Make NEON Pooling kernels and functions state-less

Partially resolves COMPMID-3999

Change-Id: Ib39d40694df5c5f0a9401488e0c3af3ac26e8c55
Signed-off-by: Michele Di Giorgio <michele.digiorgio@arm.com>
Reviewed-on: https://review.mlplatform.org/c/ml/ComputeLibrary/+/4984
Tested-by: Arm Jenkins <bsgcomp@arm.com>
Reviewed-by: Georgios Pinitas <georgios.pinitas@arm.com>
Comments-Addressed: Arm Jenkins <bsgcomp@arm.com>
diff --git a/src/core/NEON/NEKernels.h b/src/core/NEON/NEKernels.h
index 87eec38..c636e5b 100644
--- a/src/core/NEON/NEKernels.h
+++ b/src/core/NEON/NEKernels.h
@@ -101,7 +101,6 @@
 #include "src/core/NEON/kernels/NENormalizationLayerKernel.h"
 #include "src/core/NEON/kernels/NEPadLayerKernel.h"
 #include "src/core/NEON/kernels/NEPixelWiseMultiplicationKernel.h"
-#include "src/core/NEON/kernels/NEPoolingLayerKernel.h"
 #include "src/core/NEON/kernels/NEPriorBoxLayerKernel.h"
 #include "src/core/NEON/kernels/NEQLSTMLayerNormalizationKernel.h"
 #include "src/core/NEON/kernels/NEQuantizationLayerKernel.h"
diff --git a/src/core/NEON/kernels/NEFillBorderKernel.cpp b/src/core/NEON/kernels/NEFillBorderKernel.cpp
index 4880790..10384d4 100644
--- a/src/core/NEON/kernels/NEFillBorderKernel.cpp
+++ b/src/core/NEON/kernels/NEFillBorderKernel.cpp
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2016-2020 Arm Limited.
+ * Copyright (c) 2016-2021 Arm Limited.
  *
  * SPDX-License-Identifier: MIT
  *
@@ -33,12 +33,8 @@
 #include "src/core/NEON/kernels/NEFillBorderKernel.h"
 #include "src/core/helpers/WindowHelpers.h"
 
-#include <algorithm>
-#include <cstdint>
-
 namespace arm_compute
 {
-class Coordinates;
 namespace
 {
 inline void fill_constant_value_single_channel_special(ITensor *tensor, const Window &window, unsigned int right, unsigned int bottom, const PixelValue &constant_border_value)
@@ -100,20 +96,26 @@
 void NEFillBorderKernel::configure(ITensor *tensor, BorderSize border_size, BorderMode border_mode, const PixelValue &constant_border_value)
 {
     ARM_COMPUTE_ERROR_ON_NULLPTR(tensor);
-    //Note: ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input) is not needed here as this kernel doesn't use NEON FP16 instructions.
-    ARM_COMPUTE_ERROR_ON(tensor->info()->data_type() == DataType::UNKNOWN);
+    _tensor = tensor;
+    configure(tensor->info(), border_size, border_mode, constant_border_value);
+}
 
-    _tensor                = tensor;
+void NEFillBorderKernel::configure(ITensorInfo *tensor, BorderSize border_size, BorderMode border_mode, const PixelValue &constant_border_value)
+{
+    ARM_COMPUTE_ERROR_ON_NULLPTR(tensor);
+    //Note: ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input) is not needed here as this kernel doesn't use NEON FP16 instructions.
+    ARM_COMPUTE_ERROR_ON(tensor->data_type() == DataType::UNKNOWN);
+
     _border_size           = border_size;
     _mode                  = border_mode;
     _constant_border_value = constant_border_value;
 
-    _border_size.limit(tensor->info()->padding());
+    _border_size.limit(tensor->padding());
 
     Window win;
     win.set(Window::DimX, Window::Dimension(0, 1, 1));
     win.set(Window::DimY, Window::Dimension(0, 1, 1));
-    win.use_tensor_dimensions(_tensor->info()->tensor_shape(), Window::DimZ);
+    win.use_tensor_dimensions(tensor->tensor_shape(), Window::DimZ);
     INEKernel::configure(win);
 }
 
@@ -156,6 +158,12 @@
     }
 }
 
+void NEFillBorderKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
+{
+    _tensor = tensors.get_tensor(TensorType::ACL_SRC_DST);
+    run(window, info);
+}
+
 void NEFillBorderKernel::fill_replicate_single_channel(const Window &window)
 {
     uint8_t *const start_valid_region = _tensor->ptr_to_element(_tensor->info()->valid_region().anchor);
diff --git a/src/core/NEON/kernels/NEFillBorderKernel.h b/src/core/NEON/kernels/NEFillBorderKernel.h
index 65908be..2c85158 100644
--- a/src/core/NEON/kernels/NEFillBorderKernel.h
+++ b/src/core/NEON/kernels/NEFillBorderKernel.h
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2016-2020 Arm Limited.
+ * Copyright (c) 2016-2021 Arm Limited.
  *
  * SPDX-License-Identifier: MIT
  *
@@ -65,9 +65,21 @@
      *
      */
     void configure(ITensor *tensor, BorderSize border_size, BorderMode border_mode, const PixelValue &constant_border_value = PixelValue());
+    /** Initialise the function.
+     *
+     * @note This kernel fills the borders within the XY-planes.
+     *
+     * @param[in,out] tensor                Tensor info to process. Data types supported: All.
+     * @param[in]     border_size           Size of the border to fill in elements.
+     * @param[in]     border_mode           Border mode to use for the convolution.
+     * @param[in]     constant_border_value (Optional) Constant value to use for borders if border_mode is set to CONSTANT.
+     *
+     */
+    void configure(ITensorInfo *tensor, BorderSize border_size, BorderMode border_mode, const PixelValue &constant_border_value = PixelValue());
 
     // Inherited methods overridden:
     void run(const Window &window, const ThreadInfo &info) override;
+    void run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info) override;
 
 private:
     void fill_replicate_single_channel(const Window &window);
diff --git a/src/core/NEON/kernels/NEMaxUnpoolingLayerKernel.h b/src/core/NEON/kernels/NEMaxUnpoolingLayerKernel.h
index 8cdfe2b..f422728 100644
--- a/src/core/NEON/kernels/NEMaxUnpoolingLayerKernel.h
+++ b/src/core/NEON/kernels/NEMaxUnpoolingLayerKernel.h
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2020 Arm Limited.
+ * Copyright (c) 2020-2021 Arm Limited.
  *
  * SPDX-License-Identifier: MIT
  *
@@ -56,7 +56,7 @@
      *
      * @param[in]  input     Source tensor. Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
      * @param[in]  indices   Tensor containing the offset to store the input elements in the output tensor.
-     *                       @ref NEPoolingLayerKernel with indices should precede this function in order to
+     *                       @ref cpu::kernels::CpuPoolingKernel with indices should precede this function in order to
      *                       properly reconstruct the output tensor.
      *                       The tensor shape of this tensor has to be equal to the input tensor shape. Data type supported: U32.
      * @param[out] output    Destination tensor. Data types supported: Same as @p input.
diff --git a/src/core/NEON/kernels/NEPoolingLayerKernel.cpp b/src/core/NEON/kernels/NEPoolingLayerKernel.cpp
deleted file mode 100644
index b46843b..0000000
--- a/src/core/NEON/kernels/NEPoolingLayerKernel.cpp
+++ /dev/null
@@ -1,2612 +0,0 @@
-/*
- * Copyright (c) 2017-2020 Arm Limited.
- *
- * SPDX-License-Identifier: MIT
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to
- * deal in the Software without restriction, including without limitation the
- * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- * sell copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-#include "src/core/NEON/kernels/NEPoolingLayerKernel.h"
-
-#include "arm_compute/core/Error.h"
-#include "arm_compute/core/Helpers.h"
-#include "arm_compute/core/ITensor.h"
-#include "arm_compute/core/TensorInfo.h"
-#include "arm_compute/core/Utils.h"
-#include "arm_compute/core/Validate.h"
-#include "arm_compute/core/Window.h"
-#include "arm_compute/core/utils/misc/ShapeCalculator.h"
-#include "src/core/AccessWindowStatic.h"
-#include "src/core/CPP/Validate.h"
-#include "src/core/NEON/NEAsymm.h"
-#include "src/core/NEON/NEFixedPoint.h"
-#include "src/core/NEON/NEMath.h"
-#include "src/core/helpers/AutoConfiguration.h"
-#include "src/core/helpers/WindowHelpers.h"
-#include "support/ToolchainSupport.h"
-
-#include "src/core/NEON/wrapper/wrapper.h"
-#include <algorithm>
-#include <arm_neon.h>
-#include <cmath>
-#include <limits>
-#include <set>
-#include <string>
-#include <tuple>
-
-namespace arm_compute
-{
-using namespace misc::shape_calculator;
-
-namespace
-{
-template <typename T>
-inline typename std::enable_if<std::is_same<T, int8_t>::value, int8_t>::type
-quantize(float val, const UniformQuantizationInfo &info)
-{
-    return quantize_qasymm8_signed(val, info);
-}
-
-template <typename T>
-inline typename std::enable_if<std::is_same<T, uint8_t>::value, uint8_t>::type
-quantize(float val, const UniformQuantizationInfo &info)
-{
-    return quantize_qasymm8(val, info);
-}
-
-inline float calculate_avg_scale(bool exclude_padding, DataLayout data_layout, const Coordinates &id, const int pool_size_x, const int pool_size_y, const int upper_bound_w, const int upper_bound_h,
-                                 const int pad_x, const int pad_y, const int stride_x, const int stride_y)
-{
-    const unsigned int idx_width  = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
-    const unsigned int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
-
-    int start_x = id[idx_width] * stride_x - pad_x;
-    int start_y = id[idx_height] * stride_y - pad_y;
-
-    const int end_x = std::min(start_x + pool_size_x, upper_bound_w);
-    const int end_y = std::min(start_y + pool_size_y, upper_bound_h);
-    if(exclude_padding)
-    {
-        start_x = std::max(0, start_x);
-        start_y = std::max(0, start_y);
-    }
-    return 1.f / ((end_y - start_y) * (end_x - start_x));
-}
-
-template <typename T, typename TVec>
-inline void scale_vector_q16x8(bool exclude_padding, TVec &v, const Coordinates &id, int id_offset, int step,
-                               const int pool_size, const int upper_bound_w, const int upper_bound_h,
-                               const int pad_x, const int pad_y, const int stride_x, const int stride_y)
-{
-    int       start_x = (id.x() + id_offset) * stride_x - pad_x;
-    int       start_y = id.y() * stride_y - pad_y;
-    const int end_y   = std::min(start_y + pool_size, upper_bound_h);
-    if(exclude_padding)
-    {
-        start_y = std::max(0, start_y);
-    }
-
-    std::array<T, 8> elems =
-    {
-        {
-            wrapper::vgetlane(v, 0),
-            wrapper::vgetlane(v, 1),
-            wrapper::vgetlane(v, 2),
-            wrapper::vgetlane(v, 3),
-            wrapper::vgetlane(v, 4),
-            wrapper::vgetlane(v, 5),
-            wrapper::vgetlane(v, 6),
-            wrapper::vgetlane(v, 7),
-        }
-    };
-
-    for(auto &el : elems)
-    {
-        int       c_start_x = start_x;
-        const int end_x     = std::min(c_start_x + pool_size, upper_bound_w);
-        if(exclude_padding)
-        {
-            c_start_x = std::max(0, c_start_x);
-        }
-        float scale = 1.f / ((end_y - start_y) * (end_x - c_start_x));
-        el *= scale;
-        start_x += step * stride_x;
-    }
-
-    v = wrapper::vsetlane(elems[0], v, 0);
-    v = wrapper::vsetlane(elems[1], v, 1);
-    v = wrapper::vsetlane(elems[2], v, 2);
-    v = wrapper::vsetlane(elems[3], v, 3);
-    v = wrapper::vsetlane(elems[4], v, 4);
-    v = wrapper::vsetlane(elems[5], v, 5);
-    v = wrapper::vsetlane(elems[6], v, 6);
-    v = wrapper::vsetlane(elems[7], v, 7);
-}
-
-Status validate_arguments(const ITensorInfo *input, const ITensorInfo *output, const PoolingLayerInfo &pool_info,
-                          unsigned int &pooled_w, unsigned int pooled_h, const ITensorInfo *indices, Size2D pool_size)
-{
-    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output);
-
-    int                 pool_stride_x   = 0;
-    int                 pool_stride_y   = 0;
-    PoolingType         pool_type       = pool_info.pool_type;
-    const PadStrideInfo pad_stride_info = pool_info.pad_stride_info;
-    std::tie(pool_stride_x, pool_stride_y) = pad_stride_info.stride();
-
-    ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input);
-    if(indices)
-    {
-        ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F32, DataType::F16);
-        ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(indices, 1, DataType::U32);
-        ARM_COMPUTE_RETURN_ERROR_ON_MSG(pool_type != PoolingType::MAX, "Pooling indices only supported for MAX pooling method");
-    }
-    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F16, DataType::F32);
-    ARM_COMPUTE_RETURN_ERROR_ON(pool_type == PoolingType::L2 && is_data_type_quantized(input->data_type()));
-    ARM_COMPUTE_RETURN_ERROR_ON_MSG(is_data_type_quantized(input->data_type()) && !pool_info.exclude_padding && (pool_info.pool_type == PoolingType::AVG) && pool_info.pad_stride_info.has_padding()
-                                    && (input->data_layout() == DataLayout::NHWC),
-                                    "exclude_padding equal false is not supported for AVG Pooling with padding on quantized types");
-
-    if(output->total_size() != 0)
-    {
-        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
-        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input, output);
-        ARM_COMPUTE_RETURN_ERROR_ON((output->dimension(get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::WIDTH)) != pooled_w)
-                                    || (output->dimension(get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::HEIGHT)) != pooled_h));
-
-        if(indices)
-        {
-            ARM_COMPUTE_RETURN_ERROR_ON_MSG((pool_size != Size2D(2, 2)), "Pooling indices only supported for pool size 2x2");
-            ARM_COMPUTE_RETURN_ERROR_ON((indices->dimension(get_data_layout_dimension_index(indices->data_layout(), DataLayoutDimension::WIDTH)) != pooled_w)
-                                        || (indices->dimension(get_data_layout_dimension_index(indices->data_layout(), DataLayoutDimension::HEIGHT)) != pooled_h));
-        }
-    }
-
-    return Status{};
-}
-
-Status validate_arguments_pool_info(const unsigned int pool_size_x, const unsigned int pool_size_y)
-{
-    ARM_COMPUTE_RETURN_ERROR_ON(pool_size_x == 0);
-    ARM_COMPUTE_RETURN_ERROR_ON(pool_size_y == 0);
-
-    return Status{};
-}
-
-std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input, ITensorInfo *output, ITensorInfo *indices, const PoolingLayerInfo &pool_info,
-                                                        unsigned int &num_elems_processed_per_iteration,
-                                                        BorderSize   &border_size,
-                                                        unsigned int pooled_w, unsigned int pooled_h, int pool_size_x, int pool_size_y)
-{
-    // Output auto inizialitation if not yet initialized
-    auto_init_if_empty(*output, input->clone()->set_tensor_shape(compute_pool_shape(*input, pool_info)));
-    if(indices)
-    {
-        // Indices auto inizialitation if not yet initialized
-        auto_init_if_empty(*indices, (input->clone()->set_tensor_shape(compute_pool_shape(*input,
-                                                                                          pool_info)))
-                           .set_data_type(DataType::U32) /* we store the offset to the element */);
-    }
-    const auto          data_layout                  = pool_info.data_layout == DataLayout::UNKNOWN ? input->data_layout() : pool_info.data_layout;
-    unsigned int        num_elems_read_per_iteration = 0;
-    unsigned int        num_elems_horizontal_window  = 0;
-    int                 pool_stride_x                = 0;
-    int                 pool_stride_y                = 0;
-    const int           idx_width                    = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
-    const int           idx_height                   = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
-    const int           input_width                  = input->dimension(idx_width);
-    const int           input_height                 = input->dimension(idx_height);
-    const PadStrideInfo pad_stride_info              = pool_info.pad_stride_info;
-    std::tie(pool_stride_x, pool_stride_y) = pad_stride_info.stride();
-    const int  pool_pad_right  = pad_stride_info.pad_right();
-    const int  pool_pad_top    = pad_stride_info.pad_top();
-    const int  pool_pad_left   = pad_stride_info.pad_left();
-    const int  pool_pad_bottom = pad_stride_info.pad_bottom();
-    const bool is_square       = pool_size_x == pool_size_y;
-
-    // Check output dimensions
-    std::tie(pooled_w, pooled_h) = scaled_dimensions(input->dimension(idx_width),
-                                                     input->dimension(idx_height),
-                                                     pool_size_x,
-                                                     pool_size_y,
-                                                     pad_stride_info);
-
-    //If it's not squared and optimized will be executed the MxN
-    num_elems_read_per_iteration      = 1;
-    num_elems_processed_per_iteration = 1;
-    num_elems_horizontal_window       = 1;
-
-    if(is_square)
-    {
-        switch(input->data_type())
-        {
-            case DataType::QASYMM8:
-            case DataType::QASYMM8_SIGNED:
-                switch(pool_size_x)
-                {
-                    case 2:
-                        num_elems_read_per_iteration      = 16;
-                        num_elems_processed_per_iteration = (pool_stride_x == 2) ? 8 : 15;
-                        num_elems_horizontal_window       = (pool_stride_x == 2) ? 8 : 16;
-                        break;
-                    case 3:
-                        num_elems_read_per_iteration      = 16;
-                        num_elems_processed_per_iteration = (pool_stride_x == 2) ? 7 : 14;
-                        num_elems_horizontal_window       = (pool_stride_x == 2) ? 8 : 16;
-                        break;
-                    default:
-                        break;
-                }
-                break;
-#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
-            case DataType::F16:
-                switch(pool_size_x)
-                {
-                    case 2:
-                    case 3:
-                        num_elems_read_per_iteration      = 4;
-                        num_elems_processed_per_iteration = 1;
-                        num_elems_horizontal_window       = 1;
-                        break;
-                    default:
-                        break;
-                }
-                break;
-#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
-            case DataType::F32:
-                switch(pool_size_x)
-                {
-                    case 2:
-                        num_elems_read_per_iteration = 2;
-                        break;
-                    case 3:
-                        num_elems_read_per_iteration = 4; // We use vload4 for pooling3
-                        break;
-                    case 7:
-                        num_elems_read_per_iteration = 8; // We use vload8 for pooling7
-                        break;
-                    default:
-                        break;
-                }
-                num_elems_processed_per_iteration = 1;
-                num_elems_horizontal_window       = 1;
-                break;
-            default:
-                ARM_COMPUTE_ERROR("Element size not supported");
-                break;
-        }
-    }
-
-    bool   window_changed = false;
-    Window win{};
-    if(data_layout == DataLayout::NCHW)
-    {
-        // Number of iterations in X dimension
-        const int num_iterations_x = (pooled_w + num_elems_processed_per_iteration - 1) / num_elems_processed_per_iteration;
-        // Upper limit for the number of right/bottom border elements that are accessed
-        const int upper_bound_w = ((num_iterations_x - 1) * num_elems_processed_per_iteration * pool_stride_x - pool_pad_left + num_elems_read_per_iteration) - input_width;
-        const int upper_bound_h = ((pooled_h - 1) * pool_stride_y - pool_pad_top + pool_size_y) - input_height;
-        border_size             = BorderSize(pool_pad_top, pool_pad_right, pool_pad_bottom, pool_pad_left);
-        border_size.right       = std::max(upper_bound_w, pool_pad_right);
-        border_size.bottom      = std::max(upper_bound_h, pool_pad_bottom);
-        TensorShape output_shape{ input->tensor_shape() };
-        output_shape.set(0, pooled_w);
-        output_shape.set(1, pooled_h);
-        TensorInfo output_info(input->clone()->set_tensor_shape(output_shape));
-        win = calculate_max_window(output_info, Steps(num_elems_processed_per_iteration));
