blob: a36bd438ff38e6b739c3c9861c364f8159028db2 [file] [log] [blame]
/*
* Copyright (c) 2017 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
layout(local_size_x = LOCAL_SIZE_X, local_size_y = LOCAL_SIZE_Y, local_size_z = LOCAL_SIZE_Z) in;
#include "helpers.h"
#ifdef DATA_TYPE_FP32
precision highp float;
/** This kernel performs a direct convolution to convolve the low three dimensions
*
* @note This OpenGL ES shader works with stride_x = 1 and 2
* @note The data type must be passed at compile time using "#define DATA_TYPE_FP32"
* @note If biases are used then "define HAS_BIAS" has to be passed at compile time
*
* @param[in] src_ptr Pointer to the source tensor. Supported data types: F32
* @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
* @param[out] weights_ptr Pointer to the weights tensor. Supported data types: same as @p src_ptr
* @param[in] weights_stride_x Stride of the weights tensor in X dimension (in bytes)
* @param[in] weights_step_x weights_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] weights_stride_y Stride of the weights tensor in Y dimension (in bytes)
* @param[in] weights_step_y weights_stride_y * number of elements along y processed per workitem(in bytes)
* @param[in] weights_stride_z Stride of the weights tensor in Z dimension (in bytes)
* @param[in] weights_step_z weights_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] weights_offset_first_element_in_bytes The offset of the first element in the weights tensor
* @param[in] biases_ptr Pointer to the biases tensor. Same as @p src_ptr
* @param[in] biases_stride_x Stride of the biases tensor in X dimension (in bytes)
* @param[in] biases_step_x biases_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] biases_offset_first_element_in_bytes The offset of the first element in the biases tensor
* @param[in] weights_stride_w Stride of the weights tensor in the 4th dimension
* @param[in] weights_depth The third dimensions of the weights tensors
*/
layout(std140) uniform shader_params
{
TENSOR3D_PARAM_DECLARATION(src);
TENSOR3D_PARAM_DECLARATION(dst);
TENSOR3D_PARAM_DECLARATION(weights);
#ifdef BIAS
VECTOR_PARAM_DECLARATION(biases);
#endif /* BIAS */
uint weights_stride_w;
uint weights_depth;
};
BUFFER_DECLARATION(src, 1, float, readonly);
BUFFER_DECLARATION(dst, 2, float, writeonly);
BUFFER_DECLARATION(weights, 3, float, readonly);
#ifdef BIAS
BUFFER_DECLARATION(biases, 4, float, readonly);
#endif /* BIAS */
#define LOAD20(r, name, offset) \
r[0] = LOAD4(name, offset); \
r[1] = LOAD4(name, offset + uint(1)); \
r[2] = LOAD4(name, offset + uint(2)); \
r[3] = LOAD4(name, offset + uint(3)); \
r[4] = LOAD4(name, offset + uint(4))
/** This kernel performs a direct convolution to convolve the low three dimensions.
*
* @note The data type must be passed at compile time using "#define DATA_TYPE_FP32"
* @note If biases are used then "define HAS_BIAS" has to be passed at compile time
*
* @param[in] src_ptr Pointer to the source tensor. Supported data types: F32
* @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
* @param[in] weights_ptr Pointer to the weights tensor. Supported data types: same as @p src_ptr
* @param[in] weights_stride_x Stride of the weights tensor in X dimension (in bytes)
* @param[in] weights_step_x weights_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] weights_stride_y Stride of the weights tensor in Y dimension (in bytes)
* @param[in] weights_step_y weights_stride_y * number of elements along y processed per workitem(in bytes)
* @param[in] weights_stride_z Stride of the weights tensor in Z dimension (in bytes)
* @param[in] weights_step_z weights_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] weights_offset_first_element_in_bytes The offset of the first element in the weights tensor
