blob: c676a1097815f1fdd630ebcc2a98f24f9fcbd060 [file] [log] [blame]
/*
* Copyright (c) 2017-2018 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/runtime/CL/functions/CLGEMM.h"
#include "arm_compute/core/CL/ICLTensor.h"
#include "arm_compute/core/CL/kernels/CLGEMMInterleave4x4Kernel.h"
#include "arm_compute/core/CL/kernels/CLGEMMMatrixAdditionKernel.h"
#include "arm_compute/core/CL/kernels/CLGEMMMatrixMultiplyKernel.h"
#include "arm_compute/core/CL/kernels/CLGEMMTranspose1xWKernel.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/runtime/CL/CLScheduler.h"
#include "arm_compute/runtime/ITensorAllocator.h"
using namespace arm_compute;
CLGEMM::CLGEMM(std::shared_ptr<IMemoryManager> memory_manager)
: _memory_group(std::move(memory_manager)), _interleave_kernel(), _transpose_kernel(), _mm_kernel(), _ma_kernel(), _tmp_a(), _tmp_b(), _is_interleaved_transposed(false), _run_addition(false),
_is_first_run(true), _reshape_b_only_on_first_run(false)
{
}
void CLGEMM::configure(const ICLTensor *a, const ICLTensor *b, const ICLTensor *c, ICLTensor *output, float alpha, float beta, const GEMMInfo &gemm_info)
{
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(a, 1, DataType::QS8, DataType::QS16, DataType::F16, DataType::F32);
ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(a, b, output);
ARM_COMPUTE_ERROR_ON_MSG(gemm_info.is_a_reshaped(), "Matrix A already reshaped is not supported");
ARM_COMPUTE_ERROR_ON_MSG(gemm_info.is_b_reshaped(), "Matrix B already reshaped is not supported");
if(c != nullptr)
{
ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(a, c);
ARM_COMPUTE_ERROR_ON_MSG(a->info()->dimension(1) != c->info()->dimension(1), "The C matrix must have the same number of rows as the matrix A");
ARM_COMPUTE_ERROR_ON_MSG(b->info()->dimension(0) != c->info()->dimension(0), "The C matrix must have the same number of columns as the matrix B");
ARM_COMPUTE_ERROR_ON_MSG(c->info()->dimension(0) != output->info()->dimension(0), "The C matrix must have the same number of rows as the output matrix");
ARM_COMPUTE_ERROR_ON_MSG(c->info()->dimension(1) != output->info()->dimension(1), "The C matrix must have the same number of columns as the output matrix");
}
ARM_COMPUTE_ERROR_ON_MSG(a->info()->dimension(0) != b->info()->dimension(1), "The product AB is defined only if the number of columns in A is equal to the number of rows in B");
// If the input tensor has less than 16 rows, we run a special version of GEMM without reshaping the input tensors
// For Bifrost architectures we do not reshape the input matrices
_is_interleaved_transposed = (a->info()->dimension(1) > 16 && CLScheduler::get().target() != GPUTarget::BIFROST);
// Check if we need to reshape the matrix B only on the first run
_reshape_b_only_on_first_run = gemm_info.reshape_b_only_on_first_run();
const ICLTensor *matrix_a = a;
const ICLTensor *matrix_b = b;
// Set the target for the matrix multiply kernel
_mm_kernel.set_target(CLScheduler::get().target());
if(_is_interleaved_transposed)
{
matrix_a = &_tmp_a;
matrix_b = &_tmp_b;
// _tmp_a and _tmp_b will be auto configured in _interleave_kernel and in _transpose_kernel
// Configure interleave kernel
_interleave_kernel.configure(a, &_tmp_a);
// Configure transpose kernel
_transpose_kernel.configure(b, &_tmp_b);
// Manage intermediate buffers
_memory_group.manage(&_tmp_a);
_memory_group.manage(&_tmp_b);
}
_mm_kernel.configure(matrix_a, matrix_b, output, alpha, _is_interleaved_transposed);
if(_is_interleaved_transposed)
{
// Allocate intermediate tensors
_tmp_a.allocator()->allocate();
_tmp_b.allocator()->allocate();
}
// Configure matrix addition kernel
if(beta != 0 && c != nullptr)
{
_ma_kernel.configure(c, output, beta);
_run_addition = true;
}
}
void CLGEMM::run()
{
_memory_group.acquire();
if(_is_interleaved_transposed)
{
// Run interleave kernel
CLScheduler::get().enqueue(_interleave_kernel, false);
if(_is_first_run)
{
// Run transpose kernel
CLScheduler::get().enqueue(_transpose_kernel, false);
_is_first_run = false;
}
else if(!_reshape_b_only_on_first_run)
{
// Run transpose kernel
CLScheduler::get().enqueue(_transpose_kernel, false);
}
}
// Run matrix multiply kernel
CLScheduler::get().enqueue(_mm_kernel, !_run_addition);
// Run matrix addition kernel
if(_run_addition)
{
CLScheduler::get().enqueue(_ma_kernel);
}
_memory_group.release();
}