blob: 04406663fc025a43054e19171bf7e31d599b65e3 [file] [log] [blame]
/*
* Copyright (c) 2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "src/core/NEON/kernels/assembly/NEPoolingAssemblyWrapperKernel.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
#include "src/core/CPP/Validate.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/WindowHelpers.h"
#include <arm_neon.h>
namespace arm_compute
{
using namespace arm_compute::misc::shape_calculator;
void NEPoolingAssemblyWrapperKernel::configure(const ITensorInfo *input, ITensorInfo *output, const PoolingLayerInfo &info, const CPUInfo &cpu_info)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
// Output initialization if not yet initialized
auto_init_if_empty(*output, input->clone()->set_tensor_shape(compute_pool_shape(*input, info)));
const bool requantize = input->quantization_info() != output->quantization_info();
switch(input->data_type())
{
case DataType::QASYMM8:
if(requantize)
{
create_arm_pooling_requant<uint8_t, uint8_t>(input, output, info, cpu_info);
}
else
{
create_arm_pooling<uint8_t, uint8_t>(input, output, info, cpu_info);
}
break;
case DataType::QASYMM8_SIGNED:
if(requantize)
{
create_arm_pooling_requant<int8_t, int8_t>(input, output, info, cpu_info);
}
else
{
create_arm_pooling<int8_t, int8_t>(input, output, info, cpu_info);
}
break;
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
case DataType::F16:
create_arm_pooling<float16_t, float16_t>(input, output, info, cpu_info);
break;
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
case DataType::F32:
create_arm_pooling<float, float>(input, output, info, cpu_info);
break;
default:
break;
}
Window win = calculate_max_window(*output, Steps());
INEKernel::configure(win);
}
Status NEPoolingAssemblyWrapperKernel::validate(const ITensorInfo *input, const ITensorInfo *output, const PoolingLayerInfo &info)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output);
#ifndef __aarch64__
ARM_COMPUTE_RETURN_ERROR_MSG("32-bit is not supported by assembly kernels");
#endif /* __aarch64__ */
ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_MSG((input->data_layout() != DataLayout::NHWC) || (info.data_layout != DataLayout::NHWC), "Only NHWC is supported by assembly kernels");
ARM_COMPUTE_RETURN_ERROR_ON_MSG((info.pool_type != PoolingType::AVG) && (info.pool_type != PoolingType::MAX),
"Only AVG and MAX pooling are supported by assembly kernels");
if(output->total_size() > 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
const auto input_qinfo = input->quantization_info().uniform();
const auto output_qinfo = output->quantization_info().uniform();
if(input_qinfo != output_qinfo)
{
const float multiplier = input_qinfo.scale / output_qinfo.scale;
int32_t output_multiplier{};
int32_t output_shift{};
ARM_COMPUTE_RETURN_ERROR_ON(quantization::calculate_quantized_multiplier(multiplier, &output_multiplier, &output_shift));
}
else
{
if(input->data_type() == DataType::QASYMM8)
{
const bool has_padding = info.pad_stride_info.has_padding();
ARM_COMPUTE_RETURN_ERROR_ON_MSG(!info.exclude_padding && has_padding, "Assembly kernels do not support padding for QASYMM8 with same input/output quantization info");
}
}
}
else
{
if(input->data_type() == DataType::QASYMM8)
{
// If output is not configured, the quantization info are the same
const bool has_padding = info.pad_stride_info.has_padding();
ARM_COMPUTE_RETURN_ERROR_ON_MSG(!info.exclude_padding && has_padding, "Assembly kernels do not support padding for QASYMM8 with same input/output quantization info");
}
}
return Status{};
}
void NEPoolingAssemblyWrapperKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(_kernel_asm.get());
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_UNUSED(window);
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON(tensors.empty());
const ITensor *input = tensors.get_const_tensor(TensorType::ACL_SRC);
ITensor *output = tensors.get_tensor(TensorType::ACL_DST_0);
ITensor *workspace = tensors.get_tensor(TensorType::ACL_DST_1);
const auto in_ptr = input->buffer() + input->info()->offset_first_element_in_bytes();
auto out_ptr = output->buffer() + output->info()->offset_first_element_in_bytes();
auto working_space = workspace->buffer() + workspace->info()->offset_first_element_in_bytes();
const auto input_shape = input->info()->tensor_shape();
const auto output_shape = output->info()->tensor_shape();
const auto input_padding = input->info()->padding();
const auto output_padding = output->info()->padding();
const size_t ld_input_col = input_shape[0] + input_padding.left + input_padding.right;
const size_t ld_input_row = ld_input_col * (input_shape[1] + input_padding.top + input_padding.bottom);
const size_t ld_input_batch = ld_input_row * input_shape[2];
const size_t ld_output_col = output_shape[0] + output_padding.right;
