blob: 532d08de924ac795985784171c96ff671e58c29b [file] [log] [blame]
/*
* Copyright (c) 2016-2023 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/utils/StringUtils.h"
#include "arm_compute/function_info/ActivationLayerInfo.h"
#include <algorithm>
#include <cmath>
#include <cstdint>
#include <fstream>
#include <map>
#include <string>
namespace arm_compute
{
std::string read_file(const std::string &filename, bool binary)
{
std::string out;
std::ifstream fs;
#ifndef ARM_COMPUTE_EXCEPTIONS_DISABLED
try
{
#endif /* ARM_COMPUTE_EXCEPTIONS_DISABLED */
fs.exceptions(std::ifstream::failbit | std::ifstream::badbit);
std::ios_base::openmode mode = std::ios::in;
if (binary)
{
mode |= std::ios::binary;
}
fs.open(filename, mode);
// Go to the end of the file
fs.seekg(0, std::ios::end);
// Reserve the memory required to store the file's content
out.reserve(fs.tellg());
// Go back to the beginning of the file
fs.seekg(0, std::ios::beg);
// Copy the content of the file
out.assign(std::istreambuf_iterator<char>(fs), std::istreambuf_iterator<char>());
#ifndef ARM_COMPUTE_EXCEPTIONS_DISABLED
}
catch (const std::ifstream::failure &e)
{
ARM_COMPUTE_ERROR_VAR("Accessing %s: %s", filename.c_str(), e.what());
}
#endif /* ARM_COMPUTE_EXCEPTIONS_DISABLED */
return out;
}
const std::string &string_from_channel(Channel channel)
{
static std::map<Channel, const std::string> channels_map = {{Channel::UNKNOWN, "UNKNOWN"},
{Channel::R, "R"},
{Channel::G, "G"},
{Channel::B, "B"},
{Channel::A, "A"},
{Channel::Y, "Y"},
{Channel::U, "U"},
{Channel::V, "V"},
{Channel::C0, "C0"},
{Channel::C1, "C1"},
{Channel::C2, "C2"},
{Channel::C3, "C3"}};
return channels_map[channel];
}
const std::string &string_from_border_mode(BorderMode border_mode)
{
static std::map<BorderMode, const std::string> border_mode_map = {
{BorderMode::UNDEFINED, "UNDEFINED"},
{BorderMode::CONSTANT, "CONSTANT"},
{BorderMode::REPLICATE, "REPLICATE"},
};
return border_mode_map[border_mode];
}
const std::string &string_from_norm_type(NormType type)
{
static std::map<NormType, const std::string> norm_type_map = {
{NormType::IN_MAP_1D, "IN_MAP_1D"},
{NormType::IN_MAP_2D, "IN_MAP_2D"},
{NormType::CROSS_MAP, "CROSS_MAP"},
};
return norm_type_map[type];
}
const std::string &string_from_pooling_type(PoolingType type)
{
static std::map<PoolingType, const std::string> pool_type_map = {
{PoolingType::MAX, "MAX"},
{PoolingType::AVG, "AVG"},
{PoolingType::L2, "L2"},
};
return pool_type_map[type];
}
bool is_pool_region_entirely_outside_input(const PoolingLayerInfo &info)
{
if (info.is_global_pooling || info.exclude_padding || info.pool_size.x() == 0 || info.pool_size.y() == 0)
{
return false;
}
const auto ps = info.pad_stride_info;
const auto pool_le_padding_x = info.pool_size.x() <= std::max({ps.pad_left(), ps.pad_right()});
const auto pool_le_padding_y = info.pool_size.y() <= std::max({ps.pad_top(), ps.pad_bottom()});
return pool_le_padding_x || pool_le_padding_y;
}
bool is_pool_3d_region_entirely_outside_input(const Pooling3dLayerInfo &info)
{
if (info.is_global_pooling || info.pool_size.x() == 0 || info.pool_size.y() == 0 || info.pool_size.z() == 0)
{
return false;
}
const auto ps = info.padding;
const auto pool_le_padding_x = info.pool_size.x() <= std::max({ps.left, ps.right});
const auto pool_le_padding_y = info.pool_size.y() <= std::max({ps.top, ps.bottom});
const auto pool_le_padding_z = info.pool_size.z() <= std::max({ps.front, ps.back});