* @param[in] biases_ptr Pointer to the biases tensor. Same as @p src_ptr
* @param[in] biases_stride_x Stride of the biases tensor in X dimension (in bytes)
* @param[in] biases_step_x biases_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] biases_offset_first_element_in_bytes The offset of the first element in the biases tensor
* @param[in] weights_stride_w Stride of the weights tensor in the 4th dimension
* @param[in] weights_depth The third dimensions of the weights tensors
*/
void main()
{
Image src = CONVERT_TO_IMAGE_STRUCT(src);
Tensor3D weights = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(weights);
Tensor3D dst = CONVERT_TO_TENSOR3D_STRUCT(dst);
#ifdef BIAS
Vector biases = CONVERT_TO_VECTOR_STRUCT_NO_STEP(biases);
#endif /* BIAS */
float pixels = CONVERT(0, float);
uint z_index = gl_GlobalInvocationID.z;
weights.current_offset += z_index * weights_stride_w >> 2;
float temp[5];
float temp_weight[5];
for(int d = 0; d < int(weights_depth); ++d)
{
LOAD20(temp, src, offset(src, 0, 0));
LOAD20(temp_weight, weights, tensor3D_offset(weights, 0, 0, 0));
pixels += temp[0] * temp_weight[0] + temp[1] * temp_weight[1] + temp[2] * temp_weight[2] + temp[3] * temp_weight[3] + temp[4] * temp_weight[4];
LOAD20(temp, src, offset(src, 0, 1));
LOAD20(temp_weight, weights, tensor3D_offset(weights, 0, 1, 0));
pixels += temp[0] * temp_weight[0] + temp[1] * temp_weight[1] + temp[2] * temp_weight[2] + temp[3] * temp_weight[3] + temp[4] * temp_weight[4];
LOAD20(temp, src, offset(src, 0, 2));
LOAD20(temp_weight, weights, tensor3D_offset(weights, 0, 2, 0));
pixels += temp[0] * temp_weight[0] + temp[1] * temp_weight[1] + temp[2] * temp_weight[2] + temp[3] * temp_weight[3] + temp[4] * temp_weight[4];
LOAD20(temp, src, offset(src, 0, 3));
LOAD20(temp_weight, weights, tensor3D_offset(weights, 0, 3, 0));
pixels += temp[0] * temp_weight[0] + temp[1] * temp_weight[1] + temp[2] * temp_weight[2] + temp[3] * temp_weight[3] + temp[4] * temp_weight[4];
LOAD20(temp, src, offset(src, 0, 4));
LOAD20(temp_weight, weights, tensor3D_offset(weights, 0, 4, 0));
pixels += temp[0] * temp_weight[0] + temp[1] * temp_weight[1] + temp[2] * temp_weight[2] + temp[3] * temp_weight[3] + temp[4] * temp_weight[4];
src.current_offset += (src_stride_z >> 2);
weights.current_offset += (weights_stride_z >> 2);
}
#ifdef BIAS
pixels += LOAD4(biases, vector_offset(biases, int(z_index)));
#endif /* BIAS */
STORE4(dst, CURRENT_OFFSET(dst), pixels);
}
#elif defined(DATA_TYPE_FP16)
precision mediump float;
#if defined(PROCESS_4X_1Y_1Z)
/** This kernel performs a direct convolution to convolve the low three dimensions
*
* @note This OpenGL ES shader works with stride_x = 1 and 2
* @note The data type must be passed at compile time using "#define DATA_TYPE_FP16"
* @note If biases are used then "define HAS_BIAS" has to be passed at compile time
*
* @param[in] src_ptr Pointer to the source tensor. Supported data types: F16
* @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
* @param[out] weights_ptr Pointer to the weights tensor. Supported data types: same as @p src_ptr
* @param[in] weights_stride_x Stride of the weights tensor in X dimension (in bytes)
* @param[in] weights_step_x weights_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] weights_stride_y Stride of the weights tensor in Y dimension (in bytes)
* @param[in] weights_step_y weights_stride_y * number of elements along y processed per workitem(in bytes)
* @param[in] weights_stride_z Stride of the weights tensor in Z dimension (in bytes)
* @param[in] weights_step_z weights_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] weights_offset_first_element_in_bytes The offset of the first element in the weights tensor
* @param[in] biases_ptr Pointer to the biases tensor. Same as @p src_ptr