-        AccessWindowStatic     input_access(input, -pool_pad_left, -pool_pad_top, input_width + border_size.right, input_height + border_size.bottom);
-        AccessWindowHorizontal output_access(output, 0, num_elems_horizontal_window);
-        if(indices)
-        {
-            AccessWindowHorizontal indices_access(indices, 0, num_elems_horizontal_window);
-            window_changed = update_window_and_padding(win, input_access, output_access, indices_access);
-        }
-        else
-        {
-            window_changed = update_window_and_padding(win, input_access, output_access);
-        }
-        output_access.set_valid_region(win, ValidRegion(Coordinates(), output->tensor_shape()));
-    }
-
-    Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
-    return std::make_pair(err, win);
-}
-
-template <typename T>
-inline T vcvtq_q32_f32(float32x4_t values);
-
-template <>
-inline uint32x4_t vcvtq_q32_f32(float32x4_t values)
-{
-    return vcvtq_u32_f32(values);
-}
-
-template <>
-inline int32x4_t vcvtq_q32_f32(float32x4_t values)
-{
-    return vcvtq_s32_f32(values);
-}
-
-template <typename T>
-inline float32x4_t vcvtq_f32_q32(T values);
-
-template <>
-inline float32x4_t vcvtq_f32_q32(uint32x4_t values)
-{
-    return vcvtq_f32_u32(values);
-}
-
-template <>
-inline float32x4_t vcvtq_f32_q32(int32x4_t values)
-{
-    return vcvtq_f32_s32(values);
-}
-
-template <typename Tout>
-inline Tout vrequantize_pooling_with_scale(const float32x4x4_t &acc, const float quant_rescale, const float scale_pooling, const int32_t new_offset);
-
-template <>
-inline uint8x16_t vrequantize_pooling_with_scale(const float32x4x4_t &acc, const float quant_rescale, const float scale_pooling, const int32_t new_offset)
-{
-    const float new_scale = quant_rescale / scale_pooling;
-    return vquantize(acc, UniformQuantizationInfo(new_scale, new_offset));
-}
-
-template <>
-inline int8x16_t vrequantize_pooling_with_scale(const float32x4x4_t &acc, const float quant_rescale, const float scale_pooling, const int32_t new_offset)
-{
-    const float new_scale = quant_rescale / scale_pooling;
-    return vquantize_signed(acc, UniformQuantizationInfo(new_scale, new_offset));
-}
-
-template <typename Tin, typename Tout>
-inline Tout vrequantize_pooling(Tin vec1, Tin vec2, const UniformQuantizationInfo &requant_qinfo);
-
-template <>
-inline uint8x16_t vrequantize_pooling(uint8x8_t vec1, uint8x8_t vec2, const UniformQuantizationInfo &requant_qinfo)
-{
-    const float32x4x4_t acc =
-    {
-        {
-            vcvtq_f32_u32(vmovl_u16(vget_low_u16(vmovl_u8((vec1))))),
-            vcvtq_f32_u32(vmovl_u16(vget_high_u16(vmovl_u8((vec1))))),
-            vcvtq_f32_u32(vmovl_u16(vget_low_u16(vmovl_u8((vec2))))),
-            vcvtq_f32_u32(vmovl_u16(vget_high_u16(vmovl_u8((vec2))))),
-        }
-    };
-    return vquantize(acc, requant_qinfo);
-}
-
-template <>
-inline int8x16_t vrequantize_pooling(int8x8_t vec1, int8x8_t vec2, const UniformQuantizationInfo &requant_qinfo)
-{
-    const float32x4x4_t acc =
-    {
-        {
-            vcvtq_f32_s32(vmovl_s16(vget_low_s16(vmovl_s8((vec1))))),
-            vcvtq_f32_s32(vmovl_s16(vget_high_s16(vmovl_s8((vec1))))),
-            vcvtq_f32_s32(vmovl_s16(vget_low_s16(vmovl_s8((vec2))))),
-            vcvtq_f32_s32(vmovl_s16(vget_high_s16(vmovl_s8((vec2))))),
-        }
-    };
-    return vquantize_signed(acc, requant_qinfo);
-}
-
-template <typename T>
-inline T vrequantize_pooling(T &vec, const UniformQuantizationInfo &requant_qinfo);
-
-template <>
-inline uint8x8_t vrequantize_pooling(uint8x8_t &vec, const UniformQuantizationInfo &requant_qinfo)
-{
-    const float32x4x2_t acc =
-    {
-        {
-            vcvtq_f32_u32(vmovl_u16(vget_low_u16(vmovl_u8((vec))))),
-            vcvtq_f32_u32(vmovl_u16(vget_high_u16(vmovl_u8((vec))))),
-        }
-    };
-    return vquantize(acc, requant_qinfo);
-}
-
-template <>
-inline int8x8_t vrequantize_pooling(int8x8_t &vec, const UniformQuantizationInfo &requant_qinfo)
-{
-    const float32x4x2_t acc =
-    {
-        {
-            vcvtq_f32_s32(vmovl_s16(vget_low_s16(vmovl_s8((vec))))),
-            vcvtq_f32_s32(vmovl_s16(vget_high_s16(vmovl_s8((vec))))),
-        }
-    };
-    return vquantize_signed(acc, requant_qinfo);
-}
-
-} // namespace
-
-NEPoolingLayerKernel::NEPoolingLayerKernel()
-    : _func(nullptr), _input(nullptr), _output(nullptr), _indices(nullptr), _pool_info(), _data_layout(DataLayout::UNKNOWN), _num_elems_processed_per_iteration(0), _border_size(0), _is_square(false)
-{
-}
-
-BorderSize NEPoolingLayerKernel::border_size() const
-{
-    return _border_size;
-}
-
-void NEPoolingLayerKernel::configure(const ITensor *input, ITensor *output, const PoolingLayerInfo &pool_info, ITensor *indices)
-{
-    ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
-    const PadStrideInfo pad_stride_info   = pool_info.pad_stride_info;
-    const bool          is_global_pooling = pool_info.is_global_pooling;
-    const int           pool_stride_x     = pad_stride_info.stride().first;
-
-    // Get data layout
-    const auto data_layout = pool_info.data_layout == DataLayout::UNKNOWN ? input->info()->data_layout() : pool_info.data_layout;
-    const int  idx_width   = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
-    const int  idx_height  = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
-
-    // Update pool size in case of global pooling
-    const Size2D pool_size(
-        is_global_pooling ? input->info()->dimension(idx_width) : pool_info.pool_size.width,
-        is_global_pooling ? input->info()->dimension(idx_height) : pool_info.pool_size.height);
-
-    // Validate pool info before calling scaled_dimensions
-    ARM_COMPUTE_ERROR_THROW_ON(validate_arguments_pool_info(pool_size.x(), pool_size.y()));
-
-    // Check output dimensions
-    unsigned int pooled_w;
-    unsigned int pooled_h;
-    std::tie(pooled_w, pooled_h) = scaled_dimensions(input->info()->dimension(idx_width),
-                                                     input->info()->dimension(idx_height),
-                                                     pool_size.x(),
-                                                     pool_size.y(),
-                                                     pad_stride_info);
-
-    // Perform validation step
-    ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), output->info(), pool_info, pooled_w, pooled_h, (indices) ? indices->info() : nullptr, pool_size));
-
-    // Set instance variables
-    _input       = input;
-    _output      = output;
-    _indices     = indices;
-    _pool_info   = pool_info;
-    _data_layout = input->info()->data_layout();
-    _is_square   = (pool_size.x() == pool_size.y());
-
-    // Get data type
-    const DataType data_type = input->info()->data_type();
-    const bool     is_nchw   = _data_layout == DataLayout::NCHW;
-
-    if(data_type == DataType::QASYMM8)
-    {
-        if(!is_nchw)
-        {
-            _func = &NEPoolingLayerKernel::poolingMxN_q8_nhwc<uint8_t>;
-        }
-        else
-        {
-            if(pool_size.x() == 2 && pool_stride_x < 3 && _is_square)
-            {
-                _func = &NEPoolingLayerKernel::pooling2_q8_nchw<uint8_t>;
-            }
-            else if(pool_size.x() == 3 && pool_stride_x < 3 && _is_square)
-            {
-                _func = &NEPoolingLayerKernel::pooling3_q8_nchw<uint8_t>;
-            }
-            else
-            {
-                _func = &NEPoolingLayerKernel::poolingMxN_q8_nchw<uint8_t>;
-            }
-        }
-    }
-    else if(data_type == DataType::QASYMM8_SIGNED)
-    {
-        if(!is_nchw)
-        {
-            _func = &NEPoolingLayerKernel::poolingMxN_q8_nhwc<int8_t>;
-        }
-        else
-        {
-            if(pool_size.x() == 2 && pool_stride_x < 3 && _is_square)
-            {
-                _func = &NEPoolingLayerKernel::pooling2_q8_nchw<int8_t>;
-            }
-            else if(pool_size.x() == 3 && pool_stride_x < 3 && _is_square)
-            {
-                _func = &NEPoolingLayerKernel::pooling3_q8_nchw<int8_t>;
-            }
-            else
-            {
-                _func = &NEPoolingLayerKernel::poolingMxN_q8_nchw<int8_t>;
-            }
-        }
-    }
-    else if(data_type == DataType::F16)
-    {
-        if(!is_nchw)
-        {
-            _func = &NEPoolingLayerKernel::poolingMxN_f16_nhwc;
-        }
-        else
-        {
-            if(_is_square)
-            {
-                switch(pool_size.x())
-                {
-                    case 2:
-                    {
-                        _func = &NEPoolingLayerKernel::pooling2_f16_nchw;
-                    }
-                    break;
-                    case 3:
-                    {
-                        _func = &NEPoolingLayerKernel::pooling3_f16_nchw;
-                    }
-                    break;
-                    default:
-                    {
-                        _func = &NEPoolingLayerKernel::poolingMxN_f16_nchw;
-                        break;
-                    }
-                }
-            }
-            else
-            {
-                _func = &NEPoolingLayerKernel::poolingMxN_f16_nchw;
-            }
-        }
-    }
-    else if(data_type == DataType::F32)
-    {
-        if(!is_nchw)
-        {
-            _func = &NEPoolingLayerKernel::poolingMxN_f32_nhwc;
-        }
-        else
-        {
-            if(_is_square)
-            {
-                switch(pool_size.x())
-                {
-                    case 2:
-                    {
-                        _func = &NEPoolingLayerKernel::pooling2_f32_nchw;
-                        break;
-                    }
-                    case 3:
-                    {
-                        _func = &NEPoolingLayerKernel::pooling3_f32_nchw;
-                        break;
-                    }
-                    case 7:
-                    {
-                        _func = &NEPoolingLayerKernel::pooling7_f32_nchw;
-                        break;
-                    }
-                    default:
-                    {
-                        _func = &NEPoolingLayerKernel::poolingMxN_f32_nchw;
-                        break;
-                    }
-                }
-            }
-            else
-            {
-                _func = &NEPoolingLayerKernel::poolingMxN_f32_nchw;
-            }
-        }
-    }
-
-    if(!is_nchw)
-    {
-        // Configure kernel window
-        Window      win = calculate_max_window(*output->info(), Steps());
-        Coordinates coord;
-        coord.set_num_dimensions(output->info()->num_dimensions());
-        output->info()->set_valid_region(ValidRegion(coord, output->info()->tensor_shape()));
-        INEKernel::configure(win);
-    }
-    else
-    {
-        // Configure kernel window
-        auto win_config = validate_and_configure_window(input->info(), output->info(), (indices) ? indices->info() : nullptr,
-                                                        pool_info, _num_elems_processed_per_iteration, _border_size, pooled_w, pooled_h, pool_size.x(), pool_size.y());
-        ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
-        INEKernel::configure(win_config.second);
-    }
-}
-
-template <typename T>
-inline uint32_t offset_no_padding(uint32_t padded_offset, const Coordinates &id, const ITensorInfo &info, int pool_stride_x, int pool_stride_y)
-{
-    const int pad_left    = info.padding().left;
-    const int pad_right   = info.padding().right;
-    const int pad_top     = info.padding().top;
-    const int pad_bottom  = info.padding().bottom;
-    const int in_stride_y = static_cast<int>(info.strides_in_bytes().y());
-    const int in_stride_w = static_cast<int>(info.strides_in_bytes()[3]);
-    const int pad_horiz   = pad_left + pad_right;
-    const int pad_vert    = pad_top + pad_bottom;
-
-    if(info.data_layout() == DataLayout::NCHW)
-    {
-        const uint32_t offset_base = padded_offset
-                                     - sizeof(T) * pad_horiz * id.y() * pool_stride_y                                            /* subtract padding elems per row */
-                                     - pad_top * sizeof(T)                                                                       /* top padding */
-                                     - sizeof(T) * pad_horiz * info.tensor_shape()[1] * id.z() - pad_vert * in_stride_y * id.z() /* for each Z plane there are height*pad_right padding elems */
-                                     - in_stride_w * id[3];
-
-        return offset_base;
-    }
-    else
-    {
-        const uint32_t offset_base = padded_offset
-                                     - sizeof(T) * pad_horiz * id.y() * pool_stride_x                          // subtract padding elems per row
-                                     - pad_top * sizeof(T)                                                     // top padding
-                                     - sizeof(T) * pad_horiz * info.tensor_shape()[1] * id.z() * pool_stride_y // for each Z plane there are width*pad_right padding elems
-                                     - in_stride_w * id[3];
-
-        return offset_base;
-    }
-}
-
-template <typename T>
-void NEPoolingLayerKernel::pooling2_q8_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding)
-{
-    Iterator input(_input, window_input);
-    Iterator output(_output, window);
-
-    /** NEON vector types */
-    using q8x8_t    = typename wrapper::traits::neon_vector<T, 8>::type;
-    using q8x16_t   = typename wrapper::traits::neon_vector<T, 16>::type;
-    using q8x8x2_t  = typename std::conditional<std::is_same<T, uint8_t>::value, uint8x8x2_t, int8x8x2_t>::type;
-    using q16_t     = typename wrapper::traits::promote_t<T>;
-    using q16x4_t   = typename wrapper::traits::neon_vector<q16_t, 4>::type;
-    using q16x8_t   = typename wrapper::traits::neon_vector<q16_t, 8>::type;
-    using q16x8x2_t = typename wrapper::traits::neon_vector<q16_t, 16>::type;
-
-    constexpr int pool_size       = 2;
-    int           pool_stride_x   = 0;
-    int           pool_stride_y   = 0;
-    const int     pool_pad_right  = _pool_info.pad_stride_info.pad_right();
-    const int     pool_pad_top    = _pool_info.pad_stride_info.pad_top();
-    const int     pool_pad_left   = _pool_info.pad_stride_info.pad_left();
-    const int     pool_pad_bottom = _pool_info.pad_stride_info.pad_bottom();
-    std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
-    const int upper_bound_w = _input->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right);
-    const int upper_bound_h = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom);
-
-    const T *const input_top_ptr    = reinterpret_cast<const T *>(_input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top))));
-    const T *const input_bottom_ptr = reinterpret_cast<const T *>(_input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1)));
-
-    const int scale_step_x = (pool_stride_x == 1) ? 2 : 1;
-
-    const UniformQuantizationInfo input_qinfo          = _input->info()->quantization_info().uniform();
-    const UniformQuantizationInfo output_qinfo         = _output->info()->quantization_info().uniform();
-    const bool                    have_different_qinfo = input_qinfo != output_qinfo;
-
-    const float                   requant_scale  = output_qinfo.scale / input_qinfo.scale;
-    const int32_t                 requant_offset = output_qinfo.offset - static_cast<int32_t>(static_cast<float>(input_qinfo.offset) / requant_scale);
-    const UniformQuantizationInfo requant_qinfo  = UniformQuantizationInfo(requant_scale, requant_offset);
-
-    execute_window_loop(window, [&](const Coordinates & id)
-    {
-        const auto top_data    = wrapper::vloadq(input_top_ptr + input.offset());
-        const auto bottom_data = wrapper::vloadq(input_bottom_ptr + input.offset());
-        q8x8_t     lower_res   = {};
-        q8x8_t     upper_res   = {};
-
-        if(pooling_type != PoolingType::MAX)
-        {
-            const q16x8x2_t top_data_q16    = { { wrapper::vmovl(wrapper::vgetlow(top_data)), wrapper::vmovl(wrapper::vgethigh(top_data)) } };
-            const q16x8x2_t bottom_data_q16 = { { wrapper::vmovl(wrapper::vgetlow(bottom_data)), wrapper::vmovl(wrapper::vgethigh(bottom_data)) } };
-
-            // Add rows
-            const q16x8x2_t vrsum =
-            {
-                {
-                    wrapper::vadd(top_data_q16.val[0], bottom_data_q16.val[0]),
-                    wrapper::vadd(top_data_q16.val[1], bottom_data_q16.val[1]),
-                }
-            };
-
-            // Pair-wise add row data
-            const q16x4_t vpsum_1 = wrapper::vpadd(wrapper::vgetlow(vrsum.val[0]), wrapper::vgethigh(vrsum.val[0]));
-            const q16x4_t vpsum_2 = wrapper::vpadd(wrapper::vgetlow(vrsum.val[1]), wrapper::vgethigh(vrsum.val[1]));
-
-            q16x8_t res_lower = wrapper::vcombine(vpsum_1, vpsum_2);
-
-            // Scale lower result
-            scale_vector_q16x8<q16_t, q16x8_t>(exclude_padding, res_lower, id, 0, scale_step_x,
-                                               pool_size, upper_bound_w, upper_bound_h,
-                                               pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
-            lower_res = wrapper::vmovn(res_lower);
-
-            // Compute upper result for stride_x == 1
-            if(pool_stride_x == 1)
-            {
-                // Shifted row sum
-                const q16x8x2_t vrsum_shifted =
-                {
-                    {
-                        wrapper::vext_1(vrsum.val[0], vrsum.val[1]),
-                        wrapper::vext_1(vrsum.val[1], vrsum.val[1])
-                    }
-                };
-
-                // Pair-wise add shifted row
-                q16x8_t res_upper = wrapper::vcombine(
-                                        wrapper::vpadd(wrapper::vgetlow(vrsum_shifted.val[0]), wrapper::vgethigh(vrsum_shifted.val[0])),
-                                        wrapper::vpadd(wrapper::vgetlow(vrsum_shifted.val[1]), wrapper::vgethigh(vrsum_shifted.val[1])));
-
-                // Scale upper result
-                scale_vector_q16x8<q16_t, q16x8_t>(exclude_padding, res_upper, id, 1, 2,
-                                                   pool_size, upper_bound_w, upper_bound_h,
-                                                   pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
-                upper_res = wrapper::vmovn(res_upper);
-            }
-        }
-        else
-        {
-            const q8x16_t max_data = wrapper::vmax(top_data, bottom_data);
-            lower_res              = wrapper::vpmax(wrapper::vgetlow(max_data), wrapper::vgethigh(max_data));
-            if(pool_stride_x == 1)
-            {
-                const q8x16_t max_data_shifted = wrapper::vext_1(max_data, max_data);
-                upper_res                      = wrapper::vpmax(wrapper::vgetlow(max_data_shifted), wrapper::vgethigh(max_data_shifted));
-            }
-        }
-
-        if(have_different_qinfo)
-        {
-            const auto requantized_output = vrequantize_pooling<q8x8_t, q8x16_t>(lower_res, upper_res, requant_qinfo);
-            lower_res                     = wrapper::vgetlow(requantized_output);
-            upper_res                     = wrapper::vgethigh(requantized_output);
-        }
-
-        // Store result
-        if(pool_stride_x == 1)
-        {
-            const q8x8x2_t res = { { lower_res, upper_res } };
-            wrapper::vstore(reinterpret_cast<T *>(output.ptr()), res);
-        }
-        else
-        {
-            wrapper::vstore(reinterpret_cast<T *>(output.ptr()), lower_res);
-        }
-    },
-    input, output);
-}
-
-void NEPoolingLayerKernel::pooling3_f16_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding)
-{
-    ARM_COMPUTE_UNUSED(pooling_type);
-    ARM_COMPUTE_UNUSED(exclude_padding);
-#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
-    Iterator input(_input, window_input);
-    Iterator output(_output, window);
-
-    constexpr const int pool_size       = 3;
-    const int           pool_pad_right  = _pool_info.pad_stride_info.pad_right();