return pool_le_padding_x || pool_le_padding_y || pool_le_padding_z;
}
const std::string &string_from_gemmlowp_output_stage(GEMMLowpOutputStageType output_stage)
{
static std::map<GEMMLowpOutputStageType, const std::string> output_stage_map = {
{GEMMLowpOutputStageType::NONE, ""},
{GEMMLowpOutputStageType::QUANTIZE_DOWN, "quantize_down"},
{GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT, "quantize_down_fixedpoint"},
{GEMMLowpOutputStageType::QUANTIZE_DOWN_FLOAT, "quantize_down_float"}};
return output_stage_map[output_stage];
}
std::string string_from_pixel_value(const PixelValue &value, const DataType data_type)
{
std::stringstream ss;
std::string converted_string;
switch (data_type)
{
case DataType::U8:
case DataType::QASYMM8:
// Needs conversion to 32 bit, otherwise interpreted as ASCII values
ss << uint32_t(value.get<uint8_t>());
converted_string = ss.str();
break;
case DataType::S8:
case DataType::QASYMM8_SIGNED:
case DataType::QSYMM8_PER_CHANNEL:
// Needs conversion to 32 bit, otherwise interpreted as ASCII values
ss << int32_t(value.get<int8_t>());
converted_string = ss.str();
break;
case DataType::U16:
case DataType::QASYMM16:
ss << value.get<uint16_t>();
converted_string = ss.str();
break;
case DataType::S16:
case DataType::QSYMM16:
ss << value.get<int16_t>();
converted_string = ss.str();
break;
case DataType::U32:
ss << value.get<uint32_t>();
converted_string = ss.str();
break;
case DataType::S32:
ss << value.get<int32_t>();
converted_string = ss.str();
break;
case DataType::F32:
converted_string = float_to_string_with_full_precision(value.get<float>());
break;
case DataType::F16:
static_assert(sizeof(half) == 2, "Half must be 16 bit");
ss << value.get<half>();
converted_string = ss.str();
break;
default:
ARM_COMPUTE_ERROR("Not handled");
}
return converted_string;
}
PadStrideInfo calculate_same_pad(TensorShape input_shape,
TensorShape weights_shape,
PadStrideInfo conv_info,
DataLayout data_layout,
const Size2D &dilation,
const DimensionRoundingType &rounding_type)
{
const auto &strides = conv_info.stride();
ARM_COMPUTE_ERROR_ON_MSG((strides.first < 1 || strides.second < 1),
"Stride values should be greater than or equal to 1.");
const unsigned int width_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
const unsigned int height_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
const unsigned int in_width = input_shape[width_idx];
const unsigned int in_height = input_shape[height_idx];
const unsigned int kernel_width = weights_shape[width_idx];
const unsigned int kernel_height = weights_shape[height_idx];
// Calculate output dimensions
const auto is_ceil = static_cast<unsigned int>(rounding_type == DimensionRoundingType::CEIL);
const unsigned int out_width = ((in_width - is_ceil) + strides.first - 1) / strides.first + is_ceil;
const unsigned int out_height = ((in_height - is_ceil) + strides.second - 1) / strides.second + is_ceil;
// Calculate effective weights sizes
const int real_weight_width = (kernel_width - 1) * dilation.x() + 1;
const int real_weight_height = (kernel_height - 1) * dilation.y() + 1;
// Calculate total pad
const int pad_width = std::max(0, static_cast<int>((out_width - 1) * strides.first + real_weight_width - in_width));
const int pad_height =
std::max(0, static_cast<int>((out_height - 1) * strides.second + real_weight_height - in_height));
// Calculate individual paddings
const unsigned int pad_left = pad_width / 2;
const unsigned int pad_top = pad_height / 2;