* @param[in] biases_stride_x Stride of the biases tensor in X dimension (in bytes)
* @param[in] biases_step_x biases_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] biases_offset_first_element_in_bytes The offset of the first element in the biases tensor
* @param[in] weights_stride_w Stride of the weights tensor in the 4th dimension
* @param[in] weights_depth The third dimensions of the weights tensors
*/
layout(std140) uniform shader_params
{
TENSOR3D_PARAM_DECLARATION(src);
TENSOR3D_PARAM_DECLARATION(dst);
TENSOR3D_PARAM_DECLARATION(weights);
#ifdef BIAS
VECTOR_PARAM_DECLARATION(biases);
#endif /* BIAS */
uint weights_stride_w;
uint weights_depth;
};
BUFFER_DECLARATION(src, 1, uvec2, readonly);
BUFFER_DECLARATION(dst, 2, uvec2, writeonly);
BUFFER_DECLARATION(weights, 3, uint, readonly);
#ifdef BIAS
BUFFER_DECLARATION(biases, 4, uint, readonly);
#endif /* BIAS */
#if STRIDE_X == 1
#define LOAD_SRC(src, row) load_src_stride1(src, row)
#define CONVOLVE1x5(src, weight) convolve1x5_stride1(src, weight)
#elif STRIDE_X == 2 /* STRIDE_X == 1 */
#define LOAD_SRC(src, row) load_src_stride2(src, row)
#define CONVOLVE1x5(src, weight) convolve1x5_stride2(src, weight)
#else /* STRDIDE_X == 1 */
#error STRIDE_X larger than 2 is not supported
#endif /* STRIDE_X == 1 */
vec4[2] load_src_stride1(Image src, int row)
{
uvec2 packed[2];
vec4 ret[2];
GC_LOAD2_2D_OFFSET(packed, src, 0, row);
ret[0] = vec4(unpackHalf2x16(packed[0].x), unpackHalf2x16(packed[0].y));
ret[1] = vec4(unpackHalf2x16(packed[1].x), unpackHalf2x16(packed[1].y));
return ret;
}
vec4[3] load_src_stride2(Image src, int row)
{
uvec2 packed[3];
vec4 ret[3];
GC_LOAD3_2D_OFFSET(packed, src, 0, row);
ret[0] = vec4(unpackHalf2x16(packed[0].x), unpackHalf2x16(packed[0].y));
ret[1] = vec4(unpackHalf2x16(packed[1].x), unpackHalf2x16(packed[1].y));
ret[2] = vec4(unpackHalf2x16(packed[2].x), unpackHalf2x16(packed[2].y));
return ret;
}
vec2[3] load_weight(Tensor3D weights, int row)
{
uvec3 packed_w;
vec2 ret[3];
GC_LOAD3_3D_OFFSET(packed_w, weights, 0, row, 0);
ret[0] = vec2(unpackHalf2x16(packed_w[0]));
ret[1] = vec2(unpackHalf2x16(packed_w[1]));
ret[2] = vec2(unpackHalf2x16(packed_w[2]));
return ret;
}
vec4 convolve1x5_stride1(vec4 tmp[2], vec2 w[3])
{
vec4 src0 = tmp[0];
vec4 src1 = vec4(tmp[0].yzw, tmp[1].x);
vec4 src2 = vec4(tmp[0].zw, tmp[1].xy);
vec4 src3 = vec4(tmp[0].w, tmp[1].xyz);
vec4 src4 = tmp[1];
vec4 ret = src0 * w[0].x + src1 * w[0].y + src2 * w[1].x + src3 * w[1].y + src4 * w[2].x;
return ret;
}
vec4 convolve1x5_stride2(vec4 tmp[3], vec2 w[3])
{
vec4 src0 = vec4(tmp[0].xz, tmp[1].xz);
vec4 src1 = vec4(tmp[0].yw, tmp[1].yw);
vec4 src2 = vec4(tmp[0].z, tmp[1].xz, tmp[2].x);
vec4 src3 = vec4(tmp[0].w, tmp[1].yw, tmp[2].y);
vec4 src4 = vec4(tmp[1].x, tmp[1].z, tmp[2].xz);
vec4 ret = src0 * w[0].x + src1 * w[0].y + src2 * w[1].x + src3 * w[1].y + src4 * w[2].x;
return ret;
}
/** This kernel performs a direct convolution to convolve the low three dimensions.
*
* @note The data type must be passed at compile time using "#define DATA_TYPE_FP16"
* @note If biases are used then "define HAS_BIAS" has to be passed at compile time
*
* @param[in] src_ptr Pointer to the source tensor. Supported data types: F16
* @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
* @param[in] weights_ptr Pointer to the weights tensor. Supported data types: same as @p src_ptr
* @param[in] weights_stride_x Stride of the weights tensor in X dimension (in bytes)
* @param[in] weights_step_x weights_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] weights_stride_y Stride of the weights tensor in Y dimension (in bytes)
* @param[in] weights_step_y weights_stride_y * number of elements along y processed per workitem(in bytes)
* @param[in] weights_stride_z Stride of the weights tensor in Z dimension (in bytes)
