blob: 46551553c95d46102013b1f7bb0348115eb305cc [file] [log] [blame]
/*
* Copyright (c) 2017-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "src/core/NEON/kernels/NEBatchNormalizationLayerKernel.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"
#include "src/core/CPP/Validate.h"
#include "src/core/NEON/NEFixedPoint.h"
#include "src/core/NEON/NEMath.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/WindowHelpers.h"
#include "src/core/NEON/kernels/detail/NEActivationFunctionDetail.h"
#include "src/core/NEON/wrapper/wrapper.h"
#include "src/core/NEON/kernels/batchnormalization/impl/list.h"
#include "src/core/common/Registrars.h"
#include <map>
namespace arm_compute
{
namespace
{
struct BatchNormalizationSelectorData
{
DataType dt;
const CPUInfo &ci;
};
using BatchNormalizationSelectorPtr = std::add_pointer<bool(const BatchNormalizationSelectorData &data)>::type;
using BatchNormalizationKernelPtr = std::add_pointer<void(ITensor *, ITensor *, const ITensor *, const ITensor *, const ITensor *, const ITensor *,
float, ActivationLayerInfo &, const Window &)>::type;
struct BatchNormalizationKernel
{
const char *name;
const BatchNormalizationSelectorPtr is_selected;
BatchNormalizationKernelPtr ukernel;
};
static const BatchNormalizationKernel available_kernels[] =
{
#if defined(ARM_COMPUTE_ENABLE_SVE)
{
"fp16_sve_batch_normalization",
[](const BatchNormalizationSelectorData & data) { return data.dt == DataType::F16 && data.ci.has_sve(); },
REGISTER_FP16_SVE(arm_compute::cpu::fp16_sve_batch_normalization)
},
{
"f32_sve_batch_normalization",
[](const BatchNormalizationSelectorData & data) { return data.dt == DataType::F32 && data.ci.has_sve(); },
REGISTER_FP32_SVE(arm_compute::cpu::fp32_sve_batch_normalization)
},
#endif /* !defined(ARM_COMPUTE_ENABLE_SVE) */
#if defined(ARM_COMPUTE_ENABLE_NEON)
#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
{
"fp16_neon_batch_normalization",
[](const BatchNormalizationSelectorData & data) { return data.dt == DataType::F16; },
REGISTER_FP16_NEON(arm_compute::cpu::fp16_neon_batch_normalization)
},
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
{
"f32_neon_batch_normalization",
[](const BatchNormalizationSelectorData & data) { return data.dt == DataType::F32; },
REGISTER_FP32_NEON(arm_compute::cpu::fp32_neon_batch_normalization)
},
#endif /* !defined(ARM_COMPUTE_ENABLE_NEON) */
};
const BatchNormalizationKernel *get_implementation(const BatchNormalizationSelectorData &data)
{
for(const auto &uk : available_kernels)
{
if(uk.is_selected(data))
{
return &uk;
}
}
return nullptr;
}
Status
validate_arguments(const ITensorInfo *input, const ITensorInfo *output, const ITensorInfo *mean, const ITensorInfo *var,
const ITensorInfo *beta, const ITensorInfo *gamma, float epsilon, ActivationLayerInfo act_info)
{
ARM_COMPUTE_UNUSED(epsilon);
const auto *uk = get_implementation(BatchNormalizationSelectorData{ input->data_type(), CPUInfo::get() });
ARM_COMPUTE_RETURN_ERROR_ON(uk == nullptr || uk->ukernel == nullptr);
if(act_info.enabled())
{
ActivationLayerInfo::ActivationFunction act = act_info.activation();
ARM_COMPUTE_RETURN_ERROR_ON(act != ActivationLayerInfo::ActivationLayerInfo::ActivationFunction::RELU
&& act != ActivationLayerInfo::ActivationLayerInfo::ActivationFunction::BOUNDED_RELU
&& act != ActivationLayerInfo::ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU);
ARM_COMPUTE_RETURN_ERROR_ON(act_info.b() > act_info.a());
}
if(nullptr != output)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input, output);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
}
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, mean, var);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(mean, var);
if(beta != nullptr)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, beta);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(mean, beta);
}
if(gamma != nullptr)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, gamma);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(mean, gamma);
}
ARM_COMPUTE_RETURN_ERROR_ON(input->dimension(get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::CHANNEL)) != mean->dimension(0));
return Status{};
}
} //namespace
template <typename T, bool fused_activation, typename F>
void NEBatchNormalizationLayerKernel::batch_normalization_nchw(const Window &window)
{
/** SIMD vector tag type. */
using ExactTagType = typename wrapper::traits::neon_bitvector_tag_t<T, wrapper::traits::BitWidth::W128>;
const int window_step_x = 16 / sizeof(T);
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
Window win_to_use = window;
win_to_use.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator input(_input, win_to_use);
Iterator output(_output, win_to_use);
F activation_functor(_act_info);
// Hold information about the current feature map we are iterating.
