blob: d1533b6f24c34858b0495859a367996f01fb4e63 [file] [log] [blame]
/*
* Copyright (c) 2017-2018 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/runtime/CL/functions/CLConvolutionLayer.h"
#include "arm_compute/core/PixelValue.h"
#include "arm_compute/core/Size2D.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
#include "arm_compute/runtime/CL/CLScheduler.h"
#include <cmath>
#include <memory>
#include <tuple>
using namespace arm_compute;
CLConvolutionLayerReshapeWeights::CLConvolutionLayerReshapeWeights(std::shared_ptr<IMemoryManager> memory_manager)
: _memory_group(std::move(memory_manager)), _weights_reshape_kernel(), _weights_transposed_kernel(), _weights_reshaped(), _transpose1xW(false)
{
}
void CLConvolutionLayerReshapeWeights::configure(const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, bool transpose1xW)
{
ARM_COMPUTE_ERROR_ON(weights->info()->num_dimensions() > 4);
if(biases != nullptr)
{
ARM_COMPUTE_ERROR_ON(is_data_type_quantized_asymmetric(weights->info()->data_type()));
ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(weights, biases);
ARM_COMPUTE_ERROR_ON(biases->info()->dimension(0) != weights->info()->dimension(3));
ARM_COMPUTE_ERROR_ON(biases->info()->num_dimensions() > 1);
}
const bool append_biases = (biases != nullptr) && !is_data_type_quantized_asymmetric(weights->info()->data_type());
const unsigned bias_element = (append_biases) ? 1 : 0;
const ICLTensor *biases_to_use = (append_biases) ? biases : nullptr;
_transpose1xW = transpose1xW;
if(transpose1xW)
{
// Create tensor to store the reshaped weights
const unsigned int mat_weights_cols = weights->info()->dimension(3);
const unsigned int mat_weights_rows = weights->info()->dimension(0) * weights->info()->dimension(1) * weights->info()->dimension(2) + bias_element;
TensorShape shape_wr(mat_weights_cols, mat_weights_rows);
const DataType dt = weights->info()->data_type();
const int fixed_point_position = weights->info()->fixed_point_position();
TensorInfo info_wr(shape_wr, 1, dt, fixed_point_position);
_weights_reshaped.allocator()->init(info_wr);
_memory_group.manage(&_weights_reshaped);
_weights_reshape_kernel.configure(weights, biases_to_use, &_weights_reshaped);
_weights_transposed_kernel.configure(&_weights_reshaped, output);
_weights_reshaped.allocator()->allocate();
}
else
{
_weights_reshape_kernel.configure(weights, biases_to_use, output);
}
output->info()->set_quantization_info(weights->info()->quantization_info());
}
void CLConvolutionLayerReshapeWeights::run()
{
_memory_group.acquire();
CLScheduler::get().enqueue(_weights_reshape_kernel);
if(_transpose1xW)
{
CLScheduler::get().enqueue(_weights_transposed_kernel);
}
_memory_group.release();
}
CLConvolutionLayer::CLConvolutionLayer(std::shared_ptr<IMemoryManager> memory_manager)
: _memory_group(memory_manager), _reshape_weights(), _im2col_kernel(), _interleave_kernel(), _mm_kernel(), _mm_gemm(memory_manager), _mm_gemmlowp(memory_manager), _gemmlowp_output_stage(),
_col2im_kernel(), _im2col_output(), _interleave_output(), _weights_reshaped(), _weights_transposed(), _gemm_output(), _tmp_output(), _are_weights_reshaped(false), _is_quantized(false),
_is_interleaved_transposed(false)
{
}
void CLConvolutionLayer::configure_mm(const ICLTensor *input, const ICLTensor *weights, ICLTensor *output, bool is_interleaved_transposed, bool are_weights_reshaped)
{
if(_is_quantized)
{
if(are_weights_reshaped)
{
ARM_COMPUTE_ERROR("Weights already reshaped are not suppported with gemmlowp");
}
else
{
// Since we need negative offsets for computing convolution, we need to change QuantizationInfo()
// Extract and negate input and weights offset
const QuantizationInfo input_quantization_info = input->info()->quantization_info();
const QuantizationInfo weights_quantization_info = weights->info()->quantization_info();
input->info()->set_quantization_info(QuantizationInfo(input_quantization_info.scale, -input_quantization_info.offset));
weights->info()->set_quantization_info(QuantizationInfo(weights_quantization_info.scale, -weights_quantization_info.offset));