-    const int           pool_pad_top    = _pool_info.pad_stride_info.pad_top();
-    const int           pool_pad_left   = _pool_info.pad_stride_info.pad_left();
-    const int           pool_pad_bottom = _pool_info.pad_stride_info.pad_bottom();
-    int                 pool_stride_x   = 0;
-    int                 pool_stride_y   = 0;
-    std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
-    const int upper_bound_w = _input->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right);
-    const int upper_bound_h = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom);
-
-    const unsigned char *const input_top_ptr    = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
-    const unsigned char *const input_middle_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
-    const unsigned char *const input_bottom_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 2));
-
-    execute_window_loop(window, [&](const Coordinates & id)
-    {
-        float16x4_t top_data    = vld1_f16(reinterpret_cast<const float16_t *>(input_top_ptr + input.offset()));
-        float16x4_t middle_data = vld1_f16(reinterpret_cast<const float16_t *>(input_middle_ptr + input.offset()));
-        float16x4_t bottom_data = vld1_f16(reinterpret_cast<const float16_t *>(input_bottom_ptr + input.offset()));
-        float16x4_t res         = {};
-
-        // Get power of 2 in case of l2 pooling
-        if(pooling_type == PoolingType::L2)
-        {
-            top_data    = vmul_f16(top_data, top_data);
-            middle_data = vmul_f16(middle_data, middle_data);
-            bottom_data = vmul_f16(bottom_data, bottom_data);
-        }
-
-        if(pooling_type != PoolingType::MAX)
-        {
-            // Calculate scale
-            const float       scale   = calculate_avg_scale(exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
-            const float16x4_t scale_v = vdup_n_f16(scale);
-            // Perform pooling
-            const float16x4_t sum_data = vadd_f16(vadd_f16(top_data, bottom_data), middle_data);
-            res                        = vpadd_f16(vset_lane_f16(0.f, sum_data, 3), sum_data);
-            res                        = vmul_f16(vpadd_f16(res, res), scale_v);
-        }
-        else
-        {
-            const float16x4_t max_data = vmax_f16(vmax_f16(top_data, bottom_data), middle_data);
-            res                        = vpmax_f16(vset_lane_f16(-std::numeric_limits<float>::max(), max_data, 3), max_data);
-            res                        = vpmax_f16(res, res);
-        }
-
-        // Calculate square-root in case of l2 pooling
-        if(pooling_type == PoolingType::L2)
-        {
-            res = vinv_f16(vinvsqrt_f16(res));
-        }
-
-        *(reinterpret_cast<float16_t *>(output.ptr())) = vget_lane_f16(res, 0);
-    },
-    input, output);
-#else  /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
-    ARM_COMPUTE_UNUSED(window_input);
-    ARM_COMPUTE_UNUSED(window);
-    ARM_COMPUTE_ERROR("FP16 Not supported! Recompile the library with arch=arm64-v8.2-a");
-#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
-}
-
-#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
-template <typename T>
-inline typename std::enable_if<std::is_same<T, float16_t>::value, float32x2_t>::type
-f16_to_f32(float16x4_t input)
-{
-    float32x2_t output = { static_cast<float>(vget_lane_f16(input, 0)), static_cast<float>(vget_lane_f16(input, 1)) };
-    return output;
-}
-#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
-
-template <typename T>
-inline typename std::enable_if<std::is_same<T, float>::value, float32x2_t>::type
-f16_to_f32(float32x2_t input)
-{
-    return input;
-}
-
-template <typename T>
-void NEPoolingLayerKernel::pooling2_nchw_maxpool_indices(const Window &window_input, const Window &window)
-{
-    Iterator  input(_input, window_input);
-    Iterator  output(_output, window);
-    Iterator  indices(_indices, window);
-    const int pool_pad_top  = _pool_info.pad_stride_info.pad_top();
-    const int pool_pad_left = _pool_info.pad_stride_info.pad_left();
-    int       pool_stride_x = 0;
-    int       pool_stride_y = 0;
-    std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
-    const uint8_t *const input_top_ptr    = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
-    const uint8_t *const input_bottom_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
-    const int            pad_left         = _input->info()->padding().left;
-    const int            pad_right        = _input->info()->padding().right;
-    const int            in_stride_y      = static_cast<int>(_input->info()->strides_in_bytes().y());
-
-    execute_window_loop(window, [&](const Coordinates & id)
-    {
-        auto        top_data        = wrapper::vload(reinterpret_cast<const T *>(input_top_ptr + input.offset()));
-        auto        bottom_data     = wrapper::vload(reinterpret_cast<const T *>(input_bottom_ptr + input.offset()));
-        float32x2_t top_data_f32    = f16_to_f32<T>(top_data);
-        float32x2_t bottom_data_f32 = f16_to_f32<T>(bottom_data);
-
-        // Calculate max data, compare top first, then bottom, to make sue the first max is recorded.
-        const float32x2_t max_data_top         = vpmax_f32(top_data_f32, top_data_f32);
-        const float32x2_t max_data_bottom      = vpmax_f32(bottom_data_f32, bottom_data_f32);
-        const float32x2_t max_data             = vmax_f32(max_data_top, max_data_bottom);
-        *(reinterpret_cast<T *>(output.ptr())) = static_cast<T>(vget_lane_f32(max_data, 0));
-
-        // Calculate max data indice, which will be used in max unpool.
-        const uint32_t   offset_base              = offset_no_padding<T>(input.offset(), id, *_input->info(), pool_stride_x, pool_stride_y);
-        const uint32_t   offset_top               = (uint32_t)(offset_base / sizeof(T));
-        const uint32_t   offset_bottom            = offset_top + in_stride_y / sizeof(T) - pad_right - pad_left;
-        const uint32x2_t voffset_top              = { offset_top, offset_top + 1u };
-        const uint32x2_t voffset_bottom           = { offset_bottom, offset_bottom + 1u };
-        const uint32x2_t tmp_indices_top          = vbsl_u32(vcge_f32(top_data_f32, vrev64_f32(top_data_f32)), voffset_top, vrev64_u32(voffset_top));
-        const uint32x2_t tmp_indices_bottom       = vbsl_u32(vcge_f32(bottom_data_f32, vrev64_f32(bottom_data_f32)), voffset_bottom, vrev64_u32(voffset_bottom));
-        *(reinterpret_cast<int *>(indices.ptr())) = vget_lane_u32(vbsl_u32(vcge_f32(max_data_top, max_data_bottom), tmp_indices_top, tmp_indices_bottom), 0);
-    },
-    input, output, indices);
-}
-
-void NEPoolingLayerKernel::pooling2_f16_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding)
-{
-    ARM_COMPUTE_UNUSED(pooling_type);
-    ARM_COMPUTE_UNUSED(exclude_padding);
-#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
-    if(pooling_type == PoolingType::MAX && _indices)
-    {
-        pooling2_nchw_maxpool_indices<float16_t>(window_input, window);
-    }
-    else
-    {
-        Iterator      input(_input, window_input);
-        Iterator      output(_output, window);
-        constexpr int pool_size       = 2;
-        const int     pool_pad_right  = _pool_info.pad_stride_info.pad_right();
-        const int     pool_pad_top    = _pool_info.pad_stride_info.pad_top();
-        const int     pool_pad_left   = _pool_info.pad_stride_info.pad_left();
-        const int     pool_pad_bottom = _pool_info.pad_stride_info.pad_bottom();
-        int           pool_stride_x, pool_stride_y = 0;
-        std::tie(pool_stride_x, pool_stride_y)     = _pool_info.pad_stride_info.stride();
-        const int upper_bound_w = _input->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right);
-        const int upper_bound_h = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom);
-
-        const unsigned char *const input_top_ptr    = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
-        const unsigned char *const input_bottom_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
-
-        execute_window_loop(window, [&](const Coordinates & id)
-        {
-            float16x4_t top_data    = vld1_f16(reinterpret_cast<const float16_t *>(input_top_ptr + input.offset()));
-            float16x4_t bottom_data = vld1_f16(reinterpret_cast<const float16_t *>(input_bottom_ptr + input.offset()));
-            float16x4_t res         = {};
-
-            // Get power of 2 in case of l2 pooling
-            if(pooling_type == PoolingType::L2)
-            {
-                top_data    = vmul_f16(top_data, top_data);
-                bottom_data = vmul_f16(bottom_data, bottom_data);
-            }
-
-            if(pooling_type != PoolingType::MAX)
-            {
-                const float       scale   = calculate_avg_scale(exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
-                const float16x4_t scale_v = vdup_n_f16(scale);
-
-                const float16x4_t sum_data = vadd_f16(top_data, bottom_data);
-                res                        = vmul_f16(vpadd_f16(sum_data, sum_data), scale_v);
-            }
-            else
-            {
-                const float16x4_t max_data = vmax_f16(top_data, bottom_data);
-                res                        = vpmax_f16(max_data, max_data);
-            }
-
-            // Calculate square-root in case of l2 pooling
-            if(pooling_type == PoolingType::L2)
-            {
-                res = vinv_f16(vinvsqrt_f16(res));
-            }
-
-            // Store result
-            *(reinterpret_cast<float16_t *>(output.ptr())) = vget_lane_f16(res, 0);
-        },
-        input, output);
-    }
-#else  /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
-    ARM_COMPUTE_UNUSED(window_input);
-    ARM_COMPUTE_UNUSED(window);
-    ARM_COMPUTE_ERROR("FP16 Not supported! Recompile the library with arch=arm64-v8.2-a");
-#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
-}
-
-template <typename T>
-void NEPoolingLayerKernel::pooling3_q8_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding)
-{
-    Iterator input(_input, window_input);
-    Iterator output(_output, window);
-
-    /** NEON vector types */
-    using q8x8_t    = typename wrapper::traits::neon_vector<T, 8>::type;
-    using q8x16_t   = typename wrapper::traits::neon_vector<T, 16>::type;
-    using q8x8x2_t  = typename std::conditional<std::is_same<T, uint8_t>::value, uint8x8x2_t, int8x8x2_t>::type;
-    using q16_t     = typename wrapper::traits::promote_t<T>;
-    using q16x8_t   = typename wrapper::traits::neon_vector<q16_t, 8>::type;
-    using q16x8x2_t = typename wrapper::traits::neon_vector<q16_t, 16>::type;
-
-    constexpr int pool_size       = 3;
-    const int     pool_pad_right  = _pool_info.pad_stride_info.pad_right();
-    const int     pool_pad_top    = _pool_info.pad_stride_info.pad_top();
-    const int     pool_pad_left   = _pool_info.pad_stride_info.pad_left();
-    const int     pool_pad_bottom = _pool_info.pad_stride_info.pad_bottom();
-    int           pool_stride_x   = 0;
-    int           pool_stride_y   = 0;
-    std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
-    const int upper_bound_w = _input->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right);
-    const int upper_bound_h = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom);
-
-    const UniformQuantizationInfo &input_qinfo  = _input->info()->quantization_info().uniform();
-    const UniformQuantizationInfo &output_qinfo = _output->info()->quantization_info().uniform();
-
-    const float                   requant_scale  = output_qinfo.scale / input_qinfo.scale;
-    const int32_t                 requant_offset = output_qinfo.offset - static_cast<int32_t>(static_cast<float>(input_qinfo.offset) / requant_scale);
-    const UniformQuantizationInfo requant_qinfo  = UniformQuantizationInfo(requant_scale, requant_offset);
-
-    const T *const input_top_ptr    = reinterpret_cast<const T *>(_input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top))));
-    const T *const input_middle_ptr = reinterpret_cast<const T *>(_input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1)));
-    const T *const input_bottom_ptr = reinterpret_cast<const T *>(_input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 2)));
-
-    execute_window_loop(window, [&](const Coordinates & id)
-    {
-        const auto top_data    = wrapper::vloadq(input_top_ptr + input.offset());
-        const auto middle_data = wrapper::vloadq(input_middle_ptr + input.offset());
-        const auto bottom_data = wrapper::vloadq(input_bottom_ptr + input.offset());
-        q8x8_t     fres        = {};
-        q8x16_t    fqres       = {};
-
-        if(pooling_type == PoolingType::AVG)
-        {
-            // Convert data to u16
-            const q16x8x2_t top_data_q16    = { { wrapper::vmovl(wrapper::vgetlow(top_data)), wrapper::vmovl(wrapper::vgethigh(top_data)) } };
-            const q16x8x2_t middle_data_q16 = { { wrapper::vmovl(wrapper::vgetlow(middle_data)), wrapper::vmovl(wrapper::vgethigh(middle_data)) } };
-            const q16x8x2_t bottom_data_q16 = { { wrapper::vmovl(wrapper::vgetlow(bottom_data)), wrapper::vmovl(wrapper::vgethigh(bottom_data)) } };
-
-            // Calculate row sums
-            const q16x8x2_t vrsum =
-            {
-                {
-                    wrapper::vadd(wrapper::vadd(top_data_q16.val[0], bottom_data_q16.val[0]), middle_data_q16.val[0]),
-                    wrapper::vadd(wrapper::vadd(top_data_q16.val[1], bottom_data_q16.val[1]), middle_data_q16.val[1]),
-                }
-            };
-            const q16x8x2_t vrsum_shifted_1 =
-            {
-                {
-                    wrapper::vext_1(vrsum.val[0], vrsum.val[1]),
-                    wrapper::vext_1(vrsum.val[1], vrsum.val[1])
-                }
-            };
-            const q16x8x2_t vrsum_shifted_2 =
-            {
-                {
-                    wrapper::vext_2(vrsum.val[0], vrsum.val[1]),
-                    wrapper::vext_2(vrsum.val[1], vrsum.val[1])
-                }
-            };
-            // Calculate final sum
-            q16x8x2_t final_sum =
-            {
-                {
-                    wrapper::vadd(wrapper::vadd(vrsum.val[0], vrsum_shifted_1.val[0]), vrsum_shifted_2.val[0]),
-                    wrapper::vadd(wrapper::vadd(vrsum.val[1], vrsum_shifted_1.val[1]), vrsum_shifted_2.val[1]),
-                }
-            };
-            if(pool_stride_x == 2)
-            {
-                q16x8_t res =
-                {
-                    wrapper::vgetlane(final_sum.val[0], 0),
-                    wrapper::vgetlane(final_sum.val[0], 2),
-                    wrapper::vgetlane(final_sum.val[0], 4),
-                    wrapper::vgetlane(final_sum.val[0], 6),
-                    wrapper::vgetlane(final_sum.val[1], 0),
-                    wrapper::vgetlane(final_sum.val[1], 2),
-                    wrapper::vgetlane(final_sum.val[1], 4),
-                    wrapper::vgetlane(final_sum.val[1], 6),
-                };
-
-                scale_vector_q16x8<q16_t, q16x8_t>(exclude_padding, res, id, 0, 1,
-                                                   pool_size, upper_bound_w, upper_bound_h,
-                                                   pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
-                fres = wrapper::vmovn(res);
-            }
-            else
-            {
-                // Scale lower result
-                scale_vector_q16x8<q16_t, q16x8_t>(exclude_padding, final_sum.val[0], id, 0, 1,
-                                                   pool_size, upper_bound_w, upper_bound_h,
-                                                   pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
-                // Scale lower result
-                scale_vector_q16x8<q16_t, q16x8_t>(exclude_padding, final_sum.val[1], id, 8, 1,
-                                                   pool_size, upper_bound_w, upper_bound_h,
-                                                   pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
-                fqres = wrapper::vcombine(wrapper::vmovn(final_sum.val[0]), wrapper::vmovn(final_sum.val[1]));
-            }
-        }
-        else
-        {
-            const q8x16_t max_data        = wrapper::vmax(wrapper::vmax(top_data, bottom_data), middle_data);
-            const q8x16_t max_data_shift1 = wrapper::vext_1(max_data, max_data);
-            const q8x16_t max_data_shift2 = wrapper::vext_2(max_data, max_data);
-            const q8x16_t final_max       = wrapper::vmax(wrapper::vmax(max_data, max_data_shift1), max_data_shift2);
-
-            if(pool_stride_x == 2)
-            {
-                const q8x8x2_t      table      = { { wrapper::vgetlow(final_max), wrapper::vgethigh(final_max) } };
-                static const q8x8_t lookup_val = { 0, 2, 4, 6, 8, 10, 12, 14 };
-                fres                           = wrapper::vtbl(table, lookup_val);
-            }
-            else
-            {
-                fqres = final_max;
-            }
-        }
-
-        // Store result
-        if(pool_stride_x == 1)
-        {
-            if(input_qinfo != output_qinfo)
-            {
-                fqres = vrequantize_pooling<q8x8_t, q8x16_t>(wrapper::vgetlow(fqres), wrapper::vgethigh(fqres), requant_qinfo);
-            }
-            wrapper::vstore(reinterpret_cast<T *>(output.ptr()), fqres);
-        }
-        else
-        {
-            if(input_qinfo != output_qinfo)
-            {
-                fres = vrequantize_pooling<q8x8_t>(fres, requant_qinfo);
-            }
-            wrapper::vstore(reinterpret_cast<T *>(output.ptr()), fres);
-        }
-    },
-    input, output);
-}
-
-void NEPoolingLayerKernel::poolingMxN_f16_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding)
-{
-    ARM_COMPUTE_UNUSED(pooling_type);
-    ARM_COMPUTE_UNUSED(exclude_padding);
-#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
-    Iterator input(_input, window_input);
-    Iterator output(_output, window);
-
-    const int pool_size_x     = _pool_info.is_global_pooling ? _input->info()->tensor_shape().x() : _pool_info.pool_size.width;
-    const int pool_size_y     = _pool_info.is_global_pooling ? _input->info()->tensor_shape().y() : _pool_info.pool_size.height;
-    const int pool_pad_right  = _pool_info.pad_stride_info.pad_right();
-    const int pool_pad_top    = _pool_info.pad_stride_info.pad_top();
-    const int pool_pad_left   = _pool_info.pad_stride_info.pad_left();
-    const int pool_pad_bottom = _pool_info.pad_stride_info.pad_bottom();
-    int       pool_stride_x   = 0;
-    int       pool_stride_y   = 0;
-    std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
-    const int upper_bound_w = _input->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right);
-    const int upper_bound_h = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom);
-
-    execute_window_loop(window, [&](const Coordinates & id)
-    {
-        float16_t   res  = 0.0f;
-        float16x8_t vres = vdupq_n_f16(0.0f);
-
-        if(pooling_type != PoolingType::MAX)
-        {
-            // Calculate scale
-            const float scale = calculate_avg_scale(exclude_padding, DataLayout::NCHW, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
-
-            // Perform pooling
-
-            for(int y = 0; y < pool_size_y; ++y)
-            {
-                int x = 0;
-                for(; x <= (pool_size_x - 8); x += 8)
-                {
-                    const float16x8_t data = vld1q_f16(reinterpret_cast<const float16_t *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().x()) +
-                                                                                           (y - pool_pad_top) * static_cast<int>(_input->info()->strides_in_bytes().y())));
-
-                    // Get power of 2 in case of l2 pooling and accumulate
-                    if(pooling_type == PoolingType::L2)
-                    {
-                        vres = vaddq_f16(vres, vmulq_f16(data, data));
-                    }
-                    else
-                    {
-                        vres = vaddq_f16(vres, data);
-                    }