const size_t ld_output_row = ld_output_col * (output_shape[1] + output_padding.top + output_padding.bottom);
const size_t ld_output_batch = ld_output_row * output_shape[2];
_kernel_asm->execute(in_ptr, ld_input_col, ld_input_row, ld_input_batch,
out_ptr, ld_output_col, ld_output_row, ld_output_batch,
working_space, info.thread_id, info.num_threads);
}
size_t NEPoolingAssemblyWrapperKernel::get_working_size(unsigned int num_threads) const
{
return _kernel_asm->get_working_size(num_threads);
}
bool NEPoolingAssemblyWrapperKernel::is_configured() const
{
return _kernel_asm != nullptr;
}
template <typename TypeInput, typename TypeOutput>
void NEPoolingAssemblyWrapperKernel::create_arm_pooling(const ITensorInfo *input, ITensorInfo *output, const PoolingLayerInfo &info, const CPUInfo &cpu_info)
{
const arm_conv::pooling::PoolingType pool_type = (info.pool_type == PoolingType::AVG) ? arm_conv::pooling::PoolingType::AVERAGE : arm_conv::pooling::PoolingType::MAX;
arm_conv::pooling::PoolingWindow window{};
window.cols = static_cast<unsigned int>(info.pool_size.x());
window.rows = static_cast<unsigned int>(info.pool_size.y());
arm_conv::pooling::PoolingStride stride{};
std::tie(stride.cols, stride.rows) = info.pad_stride_info.stride();
const arm_conv::pooling::PaddingValues padding{ info.pad_stride_info.pad_left(), info.pad_stride_info.pad_top(), info.pad_stride_info.pad_right(), info.pad_stride_info.pad_bottom() };
constexpr unsigned int idx_width = 1;
constexpr unsigned int idx_height = 2;
constexpr unsigned int idx_channels = 0;
constexpr unsigned int idx_batches = 3;
const unsigned int n_batches = input->dimension(idx_batches);
const unsigned int input_rows = input->dimension(idx_height);
const unsigned int input_cols = input->dimension(idx_width);
const unsigned int n_channels = input->dimension(idx_channels);
const unsigned int output_rows = output->dimension(idx_height);
const unsigned int output_cols = output->dimension(idx_width);
arm_conv::pooling::PoolingArgs args(&cpu_info, pool_type, window, stride, info.exclude_padding, n_batches, input_rows, input_cols, n_channels, output_rows, output_cols, padding, nullptr);
// Configure assembly pooling kernel
auto pooling_kernel_asm = arm_conv::pooling::pooling<TypeInput, TypeOutput>(args);
if(pooling_kernel_asm == nullptr)
{
// Configuration not supported: Leave function unconfigured:
return;
}
_kernel_asm = std::move(pooling_kernel_asm);
}
template <typename TypeInput, typename TypeOutput>
void NEPoolingAssemblyWrapperKernel::create_arm_pooling_requant(const ITensorInfo *input, ITensorInfo *output, const PoolingLayerInfo &info, const CPUInfo &cpu_info)
{
const arm_conv::pooling::PoolingType pool_type = (info.pool_type == PoolingType::AVG) ? arm_conv::pooling::PoolingType::AVERAGE : arm_conv::pooling::PoolingType::MAX;
arm_conv::pooling::PoolingWindow window{};
window.cols = static_cast<unsigned int>(info.pool_size.x());
window.rows = static_cast<unsigned int>(info.pool_size.y());
arm_conv::pooling::PoolingStride stride{};
std::tie(stride.cols, stride.rows) = info.pad_stride_info.stride();
const arm_conv::pooling::PaddingValues padding{ info.pad_stride_info.pad_left(), info.pad_stride_info.pad_top(), info.pad_stride_info.pad_right(), info.pad_stride_info.pad_bottom() };
constexpr unsigned int idx_width = 1;
constexpr unsigned int idx_height = 2;
constexpr unsigned int idx_channels = 0;
constexpr unsigned int idx_batches = 3;
const unsigned int n_batches = input->dimension(idx_batches);
const unsigned int input_rows = input->dimension(idx_height);
const unsigned int input_cols = input->dimension(idx_width);
const unsigned int n_channels = input->dimension(idx_channels);
const unsigned int output_rows = output->dimension(idx_height);
const unsigned int output_cols = output->dimension(idx_width);
arm_conv::pooling::PoolingArgs args(&cpu_info, pool_type, window, stride, info.exclude_padding, n_batches, input_rows, input_cols, n_channels, output_rows, output_cols, padding, nullptr);
const auto input_qinfo = input->quantization_info().uniform();
const auto output_qinfo = output->quantization_info().uniform();
const float multiplier = input_qinfo.scale / output_qinfo.scale;
int32_t output_multiplier{};
int32_t output_shift{};
quantization::calculate_quantized_multiplier(multiplier, &output_multiplier, &output_shift);
const arm_conv::pooling::Requantize32 requant_args(input_qinfo.offset,
output_qinfo.offset,
output_shift, // left shift
0, // right shift
output_multiplier);
// Configure assembly pooling kernel with requantization
auto pooling_kernel_asm = arm_conv::pooling::pooling<TypeInput, TypeOutput, arm_conv::pooling::Requantize32>(args, requant_args);
if(pooling_kernel_asm == nullptr)
{
// Configuration not supported: Leave function unconfigured:
return;
}
_kernel_asm = std::move(pooling_kernel_asm);
}
} // namespace arm_compute