blob: 27e4e8d411b662bc317095056803af1632fe64c1 [file] [log] [blame]
/*
* Copyright (c) 2017-2018 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#pragma once
#include <assert.h>
#include <stdio.h>
#include <algorithm>
#include "arm_gemm.hpp"
#include "utils.hpp"
#include "buffer_manager.hpp"
#include "mergeresults.hpp"
#include "profiler.hpp"
#include "transform.hpp"
// Some macros used to decide how much working space to allocate.
// Round allocations up to the next cache line.
#define ALLOC_ROUND 64
#define ROUND_UP(x) ((((x) + ALLOC_ROUND - 1) / ALLOC_ROUND) * ALLOC_ROUND)
// Implementation of the GemmCommon abstract class.
//
// This implementation interleaves the source matrices in blocks - good for
// larger matrices.
namespace arm_gemm
{
template <typename strategy, typename To, typename Tr>
class GemmInterleaved : public GemmCommon<To, Tr>
{
typedef typename strategy::operand_type Toi;
typedef typename strategy::result_type Tri;
/* const properties set by constructor */
const CPUInfo *const _ci;
const unsigned int _Msize;
const unsigned int _Nsize;
const unsigned int _Ksize;
const bool _trA;
const bool _trB;
const Tr _alpha;
const Tr _beta;
const unsigned int _maxthreads;
const bool _pretransposed;
/* Blocking info */
unsigned int _k_block = 0;
unsigned int _x_block = 0;
unsigned int _Mround = 0;
/* Working space, pretransposed buffer, buffer manager */
const Toi *_B_transposed = nullptr;
BufferManager *_bm = nullptr;
void *_working_space = nullptr;
/* We will need to walk through the blocks of B in a few contexts, so
* factor that out. */
class blockwalker
{
private:
/* Loop parameters, we only block up N and K so don't worry about M. */
const unsigned int _Nsize, _Ksize, _x_block, _k_block;
/* K and X parameters for current iteration. */
unsigned int _k0 = 0, _x0 = 0;
unsigned int _index = 0;
bool _done = false;
bool _newkblock = true;
public:
blockwalker(const unsigned int K, const unsigned int k_block, const unsigned int N, const unsigned int x_block)
: _Nsize(N), _Ksize(K), _x_block(x_block), _k_block(k_block)
{
}
unsigned int xmax()
{
return std::min(_x0 + _x_block, _Nsize);
}
unsigned int kmax()
{
return std::min(_k0 + _k_block, _Ksize);
}
/* Advance to the next block, return false at the end. */
bool advance(void)
{
if(_done)
{
return false;
}
_newkblock = false;
_x0 += _x_block;
if(_x0 >= _Nsize)
{
_x0 = 0;
_k0 += _k_block;
if(_k0 >= _Ksize)
{
_done = true;
return false;
}
_newkblock = true;
}
_index++;
return true;
}
unsigned int k0(void)
{
return _k0;
}
unsigned int x0(void)
{
return _x0;
}
unsigned int index(void)
{
return _index;
}
bool done(void)
{
return _done;
}
bool newkblock(void)
{
return _newkblock;
}
};
// A working size: One of these needed, regardless of thread count. Divided according to window.
size_t get_a_working_size() const
{
return ROUND_UP(sizeof(Toi) * _k_block * _Mround);
}
// B working size: 0, 1 or 3 of these needed depending on pretransposed and threading settings.
size_t get_b_working_size() const
{
return ROUND_UP(sizeof(Toi) * _x_block * _k_block);
}
// C working size: One needed per thread.
size_t get_c_working_size() const
{
return ROUND_UP(sizeof(Tri) * _x_block * strategy::out_height);
}
// Internal execute function.