-                }
-
-                // Leftover for loop
-                for(; x < pool_size_x; ++x)
-                {
-                    float16_t data = *(reinterpret_cast<const float16_t *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().x())
-                                                                           + (y - pool_pad_top) * static_cast<int>(_input->info()->strides_in_bytes().y())));
-
-                    // Get power of 2 in case of l2 pooling
-                    if(pooling_type == PoolingType::L2)
-                    {
-                        data *= data;
-                    }
-
-                    res += data;
-                }
-            }
-
-            // Reduction
-            float16x4_t tmp = vpadd_f16(vget_high_f16(vres), vget_low_f16(vres));
-            res += vget_lane_f16(tmp, 0);
-            res += vget_lane_f16(tmp, 1);
-            res += vget_lane_f16(tmp, 2);
-            res += vget_lane_f16(tmp, 3);
-
-            // Divide by scale
-            res *= scale;
-        }
-        else
-        {
-            float16x8_t vres = vdupq_n_f16(std::numeric_limits<float>::lowest());
-            res              = std::numeric_limits<float>::lowest();
-
-            for(int y = 0; y < pool_size_y; ++y)
-            {
-                int x = 0;
-                for(; x <= (pool_size_x - 8); x += 8)
-                {
-                    const float16x8_t data = vld1q_f16(reinterpret_cast<const float16_t *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().x()) +
-                                                                                           (y - pool_pad_top) * static_cast<int>(_input->info()->strides_in_bytes().y())));
-                    vres                   = vmaxq_f16(vres, data);
-                }
-
-                // Leftover for loop
-                for(; x < pool_size_x; ++x)
-                {
-                    const float16_t data = *(reinterpret_cast<const float16_t *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().x())
-                                                                                 + (y - pool_pad_top) * static_cast<int>(_input->info()->strides_in_bytes().y())));
-                    res = std::max(res, data);
-                }
-            }
-
-            float16x4_t tmp = vpmax_f16(vget_high_f16(vres), vget_low_f16(vres));
-            res             = std::max(res, vget_lane_f16(tmp, 0));
-            res             = std::max(res, vget_lane_f16(tmp, 1));
-            res             = std::max(res, vget_lane_f16(tmp, 2));
-            res             = std::max(res, vget_lane_f16(tmp, 3));
-        }
-
-        // Calculate square-root in case of l2 pooling
-        if(pooling_type == PoolingType::L2)
-        {
-            res = std::sqrt(res);
-        }
-
-        // Store result
-        *(reinterpret_cast<float16_t *>(output.ptr())) = res;
-    },
-    input, output);
-
-#else  /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
-    ARM_COMPUTE_UNUSED(window_input);
-    ARM_COMPUTE_UNUSED(window);
-    ARM_COMPUTE_ERROR("FP16 Not supported! Recompile the library with arch=arm64-v8.2-a");
-#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
-}
-
-#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
-void NEPoolingLayerKernel::pooling2_f16_nhwc_maxpool_indices(const Window &window_input, const Window &window)
-{
-    const int window_start_x = window.x().start();
-    const int window_end_x   = window.x().end();
-    const int window_step_x  = 8;
-
-    Window window_out = window;
-    window_out.set(Window::DimX, Window::Dimension(0, 1, 1));
-
-    Iterator input(_input, window_input);
-    Iterator output(_output, window_out);
-    Iterator indices(_indices, window_out);
-
-    const int pool_pad_top  = _pool_info.pad_stride_info.pad_top();
-    const int pool_pad_left = _pool_info.pad_stride_info.pad_left();
-
-    int pool_stride_x = 0;
-    int pool_stride_y = 0;
-    std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
-
-    const int pad_right   = _input->info()->padding().right;
-    const int in_stride_y = static_cast<int>(_input->info()->strides_in_bytes().y());
-    const int in_stride_z = static_cast<int>(_input->info()->strides_in_bytes().z());
-
-    execute_window_loop(window_out, [&](const Coordinates & id)
-    {
-        const int idx_width    = id.y() * pool_stride_x;
-        const int idx_height   = id.z() * pool_stride_y;
-        const int pool_limit_y = pool_pad_top - idx_height;
-        const int pool_limit_x = pool_pad_left - idx_width;
-
-        const int pool_start_y = std::max(0, window_input.z().start() + pool_limit_y);
-        const int pool_start_x = std::max(0, window_input.y().start() + pool_limit_x);
-        const int in_x0_offset = (pool_start_x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().y()) + (pool_start_y - pool_pad_top) * static_cast<int>
-                                 (_input->info()->strides_in_bytes().z());
-        const int in_x1_offset = (pool_start_x + 1 - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().y()) + (pool_start_y - pool_pad_top) * static_cast<int>
-                                 (_input->info()->strides_in_bytes().z());
-        const int in_x2_offset = (pool_start_x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().y()) + (pool_start_y + 1 - pool_pad_top) * static_cast<int>
-                                 (_input->info()->strides_in_bytes().z());
-        const int in_x3_offset = (pool_start_x + 1 - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().y()) + (pool_start_y + 1 - pool_pad_top) * static_cast<int>
-                                 (_input->info()->strides_in_bytes().z());
-
-        int x_off = window_start_x;
-        for(; x_off <= (window_end_x - window_step_x); x_off += window_step_x)
-        {
-            const auto  in_x0_ptr = reinterpret_cast<const float16_t *>(input.ptr() + in_x0_offset) + x_off;
-            const auto  in_x1_ptr = reinterpret_cast<const float16_t *>(input.ptr() + in_x1_offset) + x_off;
-            const auto  in_x2_ptr = reinterpret_cast<const float16_t *>(input.ptr() + in_x2_offset) + x_off;
-            const auto  in_x3_ptr = reinterpret_cast<const float16_t *>(input.ptr() + in_x3_offset) + x_off;
-            const auto  v_x0      = vld1q_f16(in_x0_ptr);
-            const auto  v_x1      = vld1q_f16(in_x1_ptr);
-            const auto  v_x2      = vld1q_f16(in_x2_ptr);
-            const auto  v_x3      = vld1q_f16(in_x3_ptr);
-            float16x8_t vres      = vmaxq_f16(vmaxq_f16(v_x2, v_x3), vmaxq_f16(v_x0, v_x1));
-            // Store result
-            vst1q_f16(reinterpret_cast<float16_t *>(output.ptr()) + x_off, vres);
-
-            const uint32_t   offset_base    = offset_no_padding<float16_t>(input.offset(), id, *_input->info(), pool_stride_x, pool_stride_y);
-            const uint32_t   offset_x0      = (uint32_t)offset_base / sizeof(float16_t) + x_off;
-            const uint32_t   offset_x1      = (uint32_t)offset_x0 + in_stride_y / sizeof(float16_t) - pad_right;
-            const uint32_t   offset_x2      = (uint32_t)offset_x0 + in_stride_z / sizeof(float16_t) - pad_right * _input->info()->tensor_shape()[1];
-            const uint32_t   offset_x3      = (uint32_t)offset_x2 + in_stride_y / sizeof(float16_t) - pad_right;
-            const uint32x4_t voffset_x0_0   = { offset_x0, offset_x0 + 1, offset_x0 + 2, offset_x0 + 3 };
-            const uint32x4_t voffset_x0_1   = { offset_x0 + 4, offset_x0 + 5, offset_x0 + 6, offset_x0 + 7 };
-            const uint16x8_t voffset_x0     = vcombine_u16(vmovn_u32(voffset_x0_0), vmovn_u32(voffset_x0_1));
-            const uint32x4_t voffset_x1_0   = { offset_x1, offset_x1 + 1, offset_x1 + 2, offset_x1 + 3 };
-            const uint32x4_t voffset_x1_1   = { offset_x1 + 4, offset_x1 + 5, offset_x1 + 6, offset_x1 + 7 };
-            const uint16x8_t voffset_x1     = vcombine_u16(vmovn_u32(voffset_x1_0), vmovn_u32(voffset_x1_1));
-            const uint32x4_t voffset_x2_0   = { offset_x2, offset_x2 + 1, offset_x2 + 2, offset_x2 + 3 };
-            const uint32x4_t voffset_x2_1   = { offset_x2 + 4, offset_x2 + 5, offset_x2 + 6, offset_x2 + 7 };
-            const uint16x8_t voffset_x2     = vcombine_u16(vmovn_u32(voffset_x2_0), vmovn_u32(voffset_x2_1));
-            const uint32x4_t voffset_x3_0   = { offset_x3, offset_x3 + 1, offset_x3 + 2, offset_x3 + 3 };
-            const uint32x4_t voffset_x3_1   = { offset_x3 + 4, offset_x3 + 5, offset_x3 + 6, offset_x3 + 7 };
-            const uint16x8_t voffset_x3     = vcombine_u16(vmovn_u32(voffset_x3_0), vmovn_u32(voffset_x3_1));
-            const uint16x8_t tmp_indices0   = vbslq_u16(vcgeq_f16(v_x0, v_x1), voffset_x0, voffset_x1);
-            const uint16x8_t tmp_indices1   = vbslq_u16(vcgeq_f16(v_x2, v_x3), voffset_x2, voffset_x3);
-            const uint16x8_t tmp_indices2   = vbslq_u16(vcgeq_f16(vmaxq_f16(v_x0, v_x1), vmaxq_f16(v_x2, v_x3)), tmp_indices0, tmp_indices1);
-            const uint32x4_t tmp_indeces3_0 = vmovl_u16(vget_low_u16(tmp_indices2));
-            const uint32x4_t tmp_indeces3_1 = vmovl_u16(vget_high_u16(tmp_indices2));
-            // Store indicies
-            vst1q_u32(reinterpret_cast<uint32_t *>(indices.ptr()) + x_off, tmp_indeces3_0);
-            vst1q_u32(reinterpret_cast<uint32_t *>(indices.ptr() + 16) + x_off, tmp_indeces3_1);
-        }
-
-        // Left-overs loop
-        for(; x_off < window_end_x; ++x_off)
-        {
-            const auto x0  = *(reinterpret_cast<const float16_t *>(input.ptr() + in_x0_offset) + x_off);
-            const auto x1  = *(reinterpret_cast<const float16_t *>(input.ptr() + in_x1_offset) + x_off);
-            const auto x2  = *(reinterpret_cast<const float16_t *>(input.ptr() + in_x2_offset) + x_off);
-            const auto x3  = *(reinterpret_cast<const float16_t *>(input.ptr() + in_x3_offset) + x_off);
-            float16_t  res = std::max(std::max(x2, x3), std::max(x0, x1));
-
-            // Store result
-            *(reinterpret_cast<float16_t *>(output.ptr()) + x_off) = res;
-
-            const uint32_t offset_base = offset_no_padding<float16_t>(input.offset(), id, *_input->info(), pool_stride_x, pool_stride_y);
-            const uint32_t offset_x0   = (uint32_t)offset_base / sizeof(float16_t) + x_off;
-            const uint32_t offset_x1   = (uint32_t)offset_x0 + in_stride_y / sizeof(float16_t) - pad_right;
-            const uint32_t offset_x2   = (uint32_t)offset_x0 + in_stride_z / sizeof(float16_t) - pad_right * _input->info()->tensor_shape()[1];
-            const uint32_t offset_x3   = (uint32_t)offset_x2 + in_stride_y / sizeof(float16_t) - pad_right;
-            const uint32_t tmp_idx0    = (x0 >= x1) ? offset_x0 : offset_x1;
-            const uint32_t tmp_idx1    = (x2 >= x3) ? offset_x2 : offset_x3;
-            const uint32_t tmp_idx2    = (std::max(x0, x1) >= std::max(x2, x3)) ? tmp_idx0 : tmp_idx1;
-
-            // Store indices
-            *(reinterpret_cast<uint32_t *>(indices.ptr()) + x_off) = tmp_idx2;
-        }
-    },
-    input, output, indices);
-}
-#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
-
-void NEPoolingLayerKernel::poolingMxN_f16_nhwc(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding)
-{
-    ARM_COMPUTE_UNUSED(pooling_type);
-    ARM_COMPUTE_UNUSED(exclude_padding);
-#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
-    if(_pool_info.pool_size == Size2D(2, 2) && pooling_type == PoolingType::MAX && _indices)
-    {
-        pooling2_f16_nhwc_maxpool_indices(window_input, window);
-    }
-    const int window_start_x = window.x().start();
-    const int window_end_x   = window.x().end();
-    const int window_step_x  = 8;
-
-    Window window_out = window;
-    window_out.set(Window::DimX, Window::Dimension(0, 1, 1));
-
-    Iterator input(_input, window_input);
-    Iterator output(_output, window_out);
-
-    const int pool_size_x     = _pool_info.is_global_pooling ? _input->info()->tensor_shape().y() : _pool_info.pool_size.width;
-    const int pool_size_y     = _pool_info.is_global_pooling ? _input->info()->tensor_shape().z() : _pool_info.pool_size.height;
-    const int pool_pad_right  = _pool_info.pad_stride_info.pad_right();
-    const int pool_pad_top    = _pool_info.pad_stride_info.pad_top();
-    const int pool_pad_left   = _pool_info.pad_stride_info.pad_left();
-    const int pool_pad_bottom = _pool_info.pad_stride_info.pad_bottom();
-    int       pool_stride_x   = 0;
-    int       pool_stride_y   = 0;
-    std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
-    const int upper_bound_w = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_right);
-    const int upper_bound_h = _input->info()->dimension(2) + (exclude_padding ? 0 : pool_pad_bottom);
-
-    float16x8_t vres;
-
-    execute_window_loop(window_out, [&](const Coordinates & id)
-    {
-        const int idx_width    = id.y() * pool_stride_x;
-        const int idx_height   = id.z() * pool_stride_y;
-        const int pool_limit_y = pool_pad_top - idx_height;
-        const int pool_limit_x = pool_pad_left - idx_width;
-
-        const int pool_start_y = std::max(0, window_input.z().start() + pool_limit_y);
-        const int pool_end_y   = std::min(pool_size_y, window_input.z().end() + pool_limit_y);
-        const int pool_start_x = std::max(0, window_input.y().start() + pool_limit_x);
-        const int pool_end_x   = std::min(pool_size_x, window_input.y().end() + pool_limit_x);
-
-        int x_off = window_start_x;
-        for(; x_off <= (window_end_x - window_step_x); x_off += window_step_x)
-        {
-            if(pooling_type != PoolingType::MAX)
-            {
-                // Calculate scale
-                const float scale = calculate_avg_scale(exclude_padding, DataLayout::NHWC, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
-                                                        pool_stride_y);
-                const float16x8_t scale_v = vdupq_n_f16(scale);
-
-                // Perform pooling
-                vres = vdupq_n_f16(0.0f);
-                for(int y = pool_start_y; y < pool_end_y; ++y)
-                {
-                    for(int x = pool_start_x; x < pool_end_x; ++x)
-                    {
-                        const float16x8_t data = vld1q_f16(reinterpret_cast<const float16_t *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().y()) +
-                                                                                               (y - pool_pad_top) * static_cast<int>(_input->info()->strides_in_bytes().z())) + x_off);
-
-                        // Get power of 2 in case of l2 pooling and accumulate
-                        if(pooling_type == PoolingType::L2)
-                        {
-                            vres = vaddq_f16(vres, vmulq_f16(data, data));
-                        }
-                        else
-                        {
-                            vres = vaddq_f16(vres, data);
-                        }
-                    }
-                }
-                // Divide by scale
-                vres = vmulq_f16(vres, scale_v);
-            }
-            else
-            {
-                vres = vdupq_n_f16(std::numeric_limits<float>::lowest());
-
-                for(int y = pool_start_y; y < pool_end_y; ++y)
-                {
-                    for(int x = pool_start_x; x < pool_end_x; ++x)
-                    {
-                        const float16x8_t data = vld1q_f16(reinterpret_cast<const float16_t *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().y()) +
-                                                                                               (y - pool_pad_top) * static_cast<int>(_input->info()->strides_in_bytes().z())) + x_off);
-                        vres                   = vmaxq_f16(vres, data);
-                    }
-                }
-            }
-
-            // Calculate square-root in case of l2 pooling
-            if(pooling_type == PoolingType::L2)
-            {
-                float16x8_t sqrt_reciprocal = vrsqrteq_f16(vres);
-                vres                        = vmulq_f16(vres, vmulq_f16(vrsqrtsq_f16(vmulq_f16(vres, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal));
-            }
-
-            // Store result
-            vst1q_f16(reinterpret_cast<float16_t *>(output.ptr()) + x_off, vres);
-        }
-
-        // Left-overs loop
-        for(; x_off < window_end_x; ++x_off)
-        {
-            float16_t res = 0.0f;
-
-            if(pooling_type != PoolingType::MAX)
-            {
-                // Calculate scale
-                const float16_t scale = calculate_avg_scale(exclude_padding, DataLayout::NHWC, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
-                                                            pool_stride_y);
-
-                for(int y = pool_start_y; y < pool_end_y; ++y)
-                {
-                    for(int x = pool_start_x; x < pool_end_x; ++x)
-                    {
-                        const float data = *(reinterpret_cast<const float16_t *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
-                                                                                 (_input->info()->strides_in_bytes().z())) + x_off);
-
-                        // Get power of 2 in case of l2 pooling and accumulate
-                        if(pooling_type == PoolingType::L2)
-                        {
-                            res += data * data;
-                        }
-                        else
-                        {
-                            res += data;
-                        }
-                    }
-                }
-
-                // Divide by scale
-                res *= scale;
-            }
-            else
-            {
-                res = std::numeric_limits<float>::lowest();
-                for(int y = pool_start_y; y < pool_end_y; ++y)
-                {
-                    for(int x = pool_start_x; x < pool_end_x; ++x)
-                    {
-                        const float16_t data = *(reinterpret_cast<const float16_t *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
-                                                                                     (_input->info()->strides_in_bytes().z())) + x_off);
-                        res                  = std::max(res, data);
-                    }
-                }
-            }
-
-            // Calculate square-root in case of l2 pooling
-            if(pooling_type == PoolingType::L2)
-            {
-                res = std::sqrt(res);
-            }
-
-            // Store result
-            *(reinterpret_cast<float16_t *>(output.ptr()) + x_off) = res;
-        }
-    },
-    input, output);
-
-#else  /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
-    ARM_COMPUTE_UNUSED(window_input);
-    ARM_COMPUTE_UNUSED(window);
-    ARM_COMPUTE_ERROR("FP16 Not supported! Recompile the library with arch=arm64-v8.2-a");
-#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
-}
-
-void NEPoolingLayerKernel::poolingMxN_f32_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding)
-{
-    Iterator input(_input, window_input);
-    Iterator output(_output, window);
-
-    const int pool_size_x     = _pool_info.is_global_pooling ? _input->info()->tensor_shape().x() : _pool_info.pool_size.width;
-    const int pool_size_y     = _pool_info.is_global_pooling ? _input->info()->tensor_shape().y() : _pool_info.pool_size.height;
-    const int pool_pad_right  = _pool_info.pad_stride_info.pad_right();
-    const int pool_pad_top    = _pool_info.pad_stride_info.pad_top();
-    const int pool_pad_left   = _pool_info.pad_stride_info.pad_left();
-    const int pool_pad_bottom = _pool_info.pad_stride_info.pad_bottom();
-    int       pool_stride_x   = 0;
-    int       pool_stride_y   = 0;
-    std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
-    const int upper_bound_w = _input->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right);
-    const int upper_bound_h = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom);
-
-    execute_window_loop(window, [&](const Coordinates & id)
-    {
-        float res = 0.0f;
-
-        if(pooling_type != PoolingType::MAX)
-        {