* @param[in] weights_step_z weights_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] weights_offset_first_element_in_bytes The offset of the first element in the weights tensor
* @param[in] biases_ptr Pointer to the biases tensor. Same as @p src_ptr
* @param[in] biases_stride_x Stride of the biases tensor in X dimension (in bytes)
* @param[in] biases_step_x biases_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] biases_offset_first_element_in_bytes The offset of the first element in the biases tensor
* @param[in] weights_stride_w Stride of the weights tensor in the 4th dimension
* @param[in] weights_depth The third dimensions of the weights tensors
*/
void main()
{
Image src = GC_CONVERT_TO_IMAGE_STRUCT(src);
Tensor3D weights = GC_CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(weights);
Tensor3D dst = GC_CONVERT_TO_TENSOR3D_STRUCT(dst);
#ifdef BIAS
Vector biases = GC_CONVERT_TO_VECTOR_STRUCT_NO_STEP(biases);
#endif /* BIAS */
vec4 res = vec4(0);
vec2 w[3];
vec4 s[STRIDE_X + 1];
uvec2 packed_d;
uint z_index = gl_GlobalInvocationID.z;
weights.current_offset += z_index * weights_stride_w;
for(int d = 0; d < int(weights_depth); ++d)
{
for(int row = 0; row < 5; row++)
{
w = load_weight(weights, row);
s = LOAD_SRC(src, row);
res += CONVOLVE1x5(s, w);
}
src.current_offset += src_stride_z;
weights.current_offset += weights_stride_z;
}
#ifdef BIAS
uint packed_b;
float b;
GC_LOAD1_1D_OFFSET(packed_b, biases, z_index);
b = (z_index % uint(2) == uint(0)) ? unpackHalf2x16(packed_b).x : unpackHalf2x16(packed_b).y;
res += vec4(b);
#endif /* BIAS */
packed_d = uvec2(packHalf2x16(res.xy), packHalf2x16(res.zw));
GC_STORE1_3D_OFFSET(packed_d, dst, 0, 0, 0);
}
#elif defined(PROCESS_4X_3Y_1Z)
/** An optimized direct convolution 3x3 OpenGL ES compute shader for process 3 elements @ Y at once
*
* @note This OpenGL ES shader works with stride_x = 1 and 2
* @note The data type must be passed at compile time using "#define DATA_TYPE_FP16"
* @note If biases are used then "define HAS_BIAS" has to be passed at compile time
*
* @param[in] src_ptr Pointer to the source tensor. Supported data types: F16
* @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
* @param[out] weights_ptr Pointer to the weights tensor. Supported data types: same as @p src_ptr
* @param[in] weights_stride_x Stride of the weights tensor in X dimension (in bytes)
* @param[in] weights_step_x weights_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] weights_stride_y Stride of the weights tensor in Y dimension (in bytes)
* @param[in] weights_step_y weights_stride_y * number of elements along y processed per workitem(in bytes)
* @param[in] weights_stride_z Stride of the weights tensor in Z dimension (in bytes)
* @param[in] weights_step_z weights_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] weights_offset_first_element_in_bytes The offset of the first element in the weights tensor
* @param[in] biases_ptr Pointer to the biases tensor. Same as @p src_ptr
* @param[in] biases_stride_x Stride of the biases tensor in X dimension (in bytes)
* @param[in] biases_step_x biases_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] biases_offset_first_element_in_bytes The offset of the first element in the biases tensor
* @param[in] weights_stride_w Stride of the weights tensor in the 4th dimension
* @param[in] weights_depth The third dimensions of the weights tensors
*/
layout(std140) uniform shader_params
{
TENSOR3D_PARAM_DECLARATION(src);
TENSOR3D_PARAM_DECLARATION(dst);
TENSOR3D_PARAM_DECLARATION(weights);
#ifdef BIAS
VECTOR_PARAM_DECLARATION(biases);
#endif /* BIAS */
uint weights_stride_w;
uint weights_depth;
};
BUFFER_DECLARATION(src, 1, uvec2, readonly);
BUFFER_DECLARATION(dst, 2, uvec2, writeonly);