_mm_gemmlowp.configure(input, weights, output, GEMMInfo(false, false, true /* Reshape weights only for the first run*/));
// Revert back QuantizatioInfo as input and weights could be used in other convolution layers
input->info()->set_quantization_info(input_quantization_info);
weights->info()->set_quantization_info(weights_quantization_info);
}
}
else
{
if(are_weights_reshaped)
{
// Configure matrix multiply kernel
_mm_kernel.configure(input, weights, output, 1.f, is_interleaved_transposed);
}
else
{
// Configure matrix multiply function
_mm_gemm.configure(input, weights, nullptr, output, 1.0f, 0.0f, GEMMInfo(false, false, true /* Reshape weights only for the first run*/));
}
}
}
void CLConvolutionLayer::configure(const ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const PadStrideInfo &conv_info, const WeightsInfo &weights_info)
{
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QS8, DataType::QASYMM8, DataType::QS16, DataType::F16, DataType::F32);
ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights);
ARM_COMPUTE_ERROR_ON_MISMATCHING_FIXED_POINT(input, weights);
ARM_COMPUTE_ERROR_ON(weights_info.are_reshaped() && CLScheduler::get().target() == GPUTarget::BIFROST);
ARM_COMPUTE_ERROR_ON(!weights_info.are_reshaped() && weights->info()->dimension(2) != input->info()->dimension(2));
ARM_COMPUTE_ERROR_ON(weights->info()->num_dimensions() > 4);
ARM_COMPUTE_ERROR_ON(weights_info.are_reshaped() && is_data_type_quantized_asymmetric(input->info()->data_type()));
_is_quantized = is_data_type_quantized_asymmetric(input->info()->data_type());
if(biases != nullptr)
{
if(_is_quantized)
{
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(biases, 1, DataType::S32);
}
else
{
ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, biases);
}
ARM_COMPUTE_ERROR_ON_MISMATCHING_FIXED_POINT(input, biases);
ARM_COMPUTE_ERROR_ON(!weights_info.are_reshaped() && biases->info()->dimension(0) != weights->info()->dimension(3));
ARM_COMPUTE_ERROR_ON(biases->info()->num_dimensions() > 1);
}
const DataType dt = input->info()->data_type();
// Set the GPU target for matrix multiply and im2col and col2im
_mm_kernel.set_target(CLScheduler::get().target());
_im2col_kernel.set_target(CLScheduler::get().target());
_col2im_kernel.set_target(CLScheduler::get().target());
const bool append_bias = (biases != nullptr) && (!_is_quantized);
_are_weights_reshaped = weights_info.are_reshaped();
const unsigned bias_element = (append_bias) ? 1 : 0;
const ICLTensor *biases_to_use = (append_bias) ? biases : nullptr;
// Get parameters from conv_info
unsigned int stride_x = 0;
unsigned int stride_y = 0;
std::tie(stride_x, stride_y) = conv_info.stride();
// Get convolved dimensions
unsigned int conv_w = 0;
unsigned int conv_h = 0;
const unsigned int kernel_width = (_are_weights_reshaped) ? weights_info.kernel_size().first : weights->info()->dimension(0);
const unsigned int kernel_height = (_are_weights_reshaped) ? weights_info.kernel_size().second : weights->info()->dimension(1);
std::tie(conv_w, conv_h) = scaled_dimensions(input->info()->dimension(0), input->info()->dimension(1), kernel_width, kernel_height,
conv_info);
// Check if its a "fully connected" convolution
const bool is_fully_connected_convolution = ((conv_w == 1) && (conv_h == 1));
_is_interleaved_transposed = (!is_fully_connected_convolution) && (!_is_quantized) && (_are_weights_reshaped);
unsigned int mat_weights_cols = weights->info()->dimension(3);
unsigned int mat_weights_rows = weights->info()->dimension(0) * weights->info()->dimension(1) * weights->info()->dimension(2) + bias_element;
// Reshape weights if needed
if(_are_weights_reshaped)
{
if(is_fully_connected_convolution || _is_quantized)
{
mat_weights_cols = weights->info()->dimension(0);
mat_weights_rows = weights->info()->dimension(1);
}
else
{
mat_weights_cols = weights_info.num_kernels();
const unsigned int quarter_reshaped_cols = weights->info()->dimension(0) / 4;
mat_weights_rows = quarter_reshaped_cols + bias_element;
}
}
else
{
// _weights_reshaped will be auto configured in the kernel.