-            // Calculate scale
-            const float scale = calculate_avg_scale(exclude_padding, DataLayout::NCHW, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
-
-            // Perform pooling
-            float32x4_t vres = vdupq_n_f32(0.0f);
-
-            for(int y = 0; y < pool_size_y; ++y)
-            {
-                int x = 0;
-                for(; x <= (pool_size_x - 4); x += 4)
-                {
-                    const float32x4_t data = vld1q_f32(reinterpret_cast<const float *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().x()) + (y - pool_pad_top) * static_cast<int>
-                                                                                       (_input->info()->strides_in_bytes().y())));
-
-                    // Get power of 2 in case of l2 pooling and accumulate
-                    if(pooling_type == PoolingType::L2)
-                    {
-                        vres = vmlaq_f32(vres, data, data);
-                    }
-                    else
-                    {
-                        vres = vaddq_f32(vres, data);
-                    }
-                }
-
-                // Leftover for loop
-                for(; x < pool_size_x; ++x)
-                {
-                    float data = *(reinterpret_cast<const float *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().x()) + (y - pool_pad_top) * static_cast<int>
-                                                                   (_input->info()->strides_in_bytes().y())));
-
-                    // Get power of 2 in case of l2 pooling
-                    if(pooling_type == PoolingType::L2)
-                    {
-                        data *= data;
-                    }
-
-                    res += data;
-                }
-            }
-
-#if defined(__aarch64__)
-            // Reduction operation available on 64 bit architectures only
-            res += vaddvq_f32(vres);
-#else  // __aarch64__
-            // Reduction
-            float32x2_t tmp = vpadd_f32(vget_high_f32(vres), vget_low_f32(vres));
-            tmp             = vpadd_f32(tmp, tmp);
-
-            res += vget_lane_f32(tmp, 0);
-#endif // __aarch64__
-            // Divide by scale
-            res *= scale;
-        }
-        else
-        {
-            float32x4_t vres = vdupq_n_f32(std::numeric_limits<float>::lowest());
-            res              = std::numeric_limits<float>::lowest();
-
-            for(int y = 0; y < pool_size_y; ++y)
-            {
-                int x = 0;
-                for(; x <= (pool_size_x - 4); x += 4)
-                {
-                    const float32x4_t data = vld1q_f32(reinterpret_cast<const float *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().x()) + (y - pool_pad_top) * static_cast<int>
-                                                                                       (_input->info()->strides_in_bytes().y())));
-                    vres                   = vmaxq_f32(vres, data);
-                }
-
-                // Leftover for loop
-                for(; x < pool_size_x; ++x)
-                {
-                    const float data = *(reinterpret_cast<const float *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().x()) + (y - pool_pad_top) * static_cast<int>
-                                                                         (_input->info()->strides_in_bytes().y())));
-                    res              = std::max(res, data);
-                }
-            }
-#if defined(__aarch64__)
-            // Reduction operation available on 64 bit architectures only
-            res = std::max(vmaxvq_f32(vres), res);
-#else  // __aarch64__
-            float32x2_t tmp = vpmax_f32(vget_high_f32(vres), vget_low_f32(vres));
-            tmp             = vpmax_f32(tmp, tmp);
-
-            res = std::max(res, vget_lane_f32(tmp, 0));
-#endif // __aarch64__
-        }
-
-        // Calculate square-root in case of l2 pooling
-        if(pooling_type == PoolingType::L2)
-        {
-            res = std::sqrt(res);
-        }
-
-        // Store result
-        *(reinterpret_cast<float *>(output.ptr())) = res;
-    },
-    input, output);
-}
-
-void NEPoolingLayerKernel::pooling2_f32_nchw(const Window &window_input, const Window &window, PoolingType pooling_type,
-                                             bool exclude_padding)
-{
-    if(pooling_type == PoolingType::MAX && _indices)
-    {
-        pooling2_nchw_maxpool_indices<float>(window_input, window);
-    }
-    else
-    {
-        Iterator      input(_input, window_input);
-        Iterator      output(_output, window);
-        constexpr int pool_size       = 2;
-        const int     pool_pad_right  = _pool_info.pad_stride_info.pad_right();
-        const int     pool_pad_top    = _pool_info.pad_stride_info.pad_top();
-        const int     pool_pad_left   = _pool_info.pad_stride_info.pad_left();
-        const int     pool_pad_bottom = _pool_info.pad_stride_info.pad_bottom();
-        int           pool_stride_x   = 0;
-        int           pool_stride_y   = 0;
-        std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
-        const int upper_bound_w = _input->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right);
-        const int upper_bound_h = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom);
-
-        const uint8_t *const input_top_ptr    = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
-        const uint8_t *const input_bottom_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
-
-        execute_window_loop(window, [&](const Coordinates & id)
-        {
-            const auto  in_top_ptr    = reinterpret_cast<const float *>(input_top_ptr + input.offset());
-            const auto  in_bottom_ptr = reinterpret_cast<const float *>(input_bottom_ptr + input.offset());
-            float32x2_t top_data      = vld1_f32(in_top_ptr);
-            float32x2_t bottom_data   = vld1_f32(in_bottom_ptr);
-            float32x2_t res           = {};
-            float       final_res     = 0;
-            // Get power of 2 in case of l2 pooling
-            if(pooling_type == PoolingType::L2)
-            {
-                top_data    = vmul_f32(top_data, top_data);
-                bottom_data = vmul_f32(bottom_data, bottom_data);
-            }
-
-            if(pooling_type != PoolingType::MAX)
-            {
-                // Calculate scale
-                float             scale   = calculate_avg_scale(exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
-                const float32x2_t scale_v = vdup_n_f32(scale);
-
-                // Perform pooling
-                const float32x2_t sum_data = vadd_f32(top_data, bottom_data);
-                res                        = vmul_f32(vpadd_f32(sum_data, sum_data), scale_v);
-            }
-            else
-            {
-                const float32x2_t max_data = vmax_f32(top_data, bottom_data);
-                res                        = vpmax_f32(max_data, max_data);
-            }
-            final_res = vget_lane_f32(res, 0);
-
-            // Calculate square-root in case of l2 pooling
-            if(pooling_type == PoolingType::L2)
-            {
-                final_res = sqrt(final_res);
-            }
-
-            // Store result
-            *(reinterpret_cast<float *>(output.ptr())) = final_res;
-        },
-        input, output);
-    }
-}
-
-void NEPoolingLayerKernel::pooling3_f32_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding)
-{
-    Iterator input(_input, window_input);
-    Iterator output(_output, window);
-
-    constexpr const int pool_size       = 3;
-    const int           pool_pad_right  = _pool_info.pad_stride_info.pad_right();
-    const int           pool_pad_top    = _pool_info.pad_stride_info.pad_top();
-    const int           pool_pad_left   = _pool_info.pad_stride_info.pad_left();
-    const int           pool_pad_bottom = _pool_info.pad_stride_info.pad_bottom();
-    int                 pool_stride_x   = 0;
-    int                 pool_stride_y   = 0;
-    std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
-    const int upper_bound_w = _input->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right);
-    const int upper_bound_h = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom);
-
-    const uint8_t *const input_top_ptr    = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
-    const uint8_t *const input_middle_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
-    const uint8_t *const input_bottom_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 2));
-
-    execute_window_loop(window, [&](const Coordinates & id)
-    {
-        float32x4_t top_data    = vld1q_f32(reinterpret_cast<const float *>(input_top_ptr + input.offset()));
-        float32x4_t middle_data = vld1q_f32(reinterpret_cast<const float *>(input_middle_ptr + input.offset()));
-        float32x4_t bottom_data = vld1q_f32(reinterpret_cast<const float *>(input_bottom_ptr + input.offset()));
-        float32x2_t res         = {};
-        float       final_res   = 0;
-
-        // Get power of 2 in case of l2 pooling
-        if(pooling_type == PoolingType::L2)
-        {
-            top_data    = vmulq_f32(top_data, top_data);
-            middle_data = vmulq_f32(middle_data, middle_data);
-            bottom_data = vmulq_f32(bottom_data, bottom_data);
-        }
-
-        if(pooling_type != PoolingType::MAX)
-        {
-            // Calculate scale
-            float             scale   = calculate_avg_scale(exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
-            const float32x2_t scale_v = vdup_n_f32(scale);
-
-            // Perform pooling
-            const float32x4_t sum_data = vaddq_f32(vaddq_f32(top_data, bottom_data), middle_data);
-            res                        = vpadd_f32(vget_high_f32(vsetq_lane_f32(0.f, sum_data, 3)), vget_low_f32(sum_data));
-            res                        = vmul_f32(vpadd_f32(res, res), scale_v);
-        }
-        else
-        {
-            const float32x4_t max_data = vmaxq_f32(vmaxq_f32(top_data, bottom_data), middle_data);
-            res                        = vpmax_f32(vget_high_f32(vsetq_lane_f32(-std::numeric_limits<float>::max(), max_data, 3)), vget_low_f32(max_data));
-            res                        = vpmax_f32(res, res);
-        }
-        final_res = vget_lane_f32(res, 0);
-
-        // Calculate square-root in case of l2 pooling
-        if(pooling_type == PoolingType::L2)
-        {
-            final_res = sqrt(final_res);
-        }
-
-        // Store result
-        *(reinterpret_cast<float *>(output.ptr())) = final_res;
-    },
-    input, output);
-}
-
-void NEPoolingLayerKernel::pooling7_f32_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding)
-{
-    Iterator input(_input, window_input);
-    Iterator output(_output, window);
-
-    constexpr const int pool_size       = 7;
-    const int           pool_pad_right  = _pool_info.pad_stride_info.pad_right();
-    const int           pool_pad_top    = _pool_info.pad_stride_info.pad_top();
-    const int           pool_pad_left   = _pool_info.pad_stride_info.pad_left();
-    const int           pool_pad_bottom = _pool_info.pad_stride_info.pad_bottom();
-    int                 pool_stride_x   = 0;
-    int                 pool_stride_y   = 0;
-    std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
-    const int upper_bound_w = _input->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right);
-    const int upper_bound_h = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom);
-
-    std::array<const uint8_t *, pool_size> input_ptrs{ {} };
-    for(int i = 0; i < pool_size; ++i)
-    {
-        input_ptrs[i] = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + i));
-    }
-
-    execute_window_loop(window, [&](const Coordinates & id)
-    {
-        float32x2_t res       = {};
-        float       final_res = 0.f;
-        if(pooling_type != PoolingType::MAX)
-        {
-            // Calculate scale
-            float             scale   = calculate_avg_scale(exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
-            const float32x2_t scale_v = vdup_n_f32(scale);
-
-            // Perform pooling
-            float32x4x2_t data = vld2q_f32(reinterpret_cast<const float *>(input_ptrs[0] + input.offset()));
-            // Get power of 2 in case of l2 pooling
-            if(pooling_type == PoolingType::L2)
-            {
-                data.val[0] = vmulq_f32(data.val[0], data.val[0]);
-                data.val[1] = vmulq_f32(data.val[1], data.val[1]);
-            }
-            float32x4_t sum_data = vaddq_f32(data.val[0], vsetq_lane_f32(0.f, data.val[1], 3));
-            for(int i = 1; i < pool_size; ++i)
-            {
-                data = vld2q_f32(reinterpret_cast<const float *>(input_ptrs[i] + input.offset()));
-                // Get power of 2 in case of l2 pooling
-                if(pooling_type == PoolingType::L2)
-                {
-                    data.val[0] = vmulq_f32(data.val[0], data.val[0]);
-                    data.val[1] = vmulq_f32(data.val[1], data.val[1]);
-                }
-                sum_data = vaddq_f32(sum_data, data.val[0]);
-                sum_data = vaddq_f32(sum_data, vsetq_lane_f32(0.f, data.val[1], 3));
-            }
-            res = vpadd_f32(vget_high_f32(sum_data), vget_low_f32(sum_data));
-            res = vmul_f32(vpadd_f32(res, res), scale_v);
-        }
-        else
-        {
-            float32x4x2_t max_data = vld2q_f32(reinterpret_cast<const float *>(input_ptrs[0] + input.offset()));
-            for(int i = 1; i < pool_size; ++i)
-            {
-                const float32x4x2_t data = vld2q_f32(reinterpret_cast<const float *>(input_ptrs[i] + input.offset()));
-                max_data                 = vmax2q_f32(max_data, data);
-            }
-            res = vpmax_f32(vget_high_f32(vsetq_lane_f32(-std::numeric_limits<float>::max(), max_data.val[1], 3)), vget_low_f32(max_data.val[1]));
-            res = vpmax_f32(res, vpmax_f32(vget_high_f32(max_data.val[0]), vget_low_f32(max_data.val[0])));
-            res = vpmax_f32(res, res);
-        }
-        final_res = vget_lane_f32(res, 0);
-
-        // Calculate square-root in case of l2 pooling
-        if(pooling_type == PoolingType::L2)
-        {
-            final_res = sqrt(final_res);
-        }
-
-        // Store result
-        *(reinterpret_cast<float *>(output.ptr())) = final_res;
-    },
-    input, output);
-}
-
-void NEPoolingLayerKernel::poolingMxN_f32_nhwc(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding)
-{
-    if(_pool_info.pool_size == Size2D(2, 2) && pooling_type == PoolingType::MAX && _indices)
-    {
-        pooling2_f32_nhwc_maxpool_indices(window_input, window);
-    }
-    else
-    {
-        const int window_start_x = window.x().start();
-        const int window_end_x   = window.x().end();
-        const int window_step_x  = 4;
-
-        Window window_out = window;
-        window_out.set(Window::DimX, Window::Dimension(0, 1, 1));
-
-        Iterator input(_input, window_input);
-        Iterator output(_output, window_out);
-
-        const int pool_size_x     = _pool_info.is_global_pooling ? _input->info()->tensor_shape().y() : _pool_info.pool_size.width;
-        const int pool_size_y     = _pool_info.is_global_pooling ? _input->info()->tensor_shape().z() : _pool_info.pool_size.height;
-        const int pool_pad_right  = _pool_info.pad_stride_info.pad_right();
-        const int pool_pad_top    = _pool_info.pad_stride_info.pad_top();
-        const int pool_pad_left   = _pool_info.pad_stride_info.pad_left();
-        const int pool_pad_bottom = _pool_info.pad_stride_info.pad_bottom();
-        int       pool_stride_x   = 0;
-        int       pool_stride_y   = 0;
-        std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
-        const int upper_bound_w = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_right);
-        const int upper_bound_h = _input->info()->dimension(2) + (exclude_padding ? 0 : pool_pad_bottom);
-
-        float32x4_t vres;
-
-        execute_window_loop(window_out, [&](const Coordinates & id)
-        {
-            const int idx_width    = id.y() * pool_stride_x;
-            const int idx_height   = id.z() * pool_stride_y;
-            const int pool_limit_y = pool_pad_top - idx_height;
-            const int pool_limit_x = pool_pad_left - idx_width;
-
-            const int pool_start_y = std::max(0, window_input.z().start() + pool_limit_y);
-            const int pool_end_y   = std::min(pool_size_y, window_input.z().end() + pool_limit_y);
-            const int pool_start_x = std::max(0, window_input.y().start() + pool_limit_x);
-            const int pool_end_x   = std::min(pool_size_x, window_input.y().end() + pool_limit_x);
-
-            int x_off = window_start_x;
-            for(; x_off <= (window_end_x - window_step_x); x_off += window_step_x)
-            {
-                if(pooling_type != PoolingType::MAX)
-                {
-                    // Calculate scale
-                    const float scale = calculate_avg_scale(exclude_padding, DataLayout::NHWC, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
-                                                            pool_stride_y);
-                    const float32x4_t scale_v = vdupq_n_f32(scale);
-
-                    // Perform pooling
-                    vres = vdupq_n_f32(0.0f);
-
-                    for(int y = pool_start_y; y < pool_end_y; ++y)
-                    {
-                        for(int x = pool_start_x; x < pool_end_x; ++x)
-                        {
-                            const float32x4_t data = vld1q_f32(reinterpret_cast<const float *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
-                                                                                               (_input->info()->strides_in_bytes().z())) + x_off);
-
-                            // Get power of 2 in case of l2 pooling and accumulate
-                            if(pooling_type == PoolingType::L2)
-                            {
-                                vres = vmlaq_f32(vres, data, data);
-                            }
-                            else
-                            {
-                                vres = vaddq_f32(vres, data);
-                            }
-                        }
-                    }
-                    // Divide by scale
-                    vres = vmulq_f32(vres, scale_v);
-                }
-                else
-                {
-                    vres = vdupq_n_f32(std::numeric_limits<float>::lowest());
-                    for(int y = pool_start_y; y < pool_end_y; ++y)
-                    {
-                        for(int x = pool_start_x; x < pool_end_x; ++x)
-                        {
-                            const float32x4_t data = vld1q_f32(reinterpret_cast<const float *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
-                                                                                               (_input->info()->strides_in_bytes().z())) + x_off);
-                            vres                   = vmaxq_f32(vres, data);
-                        }
-                    }
-                }
-
-                // Calculate square-root in case of l2 pooling
-                if(pooling_type == PoolingType::L2)
-                {
-                    float32x4_t l2_res = { static_cast<float>(sqrt(vgetq_lane_f32(vres, 0))),
-                                           static_cast<float>(sqrt(vgetq_lane_f32(vres, 1))),
-                                           static_cast<float>(sqrt(vgetq_lane_f32(vres, 2))),
-                                           static_cast<float>(sqrt(vgetq_lane_f32(vres, 3)))
-                                         };
-                    vres = l2_res;
-                }
-
-                // Store result
-                vst1q_f32(reinterpret_cast<float *>(output.ptr()) + x_off, vres);
-            }
-
-            // Left-overs loop
-            for(; x_off < window_end_x; ++x_off)
-            {
-                float res = 0.0f;
-
-                if(pooling_type != PoolingType::MAX)
-                {
-                    // Calculate scale