BUFFER_DECLARATION(weights, 3, uint, readonly);
#ifdef BIAS
BUFFER_DECLARATION(bias, 4, uint, readonly);
#endif /* BIAS */
#if STRIDE_X == 1
#define LOAD_SRC(src, row) load_src_stride1(src, row)
#define CONVOLVE1x5(src, weight) convolve1x5_stride1(src, weight)
#elif STRIDE_X == 2 /* STRIDE_X == 1 */
#define LOAD_SRC(src, row) load_src_stride2(src, row)
#define CONVOLVE1x5(src, weight) convolve1x5_stride2(src, weight)
#else /* STRDIDE_X == 1 */
#error STRIDE_X larger than 2 is not supported
#endif /* STRIDE_X == 1 */
vec4[2] load_src_stride1(Image src, int row)
{
uvec2 packed[2];
vec4 ret[2];
GC_LOAD2_2D_OFFSET(packed, src, 0, row);
ret[0] = vec4(unpackHalf2x16(packed[0].x), unpackHalf2x16(packed[0].y));
ret[1] = vec4(unpackHalf2x16(packed[1].x), unpackHalf2x16(packed[1].y));
return ret;
}
vec4[3] load_src_stride2(Image src, int row)
{
uvec2 packed[3];
vec4 ret[3];
GC_LOAD3_2D_OFFSET(packed, src, 0, row);
ret[0] = vec4(unpackHalf2x16(packed[0].x), unpackHalf2x16(packed[0].y));
ret[1] = vec4(unpackHalf2x16(packed[1].x), unpackHalf2x16(packed[1].y));
ret[2] = vec4(unpackHalf2x16(packed[2].x), unpackHalf2x16(packed[2].y));
return ret;
}
vec2[3] load_weight(Tensor3D weights, int row)
{
uvec3 packed_w;
vec2 ret[3];
GC_LOAD3_3D_OFFSET(packed_w, weights, 0, row, 0);
ret[0] = vec2(unpackHalf2x16(packed_w[0]));
ret[1] = vec2(unpackHalf2x16(packed_w[1]));
ret[2] = vec2(unpackHalf2x16(packed_w[2]));
return ret;
}
vec4 convolve1x5_stride1(vec4 tmp[2], vec2 w[3])
{
vec4 src0 = tmp[0];
vec4 src1 = vec4(tmp[0].yzw, tmp[1].x);
vec4 src2 = vec4(tmp[0].zw, tmp[1].xy);
vec4 src3 = vec4(tmp[0].w, tmp[1].xyz);
vec4 src4 = tmp[1];
vec4 ret = src0 * w[0].x + src1 * w[0].y + src2 * w[1].x + src3 * w[1].y + src4 * w[2].x;
return ret;
}
vec4 convolve1x5_stride2(vec4 tmp[3], vec2 w[3])
{
vec4 src0 = vec4(tmp[0].xz, tmp[1].xz);
vec4 src1 = vec4(tmp[0].yw, tmp[1].yw);
vec4 src2 = vec4(tmp[0].z, tmp[1].xz, tmp[2].x);
vec4 src3 = vec4(tmp[0].w, tmp[1].yw, tmp[2].y);
vec4 src4 = vec4(tmp[1].x, tmp[1].z, tmp[2].xz);
vec4 ret = src0 * w[0].x + src1 * w[0].y + src2 * w[1].x + src3 * w[1].y + src4 * w[2].x;
return ret;
}
void main()
{
Image src = GC_CONVERT_TO_IMAGE_STRUCT(src);
Tensor3D weights = GC_CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(weights);
Tensor3D dst = GC_CONVERT_TO_TENSOR3D_STRUCT(dst);
#ifdef BIAS
Vector bias = GC_CONVERT_TO_VECTOR_STRUCT_NO_STEP(bias);
#endif /* BIAS */
vec4 res[3];
vec2 w[5][3];
vec4 s[STRIDE_X + 1];
uvec2 packed_d;
uint z_index = gl_GlobalInvocationID.z;
int i;
for(i = 0; i < 3; i++)
{
res[i] = vec4(0);
}
weights.current_offset += z_index * weights_stride_w;
for(int d = 0; d < int(weights_depth); ++d)
{
// load weights once
for(int row = 0; row < 5; row++)
{
w[row] = load_weight(weights, row);
}
// 1st line
s = LOAD_SRC(src, 0);
res[0] += CONVOLVE1x5(s, w[0]);
// 2nd line
s = LOAD_SRC(src, 1);
res[0] += CONVOLVE1x5(s, w[1]);
res[1] += CONVOLVE1x5(s, w[0]);
// 3rd line
s = LOAD_SRC(src, 2);
res[0] += CONVOLVE1x5(s, w[2]);
res[1] += CONVOLVE1x5(s, w[1]);
res[2] += CONVOLVE1x5(s, w[0]);
// 4th line
s = LOAD_SRC(src, 3);
res[0] += CONVOLVE1x5(s, w[3]);
res[1] += CONVOLVE1x5(s, w[2]);
res[2] += CONVOLVE1x5(s, w[1]);
// 5th line
s = LOAD_SRC(src, 4);
res[0] += CONVOLVE1x5(s, w[4]);
res[1] += CONVOLVE1x5(s, w[3]);
res[2] += CONVOLVE1x5(s, w[2]);
// 6th line
s = LOAD_SRC(src, 5);
res[1] += CONVOLVE1x5(s, w[4]);
res[2] += CONVOLVE1x5(s, w[3]);
// 7th line
s = LOAD_SRC(src, 6);
res[2] += CONVOLVE1x5(s, w[4]);
src.current_offset += src_stride_z;
weights.current_offset += weights_stride_z;
}
#ifdef BIAS
uint packed_b;
float b;
GC_LOAD1_1D_OFFSET(packed_b, bias, z_index);
b = (z_index % uint(2) == uint(0)) ? unpackHalf2x16(packed_b).x : unpackHalf2x16(packed_b).y;
for(i = 0; i < 3; i++)
{
res[i] += vec4(b);
}
#endif /* BIAS */
