a00_s16, 3);
c3.val[2] = vmlal_lane_s16(c3.val[2], b00_s16.val[2], a00_s16, 3);
c3.val[3] = vmlal_lane_s16(c3.val[3], b00_s16.val[3], a00_s16, 3);
}
auto mtx_out = reinterpret_cast<int32_t *>(out.ptr());
vst1q_s32(mtx_out + 0 * out_stride + 0, c0.val[0]);
vst1q_s32(mtx_out + 0 * out_stride + 4, c0.val[1]);
vst1q_s32(mtx_out + 0 * out_stride + 8, c0.val[2]);
vst1q_s32(mtx_out + 0 * out_stride + 12, c0.val[3]);
vst1q_s32(mtx_out + 1 * out_stride + 0, c1.val[0]);
vst1q_s32(mtx_out + 1 * out_stride + 4, c1.val[1]);
vst1q_s32(mtx_out + 1 * out_stride + 8, c1.val[2]);
vst1q_s32(mtx_out + 1 * out_stride + 12, c1.val[3]);
vst1q_s32(mtx_out + 2 * out_stride + 0, c2.val[0]);
vst1q_s32(mtx_out + 2 * out_stride + 4, c2.val[1]);
vst1q_s32(mtx_out + 2 * out_stride + 8, c2.val[2]);
vst1q_s32(mtx_out + 2 * out_stride + 12, c2.val[3]);
vst1q_s32(mtx_out + 3 * out_stride + 0, c3.val[0]);
vst1q_s32(mtx_out + 3 * out_stride + 4, c3.val[1]);
vst1q_s32(mtx_out + 3 * out_stride + 8, c3.val[2]);
vst1q_s32(mtx_out + 3 * out_stride + 12, c3.val[3]);
},
ina, inb, out);
}
void NEGEMMLowpMatrixMultiplyKernel::run(const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
const size_t in_b_stride = _input1->info()->strides_in_bytes()[1];
const size_t out_stride = _output->info()->strides_in_bytes()[1] / _output->info()->element_size();
// Set step_x and step_y for matrix A. Scale by a factor of 4 the Y range as the input interleaved matrix A has 4 times less the rows of the output matrix
Window win_a(window);
win_a.set(Window::DimX, Window::Dimension(0, 0, 0));
win_a.set(Window::DimY, Window::Dimension(window.y().start() / 4, window.y().end() / 4, 1));
// Set step_x and step_y for matrix B. Scale by a factor of 16 the X range as the input transposed matrix A has 16 times less the columns of the output matrix
Window win_b;
// Don't slice matrix B along the z dimension if matrix B has just 2 dimensions and matrix A more than 2
// This scenario can happen when the the matrix multiplication is used to perform a convolution operation
if(_slide_matrix_b)
{
win_b = window;
}
win_b.set(Window::DimX, Window::Dimension(window.x().start() / 16, window.x().end() / 16, in_b_stride));
win_b.set(Window::DimY, Window::Dimension(0, 0, 0));
// The step x and step y for the output matrix has been already set using in configure()
Iterator ina(_input0, win_a);
Iterator inb(_input1, win_b);
Iterator out(_output, window);
const int width_b = _input1->info()->dimension(0);
switch(_input0->info()->data_type())
{
case DataType::S8:
{
matrix_multiply_s8(ina, inb, out, width_b, out_stride, window);
break;
}
case DataType::U8:
case DataType::QASYMM8:
{
matrix_multiply_u8(ina, inb, out, width_b, out_stride, window);
break;
}
default:
{
ARM_COMPUTE_ERROR("Not supported");
break;
}
}
}