-                    const float scale = calculate_avg_scale(exclude_padding, DataLayout::NHWC, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
-                                                            pool_stride_y);
-
-                    for(int y = pool_start_y; y < pool_end_y; ++y)
-                    {
-                        for(int x = pool_start_x; x < pool_end_x; ++x)
-                        {
-                            const float data = *(reinterpret_cast<const float *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
-                                                                                 (_input->info()->strides_in_bytes().z())) + x_off);
-
-                            // Get power of 2 in case of l2 pooling and accumulate
-                            if(pooling_type == PoolingType::L2)
-                            {
-                                res += data * data;
-                            }
-                            else
-                            {
-                                res += data;
-                            }
-                        }
-                    }
-
-                    // Divide by scale
-                    res *= scale;
-                }
-                else
-                {
-                    res = std::numeric_limits<float>::lowest();
-                    for(int y = pool_start_y; y < pool_end_y; ++y)
-                    {
-                        for(int x = pool_start_x; x < pool_end_x; ++x)
-                        {
-                            const float data = *(reinterpret_cast<const float *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
-                                                                                 (_input->info()->strides_in_bytes().z())) + x_off);
-                            res              = std::max(res, data);
-                        }
-                    }
-                }
-
-                // Calculate square-root in case of l2 pooling
-                if(pooling_type == PoolingType::L2)
-                {
-                    res = std::sqrt(res);
-                }
-
-                // Store result
-                *(reinterpret_cast<float *>(output.ptr()) + x_off) = res;
-            }
-        },
-        input, output);
-    }
-}
-
-void NEPoolingLayerKernel::pooling2_f32_nhwc_maxpool_indices(const Window &window_input, const Window &window)
-{
-    const int window_start_x = window.x().start();
-    const int window_end_x   = window.x().end();
-    const int window_step_x  = 4;
-
-    Window window_out = window;
-    window_out.set(Window::DimX, Window::Dimension(0, 1, 1));
-
-    Iterator input(_input, window_input);
-    Iterator output(_output, window_out);
-    Iterator indices(_indices, window_out);
-
-    const int pool_pad_top  = _pool_info.pad_stride_info.pad_top();
-    const int pool_pad_left = _pool_info.pad_stride_info.pad_left();
-
-    int pool_stride_x = 0;
-    int pool_stride_y = 0;
-    std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
-
-    float32x4_t vres;
-    float       res;
-
-    const int pad_right   = _input->info()->padding().right;
-    const int in_stride_y = static_cast<int>(_input->info()->strides_in_bytes().y());
-    const int in_stride_z = static_cast<int>(_input->info()->strides_in_bytes().z());
-
-    execute_window_loop(window_out, [&](const Coordinates & id)
-    {
-        const int idx_width    = id.y() * pool_stride_x;
-        const int idx_height   = id.z() * pool_stride_y;
-        const int pool_limit_y = pool_pad_top - idx_height;
-        const int pool_limit_x = pool_pad_left - idx_width;
-
-        const int pool_start_y = std::max(0, window_input.z().start() + pool_limit_y);
-        const int pool_start_x = std::max(0, window_input.y().start() + pool_limit_x);
-
-        const int in_x0_offset = (pool_start_x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().y()) + (pool_start_y - pool_pad_top) * static_cast<int>
-                                 (_input->info()->strides_in_bytes().z());
-        const int in_x1_offset = (pool_start_x + 1 - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().y()) + (pool_start_y - pool_pad_top) * static_cast<int>
-                                 (_input->info()->strides_in_bytes().z());
-        const int in_x2_offset = (pool_start_x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().y()) + (pool_start_y + 1 - pool_pad_top) * static_cast<int>
-                                 (_input->info()->strides_in_bytes().z());
-        const int in_x3_offset = (pool_start_x + 1 - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().y()) + (pool_start_y + 1 - pool_pad_top) * static_cast<int>
-                                 (_input->info()->strides_in_bytes().z());
-
-        int x_off = window_start_x;
-        for(; x_off <= (window_end_x - window_step_x); x_off += window_step_x)
-        {
-            const auto in_x0_ptr = reinterpret_cast<const float *>(input.ptr() + in_x0_offset);
-            const auto in_x1_ptr = reinterpret_cast<const float *>(input.ptr() + in_x1_offset);
-            const auto in_x2_ptr = reinterpret_cast<const float *>(input.ptr() + in_x2_offset);
-            const auto in_x3_ptr = reinterpret_cast<const float *>(input.ptr() + in_x3_offset);
-            const auto v_x0      = vld1q_f32(in_x0_ptr + x_off);
-            const auto v_x1      = vld1q_f32(in_x1_ptr + x_off);
-            const auto v_x2      = vld1q_f32(in_x2_ptr + x_off);
-            const auto v_x3      = vld1q_f32(in_x3_ptr + x_off);
-            vres                 = vmaxq_f32(vmaxq_f32(v_x2, v_x3), vmaxq_f32(v_x0, v_x1));
-            // Store result
-            vst1q_f32(reinterpret_cast<float *>(output.ptr()) + x_off, vres);
-
-            const uint32_t   offset_base  = offset_no_padding<float>(input.offset(), id, *_input->info(), pool_stride_x, pool_stride_y);
-            const uint32_t   offset_x0    = (uint32_t)offset_base / sizeof(float) + x_off;
-            const uint32_t   offset_x1    = (uint32_t)offset_x0 + in_stride_y / sizeof(float) - pad_right;
-            const uint32_t   offset_x2    = (uint32_t)offset_x0 + in_stride_z / sizeof(float) - pad_right * _input->info()->tensor_shape()[1];
-            const uint32_t   offset_x3    = (uint32_t)offset_x2 + in_stride_y / sizeof(float) - pad_right;
-            const uint32x4_t voffset_x0   = { offset_x0, offset_x0 + 1, offset_x0 + 2, offset_x0 + 3 };
-            const uint32x4_t voffset_x1   = { offset_x1, offset_x1 + 1, offset_x1 + 2, offset_x1 + 3 };
-            const uint32x4_t voffset_x2   = { offset_x2, offset_x2 + 1, offset_x2 + 2, offset_x2 + 3 };
-            const uint32x4_t voffset_x3   = { offset_x3, offset_x3 + 1, offset_x3 + 2, offset_x3 + 3 };
-            const uint32x4_t tmp_indices0 = vbslq_u32(vcgeq_f32(v_x0, v_x1), voffset_x0, voffset_x1);
-            const uint32x4_t tmp_indices1 = vbslq_u32(vcgeq_f32(v_x2, v_x3), voffset_x2, voffset_x3);
-            const uint32x4_t tmp_indices2 = vbslq_u32(vcgeq_f32(vmaxq_f32(v_x0, v_x1), vmaxq_f32(v_x2, v_x3)), tmp_indices0, tmp_indices1);
-
-            // Store indices
-            vst1q_u32(reinterpret_cast<uint32_t *>(indices.ptr()) + x_off, tmp_indices2);
-        }
-
-        // Left-overs loop
-        for(; x_off < window_end_x; ++x_off)
-        {
-            const auto x0 = *(reinterpret_cast<const float *>(input.ptr() + in_x0_offset) + x_off);
-            const auto x1 = *(reinterpret_cast<const float *>(input.ptr() + in_x1_offset) + x_off);
-            const auto x2 = *(reinterpret_cast<const float *>(input.ptr() + in_x2_offset) + x_off);
-            const auto x3 = *(reinterpret_cast<const float *>(input.ptr() + in_x3_offset) + x_off);
-            res           = std::max(std::max(x2, x3), std::max(x0, x1));
-
-            // Store result
-            *(reinterpret_cast<float *>(output.ptr()) + x_off) = res;
-
-            const uint32_t offset_base = offset_no_padding<float>(input.offset(), id, *_input->info(), pool_stride_x, pool_stride_y);
-            const uint32_t offset_x0   = (uint32_t)offset_base / sizeof(float) + x_off;
-            const uint32_t offset_x1   = (uint32_t)offset_x0 + in_stride_y / sizeof(float) - pad_right;
-            const uint32_t offset_x2   = (uint32_t)offset_x0 + in_stride_z / sizeof(float) - pad_right * _input->info()->tensor_shape()[1];
-            const uint32_t offset_x3   = (uint32_t)offset_x2 + in_stride_y / sizeof(float) - pad_right;
-            const uint32_t tmp_idx0    = (x0 >= x1) ? offset_x0 : offset_x1;
-            const uint32_t tmp_idx1    = (x2 >= x3) ? offset_x2 : offset_x3;
-            const uint32_t tmp_idx2    = (std::max(x0, x1) >= std::max(x2, x3)) ? tmp_idx0 : tmp_idx1;
-
-            // Store indices
-            *(reinterpret_cast<uint32_t *>(indices.ptr()) + x_off) = tmp_idx2;
-        }
-    },
-    input, output, indices);
-}
-
-template <typename T>
-void NEPoolingLayerKernel::poolingMxN_q8_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding)
-{
-    Iterator input(_input, window_input);
-    Iterator output(_output, window);
-
-    /** NEON vector types */
-    using q8x8_t  = typename wrapper::traits::neon_vector<T, 8>::type;
-    using q16_t   = typename wrapper::traits::promote_t<T>;
-    using q16x8_t = typename wrapper::traits::neon_vector<q16_t, 8>::type;
-    using q32_t   = typename wrapper::traits::promote_t<q16_t>;
-    using q32x4_t = typename wrapper::traits::neon_vector<q32_t, 4>::type;
-
-    const int pool_size_x     = _pool_info.is_global_pooling ? _input->info()->tensor_shape().x() : _pool_info.pool_size.width;
-    const int pool_size_y     = _pool_info.is_global_pooling ? _input->info()->tensor_shape().y() : _pool_info.pool_size.height;
-    const int pool_pad_right  = _pool_info.pad_stride_info.pad_right();
-    const int pool_pad_top    = _pool_info.pad_stride_info.pad_top();
-    const int pool_pad_left   = _pool_info.pad_stride_info.pad_left();
-    const int pool_pad_bottom = _pool_info.pad_stride_info.pad_bottom();
-    int       pool_stride_x   = 0;
-    int       pool_stride_y   = 0;
-    std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
-    const int upper_bound_w = _input->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right);
-    const int upper_bound_h = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom);
-
-    const UniformQuantizationInfo &input_qinfo  = _input->info()->quantization_info().uniform();
-    const UniformQuantizationInfo &output_qinfo = _output->info()->quantization_info().uniform();
-
-    execute_window_loop(window, [&](const Coordinates & id)
-    {
-        T res = std::numeric_limits<T>::min();
-
-        if(pooling_type != PoolingType::MAX)
-        {
-            q32x4_t vres = wrapper::vdup_n(static_cast<q32_t>(0.f), wrapper::traits::vector_128_tag{});
-            q32_t   sres = 0;
-
-            // Calculate scale
-            const float scale = calculate_avg_scale(exclude_padding, DataLayout::NCHW, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
-
-            // Perform pooling
-            for(int y = 0; y < pool_size_y; ++y)
-            {
-                int x = 0;
-                for(; x <= (pool_size_x - 8); x += 8)
-                {
-                    const q8x8_t data = wrapper::vload(reinterpret_cast<const T *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().x()) + (y - pool_pad_top) * static_cast<int>
-                                                                                   (_input->info()->strides_in_bytes().y())));
-
-                    const q16x8_t data_q16 = wrapper::vmovl(data);
-                    vres                   = wrapper::vadd(vres, wrapper::vaddl(wrapper::vgethigh(data_q16), wrapper::vgetlow(data_q16)));
-                }
-
-                // Leftover for loop
-                for(; x < pool_size_x; ++x)
-                {
-                    T data = *(reinterpret_cast<const T *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().x()) + (y - pool_pad_top) * static_cast<int>
-                                                           (_input->info()->strides_in_bytes().y())));
-                    sres += data;
-                }
-            }
-
-            // Reduction
-            const auto tmp = wrapper::vpadd(wrapper::vgethigh(vres), wrapper::vgetlow(vres));
-            sres += wrapper::vgetlane(tmp, 0) + wrapper::vgetlane(tmp, 1);
-
-            // Divide by scale
-            res = static_cast<T>(support::cpp11::round(sres * scale));
-        }
-        else
-        {
-            q8x8_t vres = wrapper::vdup_n(std::numeric_limits<T>::min(), wrapper::traits::vector_64_tag{});
-
-            for(int y = 0; y < pool_size_y; ++y)
-            {
-                int x = 0;
-                for(; x <= (pool_size_x - 8); x += 8)
-                {
-                    const q8x8_t data = wrapper::vload(reinterpret_cast<const T *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().x()) + (y - pool_pad_top) * static_cast<int>
-                                                                                   (_input->info()->strides_in_bytes().y())));
-                    vres              = wrapper::vmax(vres, data);
-                }
-                // Leftover for loop
-                for(; x < pool_size_x; ++x)
-                {
-                    const T data = *(reinterpret_cast<const T *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().x()) + (y - pool_pad_top) * static_cast<int>
-                                                                 (_input->info()->strides_in_bytes().y())));
-                    res          = std::max(res, data);
-                }
-            }
-
-            // Reduce max
-            vres = wrapper::vpmax(vres, vres);
-            vres = wrapper::vpmax(vres, vres);
-            vres = wrapper::vpmax(vres, vres);
-
-            // Get max value
-            res = std::max(res, wrapper::vgetlane(vres, 0));
-        }
-        // Store result
-        res                                    = (input_qinfo != output_qinfo) ? Qasymm8QuantizationHelper<T>::quantize(Qasymm8QuantizationHelper<T>::dequantize(res, input_qinfo), output_qinfo) : res;
-        *(reinterpret_cast<T *>(output.ptr())) = res;
-    },
-    input, output);
-}
-
-template <typename T>
-void NEPoolingLayerKernel::poolingMxN_q8_nhwc(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding)
-{
-    const int window_start_x     = window.x().start();
-    const int window_end_x       = window.x().end();
-    const int window_step_x      = 16;
-    const int window_half_step_x = window_step_x / 2;
-
-    Window window_out = window;
-    window_out.set(Window::DimX, Window::Dimension(0, 1, 1));
-
-    Iterator input(_input, window_input);
-    Iterator output(_output, window_out);
-
-    using q8x8_t  = typename wrapper::traits::neon_vector<T, 8>::type;
-    using q8x16_t = typename wrapper::traits::neon_vector<T, 16>::type;
-    using q16_t   = typename wrapper::traits::promote_t<T>;
-    using q16x8_t = typename wrapper::traits::neon_vector<q16_t, 8>::type;
-    using q32_t   = typename wrapper::traits::promote_t<q16_t>;
-    using q32x4_t = typename wrapper::traits::neon_vector<q32_t, 4>::type;
-
-    const int pool_size_x     = _pool_info.is_global_pooling ? _input->info()->tensor_shape().y() : _pool_info.pool_size.width;
-    const int pool_size_y     = _pool_info.is_global_pooling ? _input->info()->tensor_shape().z() : _pool_info.pool_size.height;
-    const int pool_pad_right  = _pool_info.pad_stride_info.pad_right();
-    const int pool_pad_top    = _pool_info.pad_stride_info.pad_top();
-    const int pool_pad_left   = _pool_info.pad_stride_info.pad_left();
-    const int pool_pad_bottom = _pool_info.pad_stride_info.pad_bottom();
-
-    int pool_stride_x = 0;
-    int pool_stride_y = 0;
-    std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
-    const int upper_bound_w = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_right);
-    const int upper_bound_h = _input->info()->dimension(2) + (exclude_padding ? 0 : pool_pad_bottom);
-
-    const float32x4_t             half_scale_v = vdupq_n_f32(0.5f);
-    const UniformQuantizationInfo input_qinfo  = _input->info()->quantization_info().uniform();
-    const UniformQuantizationInfo output_qinfo = _output->info()->quantization_info().uniform();
-
-    const float quant_rescale = output_qinfo.scale / input_qinfo.scale;
-    // "new_offset" doesn't have to consider the "half_scale_v" in its computation
-    // With a requantization performed in a single step there won't be uncertainties introduced
-    const int32_t new_offset = output_qinfo.offset - static_cast<int32_t>(static_cast<float>(input_qinfo.offset) / quant_rescale);
-
-    const float                   requant_scale  = output_qinfo.scale / input_qinfo.scale;
-    const int32_t                 requant_offset = output_qinfo.offset - static_cast<int32_t>(static_cast<float>(input_qinfo.offset) / requant_scale);
-    const UniformQuantizationInfo requant_qinfo  = UniformQuantizationInfo(requant_scale, requant_offset);
-
-    execute_window_loop(window_out, [&](const Coordinates & id)
-    {
-        const int idx_width    = id.y() * pool_stride_x;
-        const int idx_height   = id.z() * pool_stride_y;
-        const int pool_limit_y = pool_pad_top - idx_height;
-        const int pool_limit_x = pool_pad_left - idx_width;
-
-        const int pool_start_y = std::max(0, window_input.z().start() + pool_limit_y);
-        const int pool_end_y   = std::min(pool_size_y, window_input.z().end() + pool_limit_y);
-        const int pool_start_x = std::max(0, window_input.y().start() + pool_limit_x);
-        const int pool_end_x   = std::min(pool_size_x, window_input.y().end() + pool_limit_x);
-
-        int x_off = window_start_x;
-        for(; x_off <= (window_end_x - window_step_x); x_off += window_step_x)
-        {
-            if(pooling_type != PoolingType::MAX)
-            {
-                q32x4_t vres1 = wrapper::vdup_n(static_cast<q32_t>(0.f), wrapper::traits::vector_128_tag{});
-                q32x4_t vres2 = wrapper::vdup_n(static_cast<q32_t>(0.f), wrapper::traits::vector_128_tag{});
-                q32x4_t vres3 = wrapper::vdup_n(static_cast<q32_t>(0.f), wrapper::traits::vector_128_tag{});
-                q32x4_t vres4 = wrapper::vdup_n(static_cast<q32_t>(0.f), wrapper::traits::vector_128_tag{});
-
-                // Calculate scale
-                const float scale = calculate_avg_scale(exclude_padding, DataLayout::NHWC, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
-                                                        pool_stride_y);
-
-                // Perform pooling
-                for(int y = pool_start_y; y < pool_end_y; ++y)
-                {
-                    for(int x = pool_start_x; x < pool_end_x; ++x)
-                    {
-                        const q8x16_t data = wrapper::vloadq(reinterpret_cast<const T *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
-                                                                                         (_input->info()->strides_in_bytes().z())) + x_off);
-
-                        const q16x8_t data_q16  = wrapper::vmovl(wrapper::vgetlow(data));
-                        const q16x8_t data2_q16 = wrapper::vmovl(wrapper::vgethigh(data));
-                        vres1                   = wrapper::vadd(vres1, wrapper::vmovl(wrapper::vgetlow(data_q16)));
-                        vres2                   = wrapper::vadd(vres2, wrapper::vmovl(wrapper::vgethigh(data_q16)));
-                        vres3                   = wrapper::vadd(vres3, wrapper::vmovl(wrapper::vgetlow(data2_q16)));
-                        vres4                   = wrapper::vadd(vres4, wrapper::vmovl(wrapper::vgethigh(data2_q16)));
-                    }
-                }
-
-                if(input_qinfo != output_qinfo)
-                {
-                    const float32x4x4_t vres =
-                    {
-                        {
-                            vcvtq_f32_q32(vres1),
-                            vcvtq_f32_q32(vres2),
-                            vcvtq_f32_q32(vres3),
-                            vcvtq_f32_q32(vres4),
-                        }
-                    };