for(i = 0; i < 3; i++)
{
packed_d = uvec2(packHalf2x16(res[i].xy), packHalf2x16(res[i].zw));
GC_STORE1_3D_OFFSET(packed_d, dst, 0, i, 0);
}
}
#elif defined(PROCESS_4X_3Y_2Z)
/** An optimized direct convolution 3x3 OpenGL ES compute shader for process 3 elements @ Y and 2 elements @ Z at once
*
* @note This OpenGL ES shader works with stride_x = 1 and 2
* @note The data type must be passed at compile time using "#define DATA_TYPE_FP16"
* @note If biases are used then "define HAS_BIAS" has to be passed at compile time
*
* @param[in] src_ptr Pointer to the source tensor. Supported data types: F16
* @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
* @param[out] weights_ptr Pointer to the weights tensor. Supported data types: same as @p src_ptr
* @param[in] weights_stride_x Stride of the weights tensor in X dimension (in bytes)
* @param[in] weights_step_x weights_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] weights_stride_y Stride of the weights tensor in Y dimension (in bytes)
* @param[in] weights_step_y weights_stride_y * number of elements along y processed per workitem(in bytes)
* @param[in] weights_stride_z Stride of the weights tensor in Z dimension (in bytes)
* @param[in] weights_step_z weights_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] weights_offset_first_element_in_bytes The offset of the first element in the weights tensor
* @param[in] biases_ptr Pointer to the biases tensor. Same as @p src_ptr
* @param[in] biases_stride_x Stride of the biases tensor in X dimension (in bytes)
* @param[in] biases_step_x biases_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] biases_offset_first_element_in_bytes The offset of the first element in the biases tensor
* @param[in] weights_stride_w Stride of the weights tensor in the 4th dimension
* @param[in] weights_depth The third dimensions of the weights tensors
*/
layout(std140) uniform shader_params
{
TENSOR3D_PARAM_DECLARATION(src);
TENSOR3D_PARAM_DECLARATION(dst);
TENSOR3D_PARAM_DECLARATION(weights);
#ifdef BIAS
VECTOR_PARAM_DECLARATION(biases);
#endif /* BIAS */
uint weights_stride_w;
uint weights_depth;
};
BUFFER_DECLARATION(src, 1, uvec2, readonly);
BUFFER_DECLARATION(dst, 2, uvec2, writeonly);
BUFFER_DECLARATION(weights, 3, uint, readonly);
#ifdef BIAS
BUFFER_DECLARATION(bias, 4, uint, readonly);
#endif /* BIAS */
#if STRIDE_X == 1
#define LOAD_SRC(src, row) load_src_stride1(src, row)
#define CONVOLVE1x5(src, weight) convolve1x5_stride1(src, weight)
#elif STRIDE_X == 2 /* STRIDE_X == 1 */
#define LOAD_SRC(src, row) load_src_stride2(src, row)
#define CONVOLVE1x5(src, weight) convolve1x5_stride2(src, weight)
#else /* STRDIDE_X == 1 */
#error STRIDE_X larger than 2 is not supported
#endif /* STRIDE_X == 1 */
vec4[2] load_src_stride1(Image src, int row)
{
uvec2 packed[2];
vec4 ret[2];
GC_LOAD2_2D_OFFSET(packed, src, 0, row);
ret[0] = vec4(unpackHalf2x16(packed[0].x), unpackHalf2x16(packed[0].y));
ret[1] = vec4(unpackHalf2x16(packed[1].x), unpackHalf2x16(packed[1].y));
return ret;
}
vec4[3] load_src_stride2(Image src, int row)
{
uvec2 packed[3];
vec4 ret[3];
GC_LOAD3_2D_OFFSET(packed, src, 0, row);
ret[0] = vec4(unpackHalf2x16(packed[0].x), unpackHalf2x16(packed[0].y));
ret[1] = vec4(unpackHalf2x16(packed[1].x), unpackHalf2x16(packed[1].y));
ret[2] = vec4(unpackHalf2x16(packed[2].x), unpackHalf2x16(packed[2].y));
return ret;
}
vec2[3] load_weight(Tensor3D weights, int row)
{
uvec3 packed_w;
vec2 ret[3];
GC_LOAD3_3D_OFFSET(packed_w, weights, 0, row, 0);
ret[0] = vec2(unpackHalf2x16(packed_w[0]));
ret[1] = vec2(unpackHalf2x16(packed_w[1]));
ret[2] = vec2(unpackHalf2x16(packed_w[2]));
return ret;
}
vec4 convolve1x5_stride1(vec4 tmp[2], vec2 w[3])
{
vec4 src0 = tmp[0];
vec4 src1 = vec4(tmp[0].yzw, tmp[1].x);
vec4 src2 = vec4(tmp[0].zw, tmp[1].xy);