// This supports both the "pretransposed" and "standard" interfaces via the template parameter.
template <bool pretransposed>
void execute_internal(unsigned int start, unsigned int end, int threadid)
{
profiler prof;
strategy strat(_ci);
blockwalker current(_Ksize, _k_block, _Nsize, _x_block);
blockwalker next = current;
/* Compute the M values to operate on */
unsigned int m_0 = start * strategy::out_height;
unsigned int m_max = std::min(end * strategy::out_height, _Msize);
/* Make sure we've been set up correctly. */
if(pretransposed)
{
assert(_B_transposed);
}
else
{
assert(_bm);
}
assert(_working_space);
int8_t *working_space_bytes = reinterpret_cast<int8_t *>(_working_space);
// Private buffers. Treat working_space as an array of C buffers (one per thread) first, followed by the (window-divided) A buffer.
Toi *const a_panel = reinterpret_cast<Toi *>(working_space_bytes + (_maxthreads * get_c_working_size()) + (m_0 * _k_block * sizeof(Toi)));
Tri *const c_panel = reinterpret_cast<Tri *>(working_space_bytes + (threadid * get_c_working_size()));
// Shared buffers - these come either from BufferManager or _B_transposed.
const Toi *b_panel;
if(pretransposed)
{
b_panel = _B_transposed;
}
//printf("Starting GEMM loop, x_block=%d, k_block=%d\n", _x_block, _k_block);
// newkblock() is always true on the first iteration, so this will be set properly on the first loop.
int kern_k = 0;
for(; !current.done(); current.advance())
{
if(current.newkblock())
{
prof(PROFILE_PREPA, ((m_max - m_0) * (current.kmax() - current.k0()) * sizeof(Toi)), [&](void)
{
if(_trA ^ strategy::A_transpose)
{
Transform<strategy::A_interleave, strategy::A_block, true>(a_panel, this->_Aptr, this->_lda, m_0, m_max, current.k0(), current.kmax());
}
else
{
Transform<strategy::A_interleave, strategy::A_block, false>(a_panel, this->_Aptr, this->_lda, m_0, m_max, current.k0(), current.kmax());
}
});
// Figure out how many "K" the kernel will actually process.
kern_k = iceildiv(current.kmax() - current.k0(), strategy::k_unroll);
kern_k *= strat.k_unroll;
}
int bblocks = iceildiv(current.xmax() - current.x0(), strategy::out_width);
if(!pretransposed)
{
/* Look ahead to the next block and populate it if necessary.
* This avoids the populate operation becoming a bottleneck, and
* helps keep the threads synchronized (the first thread to get
* here will populate while the rest will advance).
*
* If we are running single threaded, bm->try_populate() will do
* nothing.
*/
if(next.advance())
{
_bm->try_populate(next.index(), [&](void *buffer)
{
prof(PROFILE_PREPB, (next.xmax() - next.x0()) * (next.kmax() - next.k0()) * sizeof(Toi), [&](void)
{
Toi *b_panel = reinterpret_cast<Toi *>(buffer);
if(_trB ^ strategy::B_transpose)
{
Transform<strategy::B_interleave, strategy::B_block, true>(b_panel, this->_Bptr, this->_ldb, next.x0(), next.xmax(), next.k0(), next.kmax());
}
else
{
Transform<strategy::B_interleave, strategy::B_block, false>(b_panel, this->_Bptr, this->_ldb, next.x0(), next.xmax(), next.k0(), next.kmax());
}
});
});
}
/* Get the buffer for this iteration from the BufferManager. */
b_panel = reinterpret_cast<Toi *>(_bm->get(current.index(), [&](void *bpv)
{
prof(PROFILE_PREPB, (current.xmax() - current.x0()) * (current.kmax() - current.k0()) * sizeof(Toi), [&](void)