-                    const auto requantized_output = vrequantize_pooling_with_scale<q8x16_t>(vres, quant_rescale, scale, new_offset);
-                    // Store result
-                    wrapper::vstore(reinterpret_cast<T *>(output.ptr()) + x_off, wrapper::vgetlow(requantized_output));
-                    wrapper::vstore(reinterpret_cast<T *>(output.ptr()) + x_off + 8, wrapper::vgethigh(requantized_output));
-                }
-                else
-                {
-                    const float32x4_t scale_v = vdupq_n_f32(scale);
-                    // Divide by scale and add 0.5f to round to nearest instead of rounding towards zero
-                    vres1 = vcvtq_q32_f32<q32x4_t>(wrapper::vmla(half_scale_v, vcvtq_f32_q32(vres1), scale_v));
-                    vres2 = vcvtq_q32_f32<q32x4_t>(wrapper::vmla(half_scale_v, vcvtq_f32_q32(vres2), scale_v));
-                    vres3 = vcvtq_q32_f32<q32x4_t>(wrapper::vmla(half_scale_v, vcvtq_f32_q32(vres3), scale_v));
-                    vres4 = vcvtq_q32_f32<q32x4_t>(wrapper::vmla(half_scale_v, vcvtq_f32_q32(vres4), scale_v));
-
-                    const q8x8_t res1 = wrapper::vmovn(wrapper::vcombine(wrapper::vmovn(vres1), wrapper::vmovn(vres2)));
-                    const q8x8_t res2 = wrapper::vmovn(wrapper::vcombine(wrapper::vmovn(vres3), wrapper::vmovn(vres4)));
-                    // Store result
-                    wrapper::vstore(reinterpret_cast<T *>(output.ptr()) + x_off, res1);
-                    wrapper::vstore(reinterpret_cast<T *>(output.ptr()) + x_off + 8, res2);
-                }
-            }
-            else
-            {
-                q8x16_t vres = wrapper::vdup_n(std::numeric_limits<T>::min(), wrapper::traits::vector_128_tag{});
-
-                for(int y = pool_start_y; y < pool_end_y; ++y)
-                {
-                    for(int x = pool_start_x; x < pool_end_x; ++x)
-                    {
-                        const q8x16_t data = wrapper::vloadq(reinterpret_cast<const T *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
-                                                                                         (_input->info()->strides_in_bytes().z())) + x_off);
-                        vres               = wrapper::vmax(vres, data);
-                    }
-                }
-
-                // Store result
-                wrapper::vstore(reinterpret_cast<T *>(output.ptr()) + x_off, (input_qinfo != output_qinfo) ? vrequantize_pooling<q8x8_t, q8x16_t>(wrapper::vgetlow(vres), wrapper::vgethigh(vres),
-                                requant_qinfo) :
-                                vres);
-            }
-        }
-
-        if(pooling_type == PoolingType::MAX)
-        {
-            for(; x_off <= (window_end_x - window_half_step_x); x_off += window_half_step_x)
-            {
-                q8x8_t vres = wrapper::vdup_n(std::numeric_limits<T>::min(), wrapper::traits::vector_64_tag{});
-                for(int y = pool_start_y; y < pool_end_y; ++y)
-                {
-                    for(int x = pool_start_x; x < pool_end_x; ++x)
-                    {
-                        const q8x8_t data = wrapper::vload(reinterpret_cast<const T *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
-                                                                                       (_input->info()->strides_in_bytes().z())) + x_off);
-                        vres              = wrapper::vmax(vres, data);
-                    }
-                }
-
-                // Store result
-                wrapper::vstore(reinterpret_cast<T *>(output.ptr()) + x_off,
-                                (input_qinfo != output_qinfo) ? vrequantize_pooling<q8x8_t>(vres, requant_qinfo) : vres);
-            }
-        }
-
-        // Left-overs loop
-        for(; x_off < window_end_x; ++x_off)
-        {
-            if(pooling_type != PoolingType::MAX)
-            {
-                q32_t res = static_cast<q32_t>(0.f);
-
-                // Calculate scale
-                const float scale = calculate_avg_scale(exclude_padding, DataLayout::NHWC, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
-                                                        pool_stride_y);
-
-                // Perform pooling
-                for(int y = pool_start_y; y < pool_end_y; ++y)
-                {
-                    for(int x = pool_start_x; x < pool_end_x; ++x)
-                    {
-                        const T data = *(reinterpret_cast<const T *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
-                                                                     (_input->info()->strides_in_bytes().z())) + x_off);
-                        res += data;
-                    }
-                }
-
-                if(input_qinfo != output_qinfo)
-                {
-                    const float res_f              = static_cast<float>(res);
-                    const float new_scale          = quant_rescale / scale;
-                    const auto  requantized_output = quantize<T>(res_f, UniformQuantizationInfo(new_scale, new_offset));
-
-                    // Store result
-                    *(reinterpret_cast<T *>(output.ptr()) + x_off) = requantized_output;
-                }
-                else
-                {
-                    // Divide by scale and add 0.5f to round to nearest instead of rounding towards zero
-                    res = static_cast<T>(0.5f + static_cast<float>(res) * scale);
-
-                    // Store result
-                    *(reinterpret_cast<T *>(output.ptr()) + x_off) = res;
-                }
-            }
-            else
-            {
-                T res = std::numeric_limits<T>::min();
-
-                for(int y = pool_start_y; y < pool_end_y; ++y)
-                {
-                    for(int x = pool_start_x; x < pool_end_x; ++x)
-                    {
-                        const T data = *(reinterpret_cast<const T *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
-                                                                     (_input->info()->strides_in_bytes().z())) + x_off);
-                        res          = std::max(res, data);
-                    }
-                }
-
-                // Store result
-                if(input_qinfo != output_qinfo)
-                {
-                    const float res_f                              = static_cast<float>(res);
-                    *(reinterpret_cast<T *>(output.ptr()) + x_off) = quantize<T>(res_f, requant_qinfo);
-                }
-                else
-                {
-                    *(reinterpret_cast<T *>(output.ptr()) + x_off) = res;
-                }
-            }
-        }
-
-    },
-    input, output);
-}
-
-Status NEPoolingLayerKernel::validate(const ITensorInfo *input, const ITensorInfo *output, const PoolingLayerInfo &pool_info, const ITensorInfo *indices)
-{
-    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input);
-
-    unsigned int pooled_w                          = 0;
-    unsigned int pooled_h                          = 0;
-    unsigned int num_elems_processed_per_iteration = 0;
-    BorderSize   border_size(0);
-
-    const bool   is_global_pooling = pool_info.is_global_pooling;
-    unsigned int pool_size_x       = 0;
-    unsigned int pool_size_y       = 0;
-
-    // Get data layout
-    const auto data_layout = pool_info.data_layout == DataLayout::UNKNOWN ? input->data_layout() : pool_info.data_layout;
-    const int  idx_width   = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
-    const int  idx_height  = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
-
-    pool_size_x = is_global_pooling ? input->dimension(idx_width) : pool_info.pool_size.width;
-    pool_size_y = is_global_pooling ? input->dimension(idx_height) : pool_info.pool_size.height;
-
-    // Validate pool info before calling scaled_dimensions
-    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_pool_info(pool_size_x, pool_size_y));
-
-    // Check output dimensions
-    std::tie(pooled_w, pooled_h) = scaled_dimensions(input->dimension(idx_width),
-                                                     input->dimension(idx_height),
-                                                     pool_size_x,
-                                                     pool_size_y,
-                                                     pool_info.pad_stride_info);
-
-    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, output, pool_info, pooled_w, pooled_h, indices, Size2D(pool_size_x, pool_size_y)));
-    ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(), output->clone().get(),
-                                                              (indices) ? indices->clone().get() : nullptr, pool_info, num_elems_processed_per_iteration, border_size, pooled_w, pooled_h,
-                                                              pool_size_x, pool_size_y)
-                                .first);
-
-    return Status{};
-}
-
-void NEPoolingLayerKernel::run(const Window &window, const ThreadInfo &info)
-{
-    ARM_COMPUTE_UNUSED(info);
-    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
-    ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
-    ARM_COMPUTE_ERROR_ON(_func == nullptr);
-
-    const unsigned int pool_stride_x   = _pool_info.pad_stride_info.stride().first;
-    const unsigned int pool_stride_y   = _pool_info.pad_stride_info.stride().second;
-    const unsigned int pool_size       = _pool_info.pool_size.width;
-    const bool         exclude_padding = _pool_info.exclude_padding;
-
-    Window window_input(window);
-    if(_data_layout == DataLayout::NCHW)
-    {
-        // Set step for input in x and y direction for the input
-        unsigned int window_x_inc = 0;
-        switch(_input->info()->data_type())
-        {
-            case DataType::QASYMM8:
-            case DataType::QASYMM8_SIGNED:
-            {
-                window_x_inc = pool_stride_x;
-                if((pool_size == 2 || pool_size == 3) && pool_stride_x < 3)
-                {
-                    window_x_inc = (pool_stride_x == 2) ? _num_elems_processed_per_iteration * 2 : _num_elems_processed_per_iteration;
-                }
-                break;
-            }
-
-            case DataType::F16:
-            case DataType::F32:
-            {
-                window_x_inc = pool_stride_x;
-                break;
-            }
-            default:
-            {
-                ARM_COMPUTE_ERROR("Not supported");
-            }
-        }
-        window_input.set(Window::DimX, Window::Dimension(window.x().start() * pool_stride_x, window.x().end() * pool_stride_x, window_x_inc));
-        window_input.set(Window::DimY, Window::Dimension(window.y().start() * pool_stride_y, window.y().end() * pool_stride_y, pool_stride_y));
-    }
-    else
-    {
-        window_input.set(Window::DimX, Window::Dimension(0, 1, 1));
-        window_input.set(Window::DimY, Window::Dimension(0, _input->info()->dimension(1), pool_stride_x));
-        window_input.set(Window::DimZ, Window::Dimension(0, _input->info()->dimension(2), pool_stride_y));
-    }
-
-    // Run function
-    (this->*_func)(window_input, window, _pool_info.pool_type, exclude_padding);
-}
-} // namespace arm_compute
diff --git a/src/core/NEON/kernels/NEPoolingLayerKernel.h b/src/core/NEON/kernels/NEPoolingLayerKernel.h
deleted file mode 100644
index aa3d2f3..0000000
--- a/src/core/NEON/kernels/NEPoolingLayerKernel.h
+++ /dev/null
@@ -1,229 +0,0 @@
-/*
- * Copyright (c) 2017-2020 Arm Limited.
- *
- * SPDX-License-Identifier: MIT
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to
- * deal in the Software without restriction, including without limitation the
- * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- * sell copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-#ifndef ARM_COMPUTE_NEPOOLINGLAYERKERNEL_H
-#define ARM_COMPUTE_NEPOOLINGLAYERKERNEL_H
-
-#include "src/core/NEON/INEKernel.h"
-
-namespace arm_compute
-{
-class ITensor;
-
-/** Interface for the pooling layer kernel */
-class NEPoolingLayerKernel : public INEKernel
-{
-public:
-    const char *name() const override
-    {
-        return "NEPoolingLayerKernel";
-    }
-    /** Default constructor */
-    NEPoolingLayerKernel();
-    /** Prevent instances of this class from being copied (As this class contains pointers) */
-    NEPoolingLayerKernel(const NEPoolingLayerKernel &) = delete;
-    /** Prevent instances of this class from being copied (As this class contains pointers) */
-    NEPoolingLayerKernel &operator=(const NEPoolingLayerKernel &) = delete;
-    /** Allow instances of this class to be moved */
-    NEPoolingLayerKernel(NEPoolingLayerKernel &&) = default;
-    /** Allow instances of this class to be moved */
-    NEPoolingLayerKernel &operator=(NEPoolingLayerKernel &&) = default;
-    /** Default destructor */
-    ~NEPoolingLayerKernel() = default;
-    /** Set the input and output tensors.
-     *
-     * @note F16 are supported for pool sizes 2 and 3 only
-     *
-     * @param[in]  input     Source tensor. Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
-     * @param[out] output    Destination tensor. Data types supported: Same as @p input.
-     * @param[in]  pool_info Contains pooling operation information described in @ref PoolingLayerInfo.
-     * @param[out] indices   (optional) The indices of the maximal values. Data type supported: U32.
-     */
-    void configure(const ITensor *input, ITensor *output, const PoolingLayerInfo &pool_info, ITensor *indices = nullptr);
-    /** Static function to check if given info will lead to a valid configuration of @ref NEPoolingLayerKernel
-     *
-     * @note F16 are supported for pool sizes 2 and 3 only
-     *
-     * @param[in] input     Source tensor. Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
-     * @param[in] output    Destination tensor. Data types supported: Same as @p input.
-     * @param[in] pool_info Contains pooling operation information described in @ref PoolingLayerInfo.
-     * @param[in] indices   (optional) The indices of the maximal values. Data type supported: U32.
-     *
-     * @return a status
-     */
-    static Status validate(const ITensorInfo *input, const ITensorInfo *output, const PoolingLayerInfo &pool_info, const ITensorInfo *indices = nullptr);
-
-    // Inherited methods overridden:
-    void run(const Window &window, const ThreadInfo &info) override;
-    BorderSize border_size() const override;
-
-private:
-    /** Function to perform 2x2 pooling.
-     *
-     * @param[in] window_input    Input region on which to execute the kernel.
-     * @param[in] window          Output region on which to execute the kernel.
-     * @param[in] pooling_type    Pooling operation to be computed.
-     * @param[in] exclude_padding Flag to specify exclusion of padding from the operation.
-     */
-    void pooling2_f32_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding = false);
-    /** Function to perform 2x2 pooling and compute the pooling indices. The indices can be used for max unpool.
-     *
-     * @param[in] window_input Input region on which to execute the kernel.
-     * @param[in] window       Output region on which to execute the kernel.
-     */
-    void pooling2_f32_nhwc_maxpool_indices(const Window &window_input, const Window &window);
-    /** Function to perform MxN pooling for 32-bit floating point values.
-     *
-     * @param[in] window_input    Input region on which to execute the kernel.
-     * @param[in] window          Output region on which to execute the kernel.
-     * @param[in] pooling_type    Pooling operation to be computed.
-     * @param[in] exclude_padding Flag to specify exclusion of padding from the operation.
-     */
-    void poolingMxN_f32_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding = false);
-    /** Function to perform MxN pooling for 32-bit floating point values (NHWC).
-     *
-     * @param[in] window_input    Input region on which to execute the kernel.
-     * @param[in] window          Output region on which to execute the kernel.
-     * @param[in] pooling_type    Pooling operation to be computed.
-     * @param[in] exclude_padding Flag to specify exclusion of padding from the operation.
-     */
-    void poolingMxN_f32_nhwc(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding = false);
-    /** Function to perform 7x7 pooling.
-     *
-     * @param[in] window_input    Input region on which to execute the kernel.
-     * @param[in] window          Output region on which to execute the kernel.
-     * @param[in] pooling_type    Pooling operation to be computed.
-     * @param[in] exclude_padding Flag to specify exclusion of padding from the operation.
-     */
-    void pooling7_f32_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding = false);
-    /** Function to perform 3x3 pooling.
-     *
-     * @param[in] window_input    Input region on which to execute the kernel.
-     * @param[in] window          Output region on which to execute the kernel.
-     * @param[in] pooling_type    Pooling operation to be computed.
-     * @param[in] exclude_padding Flag to specify exclusion of padding from the operation.
-     */
-    void pooling3_f32_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding = false);
-    /** Function to perform 2x2 pooling for float16_t.
-     *
-     * @param[in] window_input    Input region on which to execute the kernel.
-     * @param[in] window          Output region on which to execute the kernel.
-     * @param[in] pooling_type    Pooling operation to be computed.
-     * @param[in] exclude_padding Flag to specify exclusion of padding from the operation.
-     */
-    void pooling2_f16_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding = false);
-    /** Function to perform 2x2 pooling and compute the pooling indices for FP32/FP16. The indices can be used for max unpool.
-     *
-     * @param[in] window_input Input region on which to execute the kernel.
-     * @param[in] window       Output region on which to execute the kernel.
-     */
-    template <typename T>
-    void pooling2_nchw_maxpool_indices(const Window &window_input, const Window &window);
-    /** Function to perform 2x2 pooling and compute the pooling indices. The indices can be used for max unpool.
-     *
-     * @param[in] window_input Input region on which to execute the kernel.
-     * @param[in] window       Output region on which to execute the kernel.
-     */
-    void pooling2_f16_nhwc_maxpool_indices(const Window &window_input, const Window &window);
-    /** Function to perform 3x3 pooling.
-     *
-     * @param[in] window_input    Input region on which to execute the kernel.
-     * @param[in] window          Output region on which to execute the kernel.
-     * @param[in] pooling_type    Pooling operation to be computed.
-     * @param[in] exclude_padding Flag to specify exclusion of padding from the operation.
-     */
-    void pooling3_f16_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding = false);
-    /** Function to perform MxN pooling for 16-bit floating point values.
-     *
-     * @param[in] window_input    Input region on which to execute the kernel.
-     * @param[in] window          Output region on which to execute the kernel.
-     * @param[in] pooling_type    Pooling operation to be computed.
-     * @param[in] exclude_padding Flag to specify exclusion of padding from the operation.
-     */
-    void poolingMxN_f16_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding = false);
-    /** Function to perform MxN pooling for 16-bit floating point values. (NHWC)
-     *
-     * @param[in] window_input    Input region on which to execute the kernel.
-     * @param[in] window          Output region on which to execute the kernel.
-     * @param[in] pooling_type    Pooling operation to be computed.
-     * @param[in] exclude_padding Flag to specify exclusion of padding from the operation.
-     */
-    void poolingMxN_f16_nhwc(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding = false);
-    /** Template function to perform 2x2 pooling for 8bit quantized fixed point. (NCHW)
-     *
-     * @param[in] window_input    Input region on which to execute the kernel.