vec4 src3 = vec4(tmp[0].w, tmp[1].xyz);
vec4 src4 = tmp[1];
vec4 ret = src0 * w[0].x + src1 * w[0].y + src2 * w[1].x + src3 * w[1].y + src4 * w[2].x;
return ret;
}
vec4 convolve1x5_stride2(vec4 tmp[3], vec2 w[3])
{
vec4 src0 = vec4(tmp[0].xz, tmp[1].xz);
vec4 src1 = vec4(tmp[0].yw, tmp[1].yw);
vec4 src2 = vec4(tmp[0].z, tmp[1].xz, tmp[2].x);
vec4 src3 = vec4(tmp[0].w, tmp[1].yw, tmp[2].y);
vec4 src4 = vec4(tmp[1].x, tmp[1].z, tmp[2].xz);
vec4 ret = src0 * w[0].x + src1 * w[0].y + src2 * w[1].x + src3 * w[1].y + src4 * w[2].x;
return ret;
}
void main()
{
Image src = GC_CONVERT_TO_IMAGE_STRUCT(src);
Tensor3D weights = GC_CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(weights);
Tensor3D dst = GC_CONVERT_TO_TENSOR3D_STRUCT(dst);
#ifdef BIAS
Vector bias = GC_CONVERT_TO_VECTOR_STRUCT_NO_STEP(bias);
#endif /* BIAS */
vec4 res[3];
vec2 w[5][3];
vec4 s[STRIDE_X + 1];
uvec2 packed_d;
uint z_index = (gl_GlobalInvocationID.z);
uint s_offset = src.current_offset;
int i, z;
weights.current_offset += z_index * weights_stride_w;
for(z = 0; z < 2; z++)
{
z_index += uint(z);
src.current_offset = s_offset;
for(i = 0; i < 3; i++)
{
res[i] = vec4(0);
}
for(int d = 0; d < int(weights_depth); ++d)
{
// load weights once
for(int row = 0; row < 5; row++)
{
w[row] = load_weight(weights, row);
}
// 1st line
s = LOAD_SRC(src, 0);
res[0] += CONVOLVE1x5(s, w[0]);
// 2nd line
s = LOAD_SRC(src, 1);
res[0] += CONVOLVE1x5(s, w[1]);
res[1] += CONVOLVE1x5(s, w[0]);
// 3rd line
s = LOAD_SRC(src, 2);
res[0] += CONVOLVE1x5(s, w[2]);
res[1] += CONVOLVE1x5(s, w[1]);
res[2] += CONVOLVE1x5(s, w[0]);
// 4th line
s = LOAD_SRC(src, 3);
res[0] += CONVOLVE1x5(s, w[3]);
res[1] += CONVOLVE1x5(s, w[2]);
res[2] += CONVOLVE1x5(s, w[1]);
// 5th line
s = LOAD_SRC(src, 4);
res[0] += CONVOLVE1x5(s, w[4]);
res[1] += CONVOLVE1x5(s, w[3]);
res[2] += CONVOLVE1x5(s, w[2]);
// 6th line
s = LOAD_SRC(src, 5);
res[1] += CONVOLVE1x5(s, w[4]);
res[2] += CONVOLVE1x5(s, w[3]);
// 7th line
s = LOAD_SRC(src, 6);
res[2] += CONVOLVE1x5(s, w[4]);
src.current_offset += src_stride_z;
weights.current_offset += weights_stride_z;
}
#ifdef BIAS
uint packed_b;
float b;
GC_LOAD1_1D_OFFSET(packed_b, bias, z_index);
b = (z_index % uint(2) == uint(0)) ? unpackHalf2x16(packed_b).x : unpackHalf2x16(packed_b).y;
for(i = 0; i < 3; i++)
{
res[i] += vec4(b);
}
#endif /* BIAS */
for(i = 0; i < 3; i++)
{
packed_d = uvec2(packHalf2x16(res[i].xy), packHalf2x16(res[i].zw));
GC_STORE1_3D_OFFSET(packed_d, dst, 0, i, 0);
}
dst.current_offset += dst_stride_z;
}
}
#elif defined(PROCESS_8X_1Y_1Z)
/** An optimized direct convolution 3x3 OpenGL ES compute shader for process 8 elements @ X at once
*
* @note This OpenGL ES shader works with stride_x = 1
* @note The data type must be passed at compile time using "#define DATA_TYPE_FP16"
* @note If biases are used then "define HAS_BIAS" has to be passed at compile time
*
* @param[in] src_ptr Pointer to the source tensor. Supported data types: F16
* @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
* @param[out] weights_ptr Pointer to the weights tensor. Supported data types: same as @p src_ptr
* @param[in] weights_stride_x Stride of the weights tensor in X dimension (in bytes)
* @param[in] weights_step_x weights_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] weights_stride_y Stride of the weights tensor in Y dimension (in bytes)
* @param[in] weights_step_y weights_stride_y * number of elements along y processed per workitem(in bytes)
* @param[in] weights_stride_z Stride of the weights tensor in Z dimension (in bytes)
* @param[in] weights_step_z weights_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] weights_offset_first_element_in_bytes The offset of the first element in the weights tensor