// Just append biases and do not transpose 1xW as it will be reshaped in CLGEMM
_reshape_weights.configure(weights, biases_to_use, &_weights_reshaped, false);
weights = &_weights_reshaped;
}
// Create tensor to store im2col reshaped inputs
const unsigned int mat_input_cols = mat_weights_rows;
const unsigned int mat_input_rows = conv_w * conv_h;
TensorShape shape_im2col = input->info()->tensor_shape();
shape_im2col.set(0, mat_input_cols);
shape_im2col.set(1, mat_input_rows);
shape_im2col.set(2, 1);
// FIXME: input->clone() doesn't work with subtensors for grouped convolutions.
TensorInfo im2col_reshaped_info(shape_im2col, 1, dt, input->info()->fixed_point_position());
im2col_reshaped_info.set_quantization_info(input->info()->quantization_info());
_im2col_output.allocator()->init(im2col_reshaped_info);
_memory_group.manage(&_im2col_output);
// Create GEMM output tensor
TensorShape shape_gemm = _im2col_output.info()->tensor_shape();
shape_gemm.set(0, mat_weights_cols);
shape_gemm.set(1, mat_input_rows);
const DataType gemm_data_type = _is_quantized ? DataType::S32 : dt;
// GEMM output should be S32 for acquiring raw integer accumulator without quantized postprocessing for quantized asymmetric input.
// FIXME: input->clone() doesn't work with subtensors for grouped convolutions.
TensorInfo info_gemm(shape_gemm, 1, gemm_data_type, input->info()->fixed_point_position());
info_gemm.set_quantization_info(output->info()->quantization_info());
_gemm_output.allocator()->init(info_gemm);
_memory_group.manage(&_gemm_output);
// Configure im2col
_im2col_kernel.configure(input, &_im2col_output, Size2D(kernel_width, kernel_height), conv_info, append_bias);
// Configure matrix multiply
if(_is_interleaved_transposed)
{
// Configure GEMMInterleave4x4. _input_interleaved_reshaped will be auto configured in the kernel
_memory_group.manage(&_interleave_output);
_interleave_kernel.configure(&_im2col_output, &_interleave_output);
// Configure GEMM
configure_mm(&_interleave_output, weights, &_gemm_output, true, _are_weights_reshaped);
_interleave_output.allocator()->allocate();
}
else
{
configure_mm(&_im2col_output, weights, &_gemm_output, false, _are_weights_reshaped);
}
_im2col_output.allocator()->allocate();
// Configure output stage for quantized case
if(_is_quantized)
{
float multiplier = input->info()->quantization_info().scale * weights->info()->quantization_info().scale / output->info()->quantization_info().scale;
int output_multiplier, output_shift;
quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift);
_memory_group.manage(&_tmp_output);
_gemmlowp_output_stage.configure(&_gemm_output, biases, &_tmp_output, output_multiplier, output_shift, output->info()->quantization_info().offset);
}
// Configure Col2Im
_col2im_kernel.configure(_is_quantized ? &_tmp_output : &_gemm_output, output, std::make_pair(conv_w, conv_h));
if(_is_quantized)
{
_tmp_output.allocator()->allocate();
}
_gemm_output.allocator()->allocate();
ARM_COMPUTE_ERROR_ON_MSG((output->info()->dimension(0) != conv_w) || (output->info()->dimension(1) != conv_h), "Output shape does not match the expected one");
// Allocate intermediate tensor
if(!_are_weights_reshaped)
{
_weights_reshaped.allocator()->allocate();
}
}
void CLConvolutionLayer::run()
{
// Run weights reshaping (Runs once for every configure)
if(!_are_weights_reshaped)
{
_are_weights_reshaped = true;
_reshape_weights.run();
}
_memory_group.acquire();
// Run im2col
CLScheduler::get().enqueue(_im2col_kernel);
// Note: _is_interleaved_transposed is true only if the weights passed to the function have been passed already reshaped
// and if we do not have QASYMM8 data type. If this flag is true, we need to run the
// gemm kernel instead of gemm function
if(_is_interleaved_transposed)
{
// Run interleave4x4 kernel
CLScheduler::get().enqueue(_interleave_kernel);
// Run matrix multiply kernel
CLScheduler::get().enqueue(_mm_kernel);
}
else
{
// Runs CLGEMM or CLGEMMLowpMatrixMultiplyCore functions
if(_is_quantized)
{
// Run gemmlowp
_mm_gemmlowp.run();
// Run output stage
_gemmlowp_output_stage.run();
}
else
{
// Run gemm
_mm_gemm.run();
}
}
// Reshape output matrix
CLScheduler::get().enqueue(_col2im_kernel, false);
_memory_group.release();
}