-     * @param[in] window          Output region on which to execute the kernel.
-     * @param[in] pooling_type    Pooling operation to be computed.
-     * @param[in] exclude_padding Flag to specify exclusion of padding from the operation.
-     */
-    template <typename T>
-    void pooling2_q8_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding = false);
-    /** Template function to perform 3x3 pooling for 8bit quantized fixed point. (NCHW)
-     *
-     * @param[in] window_input    Input region on which to execute the kernel.
-     * @param[in] window          Output region on which to execute the kernel.
-     * @param[in] pooling_type    Pooling operation to be computed.
-     * @param[in] exclude_padding Flag to specify exclusion of padding from the operation.
-     */
-    template <typename T>
-    void pooling3_q8_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding = false);
-    /** Template function to perform MxN pooling for 8-bit quantized. (NCHW)
-     *
-     * @param[in] window_input    Input region on which to execute the kernel.
-     * @param[in] window          Output region on which to execute the kernel.
-     * @param[in] pooling_type    Pooling operation to be computed.
-     * @param[in] exclude_padding Flag to specify exclusion of padding from the operation.
-     */
-    template <typename T>
-    void poolingMxN_q8_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding = false);
-    /** Template function to perform MxN pooling for 8-bit quantized. (NHWC)
-     *
-     * @param[in] window_input    Input region on which to execute the kernel.
-     * @param[in] window          Output region on which to execute the kernel.
-     * @param[in] pooling_type    Pooling operation to be computed.
-     * @param[in] exclude_padding Flag to specify exclusion of padding from the operation.
-     */
-    template <typename T>
-    void poolingMxN_q8_nhwc(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding = false);
-    /** Common signature for all the specialised Pooling functions
-     *
-     * @param[in] window_input    Input region on which to execute the kernel.
-     * @param[in] window          Output region on which to execute the kernel.
-     * @param[in] pooling_type    Pooling operation to be computed.
-     * @param[in] exclude_padding Flag to specify exclusion of padding from the operation.
-     */
-    using PoolingFunction = void (NEPoolingLayerKernel::*)(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding);
-
-private:
-    PoolingFunction  _func;
-    const ITensor   *_input;
-    ITensor         *_output;
-    ITensor         *_indices;
-    PoolingLayerInfo _pool_info;
-    DataLayout       _data_layout;
-    unsigned int     _num_elems_processed_per_iteration;
-    BorderSize       _border_size;
-    bool             _is_square;
-};
-} // namespace arm_compute
-#endif /*ARM_COMPUTE_NEPOOLINGLAYERKERNEL_H */
diff --git a/src/core/NEON/kernels/assembly/NEPoolingAssemblyWrapperKernel.cpp b/src/core/NEON/kernels/assembly/NEPoolingAssemblyWrapperKernel.cpp
deleted file mode 100644
index 0440666..0000000
--- a/src/core/NEON/kernels/assembly/NEPoolingAssemblyWrapperKernel.cpp
+++ /dev/null
@@ -1,269 +0,0 @@
-/*
- * Copyright (c) 2021 Arm Limited.
- *
- * SPDX-License-Identifier: MIT
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to
- * deal in the Software without restriction, including without limitation the
- * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- * sell copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-#include "src/core/NEON/kernels/assembly/NEPoolingAssemblyWrapperKernel.h"
-#include "arm_compute/core/Utils.h"
-#include "arm_compute/core/Validate.h"
-#include "arm_compute/core/utils/misc/ShapeCalculator.h"
-#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
-#include "src/core/CPP/Validate.h"
-#include "src/core/helpers/AutoConfiguration.h"
-#include "src/core/helpers/WindowHelpers.h"
-
-#include <arm_neon.h>
-
-namespace arm_compute
-{
-using namespace arm_compute::misc::shape_calculator;
-
-void NEPoolingAssemblyWrapperKernel::configure(const ITensorInfo *input, ITensorInfo *output, const PoolingLayerInfo &info, const CPUInfo &cpu_info)
-{
-    ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
-
-    // Output initialization if not yet initialized
-    auto_init_if_empty(*output, input->clone()->set_tensor_shape(compute_pool_shape(*input, info)));
-
-    const bool requantize = input->quantization_info() != output->quantization_info();
-
-    switch(input->data_type())
-    {
-        case DataType::QASYMM8:
-            if(requantize)
-            {
-                create_arm_pooling_requant<uint8_t, uint8_t>(input, output, info, cpu_info);
-            }
-            else
-            {
-                create_arm_pooling<uint8_t, uint8_t>(input, output, info, cpu_info);
-            }
-            break;
-        case DataType::QASYMM8_SIGNED:
-            if(requantize)
-            {
-                create_arm_pooling_requant<int8_t, int8_t>(input, output, info, cpu_info);
-            }
-            else
-            {
-                create_arm_pooling<int8_t, int8_t>(input, output, info, cpu_info);
-            }
-            break;
-#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
-        case DataType::F16:
-            create_arm_pooling<float16_t, float16_t>(input, output, info, cpu_info);
-            break;
-#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
-        case DataType::F32:
-            create_arm_pooling<float, float>(input, output, info, cpu_info);
-            break;
-        default:
-            break;
-    }
-
-    Window win = calculate_max_window(*output, Steps());
-    INEKernel::configure(win);
-}
-
-Status NEPoolingAssemblyWrapperKernel::validate(const ITensorInfo *input, const ITensorInfo *output, const PoolingLayerInfo &info)
-{
-    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output);
-
-#ifndef __aarch64__
-    ARM_COMPUTE_RETURN_ERROR_MSG("32-bit is not supported by assembly kernels");
-#endif /* __aarch64__ */
-    ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input);
-    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F16, DataType::F32);
-    ARM_COMPUTE_RETURN_ERROR_ON_MSG((input->data_layout() != DataLayout::NHWC) || (info.data_layout != DataLayout::NHWC), "Only NHWC is supported by assembly kernels");
-    ARM_COMPUTE_RETURN_ERROR_ON_MSG((info.pool_type != PoolingType::AVG) && (info.pool_type != PoolingType::MAX),
-                                    "Only AVG and MAX pooling are supported by assembly kernels");
-
-    if(output->total_size() > 0)
-    {
-        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
-
-        const auto input_qinfo  = input->quantization_info().uniform();
-        const auto output_qinfo = output->quantization_info().uniform();
-
-        if(input_qinfo != output_qinfo)
-        {
-            const float multiplier = input_qinfo.scale / output_qinfo.scale;
-            int32_t     output_multiplier{};
-            int32_t     output_shift{};
-            ARM_COMPUTE_RETURN_ERROR_ON(quantization::calculate_quantized_multiplier(multiplier, &output_multiplier, &output_shift));
-        }
-        else
-        {
-            if(input->data_type() == DataType::QASYMM8)
-            {
-                const bool has_padding = info.pad_stride_info.has_padding();
-                ARM_COMPUTE_RETURN_ERROR_ON_MSG(!info.exclude_padding && has_padding, "Assembly kernels do not support padding for QASYMM8 with same input/output quantization info");
-            }
-        }
-    }
-    else
-    {
-        if(input->data_type() == DataType::QASYMM8)
-        {
-            // If output is not configured, the quantization info are the same
-            const bool has_padding = info.pad_stride_info.has_padding();
-            ARM_COMPUTE_RETURN_ERROR_ON_MSG(!info.exclude_padding && has_padding, "Assembly kernels do not support padding for QASYMM8 with same input/output quantization info");
-        }
-    }
-    return Status{};
-}
-
-void NEPoolingAssemblyWrapperKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
-{
-    ARM_COMPUTE_ERROR_ON_NULLPTR(_kernel_asm.get());
-    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
-    ARM_COMPUTE_UNUSED(window);
-    ARM_COMPUTE_UNUSED(info);
-
-    ARM_COMPUTE_ERROR_ON(tensors.empty());
-
-    const ITensor *input     = tensors.get_const_tensor(TensorType::ACL_SRC);
-    ITensor       *output    = tensors.get_tensor(TensorType::ACL_DST_0);
-    ITensor       *workspace = tensors.get_tensor(TensorType::ACL_DST_1);
-
-    const auto in_ptr        = input->buffer() + input->info()->offset_first_element_in_bytes();
-    auto       out_ptr       = output->buffer() + output->info()->offset_first_element_in_bytes();
-    auto       working_space = workspace->buffer() + workspace->info()->offset_first_element_in_bytes();
-
-    const auto input_shape    = input->info()->tensor_shape();
-    const auto output_shape   = output->info()->tensor_shape();
-    const auto input_padding  = input->info()->padding();
-    const auto output_padding = output->info()->padding();
-
-    const size_t ld_input_col    = input_shape[0] + input_padding.left + input_padding.right;
-    const size_t ld_input_row    = ld_input_col * (input_shape[1] + input_padding.top + input_padding.bottom);
-    const size_t ld_input_batch  = ld_input_row * input_shape[2];
-    const size_t ld_output_col   = output_shape[0] + output_padding.right;
-    const size_t ld_output_row   = ld_output_col * (output_shape[1] + output_padding.top + output_padding.bottom);
-    const size_t ld_output_batch = ld_output_row * output_shape[2];
-
-    _kernel_asm->execute(in_ptr, ld_input_col, ld_input_row, ld_input_batch,
-                         out_ptr, ld_output_col, ld_output_row, ld_output_batch,
-                         working_space, info.thread_id, info.num_threads);
-}
-
-size_t NEPoolingAssemblyWrapperKernel::get_working_size(unsigned int num_threads) const
-{
-    return _kernel_asm->get_working_size(num_threads);
-}
-
-bool NEPoolingAssemblyWrapperKernel::is_configured() const
-{
-    return _kernel_asm != nullptr;
-}
-
-template <typename TypeInput, typename TypeOutput>
-void NEPoolingAssemblyWrapperKernel::create_arm_pooling(const ITensorInfo *input, ITensorInfo *output, const PoolingLayerInfo &info, const CPUInfo &cpu_info)
-{
-    const arm_conv::pooling::PoolingType pool_type = (info.pool_type == PoolingType::AVG) ? arm_conv::pooling::PoolingType::AVERAGE : arm_conv::pooling::PoolingType::MAX;
-
-    arm_conv::pooling::PoolingWindow window{};
-    window.cols = static_cast<unsigned int>(info.pool_size.x());
-    window.rows = static_cast<unsigned int>(info.pool_size.y());
-
-    arm_conv::pooling::PoolingStride stride{};
-    std::tie(stride.cols, stride.rows) = info.pad_stride_info.stride();
-
-    const arm_conv::pooling::PaddingValues padding{ info.pad_stride_info.pad_left(), info.pad_stride_info.pad_top(), info.pad_stride_info.pad_right(), info.pad_stride_info.pad_bottom() };
-
-    constexpr unsigned int idx_width    = 1;
-    constexpr unsigned int idx_height   = 2;
-    constexpr unsigned int idx_channels = 0;
-    constexpr unsigned int idx_batches  = 3;
-
-    const unsigned int n_batches   = input->dimension(idx_batches);
-    const unsigned int input_rows  = input->dimension(idx_height);
-    const unsigned int input_cols  = input->dimension(idx_width);
-    const unsigned int n_channels  = input->dimension(idx_channels);
-    const unsigned int output_rows = output->dimension(idx_height);
-    const unsigned int output_cols = output->dimension(idx_width);
-
-    arm_conv::pooling::PoolingArgs args(&cpu_info, pool_type, window, stride, info.exclude_padding, n_batches, input_rows, input_cols, n_channels, output_rows, output_cols, padding, nullptr);
-
-    // Configure assembly pooling kernel
-    auto pooling_kernel_asm = arm_conv::pooling::pooling<TypeInput, TypeOutput>(args);
-    if(pooling_kernel_asm == nullptr)
-    {
-        // Configuration not supported: Leave function unconfigured:
-        return;
-    }
-
-    _kernel_asm = std::move(pooling_kernel_asm);
-}
-
-template <typename TypeInput, typename TypeOutput>
-void NEPoolingAssemblyWrapperKernel::create_arm_pooling_requant(const ITensorInfo *input, ITensorInfo *output, const PoolingLayerInfo &info, const CPUInfo &cpu_info)
-{
-    const arm_conv::pooling::PoolingType pool_type = (info.pool_type == PoolingType::AVG) ? arm_conv::pooling::PoolingType::AVERAGE : arm_conv::pooling::PoolingType::MAX;
-
-    arm_conv::pooling::PoolingWindow window{};
-    window.cols = static_cast<unsigned int>(info.pool_size.x());
-    window.rows = static_cast<unsigned int>(info.pool_size.y());
-
-    arm_conv::pooling::PoolingStride stride{};
-    std::tie(stride.cols, stride.rows) = info.pad_stride_info.stride();
-
-    const arm_conv::pooling::PaddingValues padding{ info.pad_stride_info.pad_left(), info.pad_stride_info.pad_top(), info.pad_stride_info.pad_right(), info.pad_stride_info.pad_bottom() };
-
-    constexpr unsigned int idx_width    = 1;
-    constexpr unsigned int idx_height   = 2;
-    constexpr unsigned int idx_channels = 0;
-    constexpr unsigned int idx_batches  = 3;
-
-    const unsigned int n_batches   = input->dimension(idx_batches);
-    const unsigned int input_rows  = input->dimension(idx_height);
-    const unsigned int input_cols  = input->dimension(idx_width);
-    const unsigned int n_channels  = input->dimension(idx_channels);
-    const unsigned int output_rows = output->dimension(idx_height);
-    const unsigned int output_cols = output->dimension(idx_width);
-
-    arm_conv::pooling::PoolingArgs args(&cpu_info, pool_type, window, stride, info.exclude_padding, n_batches, input_rows, input_cols, n_channels, output_rows, output_cols, padding, nullptr);
-
-    const auto input_qinfo  = input->quantization_info().uniform();
-    const auto output_qinfo = output->quantization_info().uniform();
-
-    const float multiplier = input_qinfo.scale / output_qinfo.scale;
-    int32_t     output_multiplier{};
-    int32_t     output_shift{};
-    quantization::calculate_quantized_multiplier(multiplier, &output_multiplier, &output_shift);
-
-    const arm_conv::pooling::Requantize32 requant_args(input_qinfo.offset,
-                                                       output_qinfo.offset,
-                                                       output_shift, // left shift
-                                                       0,            // right shift
-                                                       output_multiplier);
-
-    // Configure assembly pooling kernel with requantization
-    auto pooling_kernel_asm = arm_conv::pooling::pooling<TypeInput, TypeOutput, arm_conv::pooling::Requantize32>(args, requant_args);
-    if(pooling_kernel_asm == nullptr)
-    {
-        // Configuration not supported: Leave function unconfigured:
-        return;
-    }
-
-    _kernel_asm = std::move(pooling_kernel_asm);
-}
-} // namespace arm_compute
diff --git a/src/core/NEON/kernels/assembly/NEPoolingAssemblyWrapperKernel.h b/src/core/NEON/kernels/assembly/NEPoolingAssemblyWrapperKernel.h
deleted file mode 100644
index b2fa5b5..0000000
--- a/src/core/NEON/kernels/assembly/NEPoolingAssemblyWrapperKernel.h
+++ /dev/null
@@ -1,116 +0,0 @@
-/*
- * Copyright (c) 2021 Arm Limited.
- *
- * SPDX-License-Identifier: MIT
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to
- * deal in the Software without restriction, including without limitation the
- * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- * sell copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-#ifndef ARM_COMPUTE_ASSEMBLY_POOLING_KERNEL_WRAPPER_KERNEL_H
-#define ARM_COMPUTE_ASSEMBLY_POOLING_KERNEL_WRAPPER_KERNEL_H
-
-#include "src/core/NEON/INEKernel.h"
-#include "src/core/NEON/kernels/assembly/pooling.hpp"
-
-#include "pool_common.hpp"
-
-namespace arm_compute
-{
-class ITensor;
-
-/** This class is a wrapper for the assembly kernels.
-  *
-  * Some kernels were written in assembly and highly optimised for specific
-  * CPUs like A53 or A55. The arm compute library creates an instance of
-  * NEPoolingAssemblyWrapperKernel and other auxiliary data structures to
-  * execute a single assembly kernel in the context of an NEFunction.
-  *
-  */
-class NEPoolingAssemblyWrapperKernel final : public INEKernel
-{
-public:
-    /** Constructor
-     */
-    NEPoolingAssemblyWrapperKernel()                                  = default;
-    NEPoolingAssemblyWrapperKernel(NEPoolingAssemblyWrapperKernel &)  = delete;
-    NEPoolingAssemblyWrapperKernel(NEPoolingAssemblyWrapperKernel &&) = default;
-    NEPoolingAssemblyWrapperKernel &operator=(NEPoolingAssemblyWrapperKernel &) = delete;
-
-    const char *name() const override
-    {
-        return "NEPoolingAssemblyWrapperKernel";
-    }
-
-    /** Initialise the kernel's input and output.
-     *
-     * @param[in]  input  Input tensor. Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
-     * @param[out] output Output tensor to store the result of pooling. Data types supported: same as @p input.
-     * @param[in]  info   Pooling meta-data
-     */
-    void configure(const ITensorInfo *input, ITensorInfo *output, const PoolingLayerInfo &info, const CPUInfo &cpu_info);
-
-    /** Indicates whether or not this function can be used to process the given parameters.
-     *
-     * @param[in] input  Input tensor info. Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
-     * @param[in] output Output tensor to store the result of pooling. Data types supported: same as @p input.
-     * @param[in] info   Pooling meta-data
-     *
-     * @return a status.
-     */
-    static Status validate(const ITensorInfo *input, const ITensorInfo *output, const PoolingLayerInfo &info);
-
-    // Inherited methods overridden:
-    void run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info) override;
-
-    /** Get size of the workspace needed by the assembly kernel.
-     *
-     * @param[in] num_threads Maximum number of threads that are going to be spawned.
-     *
-     * @return size of workspace
-     */
-    size_t get_working_size(unsigned int num_threads) const;
-
-    /** Was the asm kernel successfully configured?
-     *
-     * @return True if the asm kernel is configured and ready to run
-     */
-    bool is_configured() const;
-
-private:
-    /** Helper function to create the assembly kernel.
-     *
-     * @param[in] input  Input tensor info.
-     * @param[in] output Output tensor info.
-     * @param[in] info   Pooling layer meta-data.
-     */
-    template <typename TypeInput, typename TypeOutput>
-    void create_arm_pooling(const ITensorInfo *input, ITensorInfo *output, const PoolingLayerInfo &info, const CPUInfo &cpu_info);
-
-    /** Helper function to create the assembly kernel with requantization support
-     *
-     * @param[in] input  Input tensor info.
-     * @param[in] output Output tensor info.
-     * @param[in] info   Pooling layer meta-data.
-     */
-    template <typename TypeInput, typename TypeOutput>
-    void create_arm_pooling_requant(const ITensorInfo *input, ITensorInfo *output, const PoolingLayerInfo &info, const CPUInfo &cpu_info);
-
-    std::unique_ptr<arm_conv::pooling::IPoolingCommon> _kernel_asm{ nullptr };
-};
-} // namespace arm_compute
-#endif /* ARM_COMPUTE_ASSEMBLY_POOLING_KERNEL_WRAPPER_KERNEL_H */