// Only compute denominator and constants once per feature map.
int slice = -1;
const auto input_mean = reinterpret_cast<const T *>(_mean->ptr_to_element(Coordinates(0, 0)));
const auto input_var = reinterpret_cast<const T *>(_var->ptr_to_element(Coordinates(0, 0)));
const auto input_gamma = (_gamma != nullptr) ? reinterpret_cast<const T *>(_gamma->ptr_to_element(Coordinates(0, 0))) : nullptr;
const auto input_beta = (_beta != nullptr) ? reinterpret_cast<const T *>(_beta->ptr_to_element(Coordinates(0, 0))) : nullptr;
T mean = static_cast<T>(0);
T var = static_cast<T>(0);
T gamma = static_cast<T>(1);
T beta = static_cast<T>(0);
T denominator = static_cast<T>(0);
auto mean_vec = wrapper::vdup_n(mean, ExactTagType{});
auto var_vec = wrapper::vdup_n(var, ExactTagType{});
auto gamma_vec = wrapper::vdup_n(gamma, ExactTagType{});
auto beta_vec = wrapper::vdup_n(beta, ExactTagType{});
auto denominator_vec = wrapper::vdup_n(denominator, ExactTagType{});
const auto epsilon_vec = wrapper::vdup_n(static_cast<T>(_epsilon), ExactTagType{});
execute_window_loop(win_to_use, [&](const Coordinates & id)
{
const auto input_ptr = reinterpret_cast<const T *>(input.ptr());
const auto output_ptr = reinterpret_cast<T *>(output.ptr());
if(slice != id.z())
{
mean = input_mean[id.z()];
var = input_var[id.z()];
mean_vec = wrapper::vdup_n(mean, ExactTagType{});
var_vec = wrapper::vdup_n(var, ExactTagType{});
if(input_gamma != nullptr)
{
gamma = input_gamma[id.z()];
gamma_vec = wrapper::vdup_n(gamma, ExactTagType{});
}
if(input_beta != nullptr)
{
beta = input_beta[id.z()];
beta_vec = wrapper::vdup_n(beta, ExactTagType{});
}
// Calculate denominator
denominator_vec = wrapper::vinvsqrt(wrapper::vadd(var_vec, epsilon_vec));
denominator = wrapper::vgetlane(denominator_vec, 0);
slice = id.z();
}
// Perform core calculations using vector operations
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
// Calculate x bar
const auto numerator = wrapper::vsub(wrapper::vloadq(input_ptr + x), mean_vec);
const auto x_bar = wrapper::vmul(numerator, denominator_vec);
auto res = wrapper::vmla(beta_vec, x_bar, gamma_vec);
// Perform fused activation
if(fused_activation)
{
activation_functor(res);
}
// Store results
wrapper::vstore(output_ptr + x, res);
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
const T numerator = input_ptr[x] - mean;
const T x_bar = numerator * denominator;
T res = beta + x_bar * gamma;
// Perform fused activation
if(fused_activation)
{
activation_functor(res);
}
// Store results
*(output_ptr + x) = res;
}
},
input, output);
}
void NEBatchNormalizationLayerKernel::configure_non_fused()
{
switch(_input->info()->data_type())
{
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
case DataType::F16:
_func = &NEBatchNormalizationLayerKernel::batch_normalization_nchw<float16_t, false, detail::dummy<float16_t, 8>>;
break;
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
case DataType::F32:
_func = &NEBatchNormalizationLayerKernel::batch_normalization_nchw<float, false, detail::dummy<float, 4>>;
break;
default:
ARM_COMPUTE_ERROR("Element size not supported");
break;
}
}
void NEBatchNormalizationLayerKernel::configure_fused()
{
// NCHW Fused Batched Normalization with activation functions : FP32
static std::map<ActivationLayerInfo::ActivationFunction, BatchNormFunctionPtr> bn_fused_map_f32_nchw =
{
{ ActivationLayerInfo::ActivationFunction::RELU, &NEBatchNormalizationLayerKernel::batch_normalization_nchw<float, true, detail::relu<float, 4>> },
{ ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, &NEBatchNormalizationLayerKernel::batch_normalization_nchw<float, true, detail::brelu<float, 4>> },
{ ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, &NEBatchNormalizationLayerKernel::batch_normalization_nchw<float, true, detail::lubrelu<float, 4>> }
};
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
// NCHW Fused Batched Normalization with activation functions : FP16
static std::map<ActivationLayerInfo::ActivationFunction, BatchNormFunctionPtr> bn_fused_map_f16_nchw =
{
{ ActivationLayerInfo::ActivationFunction::RELU, &NEBatchNormalizationLayerKernel::batch_normalization_nchw<float16_t, true, detail::relu<float16_t, 8>> },
{ ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, &NEBatchNormalizationLayerKernel::batch_normalization_nchw<float16_t, true, detail::brelu<float16_t, 8>> },
{ ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, &NEBatchNormalizationLayerKernel::batch_normalization_nchw<float16_t, true, detail::lubrelu<float16_t, 8>> }
};
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
switch(_input->info()->data_type())
{
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
case DataType::F16:
_func = bn_fused_map_f16_nchw[_act_info.activation()];
break;
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
case DataType::F32:
_func = bn_fused_map_f32_nchw[_act_info.activation()];
break;
default:
ARM_COMPUTE_ERROR("Element size not supported");
break;
}
}
NEBatchNormalizationLayerKernel::NEBatchNormalizationLayerKernel()
: _func(nullptr), _input(nullptr), _output(nullptr), _mean(nullptr), _var(nullptr), _gamma(nullptr), _beta(nullptr), _epsilon(), _act_info()
{
}
void NEBatchNormalizationLayerKernel::configure(ITensor *input, ITensor *output,
const ITensor *mean, const ITensor *var,
const ITensor *beta, const ITensor *gamma,
float epsilon, ActivationLayerInfo act_info)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, mean, var);
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), (output != nullptr) ? output->info() : nullptr,
mean->info(), var->info(),
(beta != nullptr) ? beta->info() : nullptr,
(gamma != nullptr) ? gamma->info() : nullptr,
epsilon, act_info));
_input = input;
_output = input;
_mean = mean;
_var = var;
_gamma = gamma;
_beta = beta;
_epsilon = epsilon;
_act_info = act_info;
const bool run_in_place = (output == nullptr) || (output == input);
if(!run_in_place)
{
_output = output;
}
// Configure activation function to run
const bool is_nchw = _input->info()->data_layout() == DataLayout::NCHW;
if(is_nchw)
{
if(_act_info.enabled())
{
configure_fused();
}
else
{
configure_non_fused();
}
}
// Configure kernel window
Window win = calculate_max_window(*input->info(), Steps());
INEKernel::configure(win);
if(output != nullptr)
{
// Output auto initialization if not yet initialized
auto_init_if_empty(*output->info(), *input->info()->clone());
}
}
Status NEBatchNormalizationLayerKernel::validate(const ITensorInfo *input, const ITensorInfo *output,
const ITensorInfo *mean, const ITensorInfo *var,
const ITensorInfo *beta, const ITensorInfo *gamma,
float epsilon, ActivationLayerInfo act_info)
{
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, output, mean, var, beta, gamma, epsilon, act_info));
return Status{};
}
void NEBatchNormalizationLayerKernel::run(const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
ARM_COMPUTE_ERROR_ON(_func == nullptr && _input->info()->data_layout() == DataLayout::NCHW);
const bool is_nchw = _input->info()->data_layout() == DataLayout::NCHW;
if(is_nchw)
{
(this->*_func)(window);
}
else
{
const auto *uk = get_implementation(BatchNormalizationSelectorData{ _input->info()->data_type(), CPUInfo::get() });
uk->ukernel(_input, _output, _mean, _var, _beta, _gamma, _epsilon, _act_info, window);
}
}
} // namespace arm_compute