{
Toi *b_panel = reinterpret_cast<Toi *>(bpv);
if(_trB ^ strategy::B_transpose)
{
Transform<strategy::B_interleave, strategy::B_block, true>(b_panel, this->_Bptr, this->_ldb, current.x0(), current.xmax(), current.k0(), current.kmax());
}
else
{
Transform<strategy::B_interleave, strategy::B_block, false>(b_panel, this->_Bptr, this->_ldb, current.x0(), current.xmax(), current.k0(), current.kmax());
}
});
}));
}
/* Do the actual work. */
for(unsigned int y = m_0; y < m_max; y += strategy::out_height)
{
unsigned int ymax = std::min(_Msize, y + strategy::out_height);
prof(PROFILE_KERNEL, (strategy::out_height * bblocks * strategy::out_width * kern_k), [&](void)
{
strat.kernel(a_panel + ((y - m_0) * kern_k), b_panel, c_panel, 1, bblocks, kern_k);
});
prof(PROFILE_MERGE, (strategy::out_height * bblocks * strategy::out_width * sizeof(Tr)), [&](void)
{
MergeResults<strategy::out_width, strategy::out_height>(this->_Cptr, c_panel, this->_ldc, y, ymax,
current.x0(), current.xmax(), _alpha, (current.k0() == 0 ? _beta : static_cast<Tr>(1)));
});
}
if(pretransposed)
{
b_panel += (bblocks * strat.out_width * kern_k);
}
else
{
_bm->release(current.index());
}
}
}
public:
GemmInterleaved(GemmInterleaved &) = delete;
GemmInterleaved &operator=(GemmInterleaved &) = delete;
/* Constructor */
GemmInterleaved(const CPUInfo *ci, const unsigned int M, const unsigned int N, const unsigned int K,
const bool trA, const bool trB, const Tr alpha, const Tr beta, const int maxthreads,
const bool pretransposed)
: _ci(ci), _Msize(M), _Nsize(N), _Ksize(K), _trA(trA), _trB(trB), _alpha(alpha), _beta(beta), _maxthreads(maxthreads), _pretransposed(pretransposed)
{
const unsigned int L1_size = ci->get_L1_cache_size();
const unsigned int L2_size = ci->get_L2_cache_size();
assert(maxthreads > 0);
// Work out blocking parameters
// k_block: Find out how much of the larger array can be loaded into half the cache.
// This should account for associative caches.
_k_block = (L1_size / 2) / (sizeof(Toi) * (std::max(strategy::out_width, strategy::out_height)));
// Needs to be (at least a single) multiple of the K unroll level.
_k_block /= strategy::k_unroll;
_k_block = std::max(_k_block, 1U) * strategy::k_unroll;
// Now tune to presented problem size; this is how many blocks we need.
int num_k_blocks = iceildiv(K, _k_block);
// So divide the space equally into that many blocks.
_k_block = iceildiv(K, num_k_blocks);
// And round UP to the K unroll level required.
_k_block = iceildiv(_k_block, strategy::k_unroll);
_k_block *= strategy::k_unroll;
// x_block: Work out how many rows (of length k_block) will fit in the L2
// Don't allocate more than 90% of the L2 to allow for overheads, and subtract off the L1 contents.
_x_block = (((L2_size * 9) / 10) - (_k_block * sizeof(Toi) * (strategy::out_width + strategy::out_height))) / (sizeof(Toi) * _k_block);
// Needs to be (at least a single) multiple of the kernel output width.
_x_block /= strategy::out_width;
_x_block = std::max(_x_block, 1U) * strategy::out_width;
// And tune to the presented problem size.
int num_x_blocks = iceildiv(N, _x_block);
_x_block = iceildiv(N, num_x_blocks);
_x_block = iceildiv(_x_block, strategy::out_width);
_x_block *= strategy::out_width;
// Work out the rounded size of M - needed for some buffers.