* @param[in] biases_ptr Pointer to the biases tensor. Same as @p src_ptr
* @param[in] biases_stride_x Stride of the biases tensor in X dimension (in bytes)
* @param[in] biases_step_x biases_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] biases_offset_first_element_in_bytes The offset of the first element in the biases tensor
* @param[in] weights_stride_w Stride of the weights tensor in the 4th dimension
* @param[in] weights_depth The third dimensions of the weights tensors
*/
layout(std140) uniform shader_params
{
TENSOR3D_PARAM_DECLARATION(src);
TENSOR3D_PARAM_DECLARATION(dst);
TENSOR3D_PARAM_DECLARATION(weights);
#ifdef BIAS
VECTOR_PARAM_DECLARATION(biases);
#endif /* BIAS */
uint weights_stride_w;
uint weights_depth;
};
BUFFER_DECLARATION(src, 1, uvec4, readonly);
BUFFER_DECLARATION(dst, 2, uvec4, writeonly);
BUFFER_DECLARATION(weights, 3, uint, readonly);
#ifdef BIAS
BUFFER_DECLARATION(bias, 4, uint, readonly);
#endif /* BIAS */
#if STRIDE_X == 1
#define LOAD_SRC(src, row) load_src_stride1(src, row)
#define CONVOLVE1x5(src, weight) convolve1x5_stride1(src, weight)
#elif STRIDE_X == 2 /* STRIDE_X == 1 */
#error stride == 2 for PROCESS_8X_1Y not implemented
#else /* STRDIDE_X == 1 */
#error STRIDE_X larger than 2 is not supported
#endif /* STRIDE_X == 1 */
vec4[3] load_src_stride1(Image src, int row)
{
uvec4 packed[2];
vec4 ret[3];
GC_LOAD2_2D_OFFSET(packed, src, 0, row);
ret[0] = vec4(unpackHalf2x16(packed[0].x), unpackHalf2x16(packed[0].y));
ret[1] = vec4(unpackHalf2x16(packed[0].z), unpackHalf2x16(packed[0].w));
ret[2] = vec4(unpackHalf2x16(packed[1].x), unpackHalf2x16(packed[1].y));
return ret;
}
vec2[3] load_weight(Tensor3D weights, int row)
{
uvec3 packed_w;
vec2 ret[3];
GC_LOAD3_3D_OFFSET(packed_w, weights, 0, row, 0);
ret[0] = vec2(unpackHalf2x16(packed_w[0]));
ret[1] = vec2(unpackHalf2x16(packed_w[1]));
ret[2] = vec2(unpackHalf2x16(packed_w[2]));
return ret;
}
vec4[2] convolve1x5_stride1(vec4 tmp[3], vec2 w[3])
{
vec4 src0 = tmp[0];
vec4 src1 = vec4(tmp[0].yzw, tmp[1].x);
vec4 src2 = vec4(tmp[0].zw, tmp[1].xy);
vec4 src3 = vec4(tmp[0].w, tmp[1].xyz);
vec4 src4 = tmp[1];
vec4 ret[2];
ret[0] = src0 * w[0].x + src1 * w[0].y + src2 * w[1].x + src3 * w[1].y + src4 * w[2].x;
src0 = tmp[1];
src1 = vec4(tmp[1].yzw, tmp[2].x);
src2 = vec4(tmp[1].zw, tmp[2].xy);
src3 = vec4(tmp[1].w, tmp[2].xyz);
src4 = tmp[2];
ret[1] = src0 * w[0].x + src1 * w[0].y + src2 * w[1].x + src3 * w[1].y + src4 * w[2].x;
return ret;
}
void main()
{
Image src = GC_CONVERT_TO_IMAGE_STRUCT(src);
Tensor3D weights = GC_CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(weights);
Tensor3D dst = GC_CONVERT_TO_TENSOR3D_STRUCT(dst);
#ifdef BIAS
Vector bias = GC_CONVERT_TO_VECTOR_STRUCT_NO_STEP(bias);
#endif /* BIAS */
vec4 res[2];
vec2 w[3];
vec4 s[STRIDE_X + 2];
uvec4 packed_d;
uint z_index = gl_GlobalInvocationID.z;
res[0] = vec4(0);
res[1] = vec4(0);
weights.current_offset += z_index * weights_stride_w;
for(int d = 0; d < int(weights_depth); ++d)
{
for(int row = 0; row < 5; row++)
{
w = load_weight(weights, row);
s = LOAD_SRC(src, row);
res[0] += CONVOLVE1x5(s, w)[0];
res[1] += CONVOLVE1x5(s, w)[1];
}
src.current_offset += src_stride_z;
weights.current_offset += weights_stride_z;
}
#ifdef BIAS
uint packed_b;
float b;
GC_LOAD1_1D_OFFSET(packed_b, bias, z_index);
b = (z_index % uint(2) == uint(0)) ? unpackHalf2x16(packed_b).x : unpackHalf2x16(packed_b).y;
res[0] += vec4(b);
res[1] += vec4(b);
#endif /* BIAS */
packed_d.xy = uvec2(packHalf2x16(res[0].xy), packHalf2x16(res[0].zw));
packed_d.zw = uvec2(packHalf2x16(res[1].xy), packHalf2x16(res[1].zw));
GC_STORE1_3D_OFFSET(packed_d, dst, 0, 0, 0);
}
#else /* defined(PROCESS_4X_1Y_1Z) */
#endif /* defined(PROCESS_4X_1Y_1Z) */
#else /* DATA_TYPE_FP16 */
#error Data type not supported
#endif /* DATA_TYPE_FP16 */