_Mround = iceildiv(M, strategy::out_height);
_Mround *= strategy::out_height;
}
// Interface implementation - Compulsory functions
// Window size: Only the last thread should do a ragged block, so dole out work in units of out_height */
unsigned int get_window_size() const override
{
// _Mround is a multiple of out_height by definition.
return _Mround / strategy::out_height;
}
// set_nthreads: pass on to buffer manager to avoid it waiting for non-existant threads.
void set_nthreads(int nthreads) override
{
if(_bm)
{
_bm->set_nthreads(nthreads);
}
}
// Execute
void execute(unsigned int start, unsigned int end, int threadid) override
{
if(_pretransposed)
{
execute_internal<true>(start, end, threadid);
}
else
{
execute_internal<false>(start, end, threadid);
}
}
// Interface implementation - working space
size_t get_working_size() const override
{
// In all cases, we need one A buffer plus a C buffer per thread.
size_t size = get_a_working_size() + (get_c_working_size() * _maxthreads);
// For pretransposed case, there is no working space needed for B.
// Otherwise, we need a BufferManager.
if(!_pretransposed)
{
size += BufferManager::get_storage_requirement(_maxthreads, get_b_working_size());
}
size += 64; // Add on a cache line extra for alignment.
return size;
}
void set_working_space(void *working_space) override
{
// Make sure everything ends up cache line aligned
int8_t *working_space_bytes = reinterpret_cast<int8_t *>(working_space);
intptr_t working_space_int = reinterpret_cast<intptr_t>(working_space);
size_t diff = 0;
if(working_space_int & 0x3F)
{
diff = 0x40 - (working_space_int & 0x3F);
}
working_space_bytes += diff;
if(_pretransposed)
{
// Pretransposed case: just set internal pointer to parameter value.
_working_space = reinterpret_cast<void *>(working_space_bytes);
}
else
{
// Otherwise, use the first part of the working space for the buffer manager.
// It's legal to call this again so don't leak a buffer manager if it already existed.
delete _bm;
_bm = new BufferManager(_maxthreads, get_b_working_size(), reinterpret_cast<void *>(working_space_bytes));
working_space_bytes += BufferManager::get_storage_requirement(_maxthreads, get_b_working_size());
_working_space = reinterpret_cast<void *>(working_space_bytes);
}
}
// Interface implementation - pretransposed
bool B_is_pretransposed() const override
{
return _pretransposed;
}
bool B_pretranspose_required() const override
{
return _pretransposed && (_B_transposed == nullptr);
}
// TODO: this could almost certainly be considerably simpler.
size_t get_B_pretransposed_array_size() const override
{
size_t total = 0;
blockwalker current(_Ksize, _k_block, _Nsize, _x_block);
do
{
/* Figure out the size of each block. */
size_t x_size = (current.xmax() - current.x0());
size_t k_size = (current.kmax() - current.k0());
/* Round sizes up as needed. */
x_size = iceildiv(x_size, strategy::out_width);
x_size *= strategy::out_width;
k_size = iceildiv(k_size, strategy::k_unroll);
k_size *= strategy::k_unroll;
total += x_size * k_size * sizeof(Toi);
}
while(current.advance());
return total;
}
void pretranspose_B_array(void *in_buffer, const To *B, const int ldb) override
{
blockwalker current(_Ksize, _k_block, _Nsize, _x_block);
Toi *buffer = reinterpret_cast<Toi *>(in_buffer);
_B_transposed = buffer;
do
{
/* Figure out the size of each block. */
size_t x_size = (current.xmax() - current.x0());
size_t k_size = (current.kmax() - current.k0());
/* Round sizes up as needed. */
x_size = iceildiv(x_size, strategy::out_width);
x_size *= strategy::out_width;
k_size = iceildiv(k_size, strategy::k_unroll);
k_size *= strategy::k_unroll;
if(_trB ^ strategy::B_transpose)
{
Transform<strategy::B_interleave, strategy::B_block, true>(buffer, B, ldb, current.x0(), current.xmax(), current.k0(), current.kmax());
}
else
{
Transform<strategy::B_interleave, strategy::B_block, false>(buffer, B, ldb, current.x0(), current.xmax(), current.k0(), current.kmax());
}
buffer += (x_size * k_size);
}
while(current.advance());
}
~GemmInterleaved() override
{
delete _bm;
}
};
} // namespace arm_gemm