const unsigned int pad_right = pad_width - pad_left;
const unsigned int pad_bottom = pad_height - pad_top;
PadStrideInfo same_info(strides.first, strides.second, pad_left, pad_right, pad_top, pad_bottom, rounding_type);
// Check for correctness of predicted output shape against the one calculated using the generated info
const auto out_dims = scaled_dimensions(in_width, in_height, kernel_width, kernel_height, same_info, dilation);
ARM_COMPUTE_ERROR_ON(out_dims.first != out_width || out_dims.second != out_height);
ARM_COMPUTE_UNUSED(out_dims);
return same_info;
}
std::pair<unsigned int, unsigned int> deconvolution_output_dimensions(unsigned int in_width,
unsigned int in_height,
unsigned int kernel_width,
unsigned int kernel_height,
const PadStrideInfo &pad_stride_info)
{
const unsigned int pad_left = pad_stride_info.pad_left();
const unsigned int pad_top = pad_stride_info.pad_top();
const unsigned int pad_right = pad_stride_info.pad_right();
const unsigned int pad_bottom = pad_stride_info.pad_bottom();
const unsigned int stride_x = pad_stride_info.stride().first;
const unsigned int stride_y = pad_stride_info.stride().second;
ARM_COMPUTE_ERROR_ON(in_width < 1 || in_height < 1);
ARM_COMPUTE_ERROR_ON(((in_width - 1) * stride_x + kernel_width) < (pad_left + pad_right));
ARM_COMPUTE_ERROR_ON(((in_height - 1) * stride_y + kernel_height) < (pad_top + pad_bottom));
const int w = stride_x * (in_width - 1) + kernel_width - (pad_left + pad_right);
const int h = stride_y * (in_height - 1) + kernel_height - (pad_top + pad_bottom);
return std::make_pair<unsigned int, unsigned int>(w, h);
}
std::pair<unsigned int, unsigned int> scaled_dimensions(int width,
int height,
int kernel_width,
int kernel_height,
const PadStrideInfo &pad_stride_info,
const Size2D &dilation)
{
const int dilation_x = dilation.x();
const int dilation_y = dilation.y();
const int pad_left = pad_stride_info.pad_left();
const int pad_top = pad_stride_info.pad_top();
const int pad_right = pad_stride_info.pad_right();
const int pad_bottom = pad_stride_info.pad_bottom();
const int stride_x = pad_stride_info.stride().first;
const int stride_y = pad_stride_info.stride().second;
int w = 0;
int h = 0;
switch (pad_stride_info.round())
{
case DimensionRoundingType::FLOOR:
w = static_cast<int>(std::floor(
(static_cast<float>(width + pad_left + pad_right - (dilation_x * (kernel_width - 1) + 1)) / stride_x) +
1));
h = static_cast<int>(
std::floor((static_cast<float>(height + pad_top + pad_bottom - (dilation_y * (kernel_height - 1) + 1)) /
stride_y) +
1));
break;
case DimensionRoundingType::CEIL:
w = static_cast<int>(std::ceil(
(static_cast<float>(width + pad_left + pad_right - (dilation_x * (kernel_width - 1) + 1)) / stride_x) +
1));
h = static_cast<int>(
std::ceil((static_cast<float>(height + pad_top + pad_bottom - (dilation_y * (kernel_height - 1) + 1)) /
stride_y) +
1));
break;
default:
ARM_COMPUTE_ERROR("Unsupported rounding type");
}
w = std::max(1, w);
h = std::max(1, h);
return std::make_pair(static_cast<unsigned int>(w), static_cast<unsigned int>(h));
}
std::pair<int, int> scaled_dimensions_signed(
int width, int height, int kernel_width, int kernel_height, const PadStrideInfo &pad_stride_info)
{
const int pad_left = pad_stride_info.pad_left();
const int pad_top = pad_stride_info.pad_top();
const int pad_right = pad_stride_info.pad_right();
const int pad_bottom = pad_stride_info.pad_bottom();
const int stride_x = pad_stride_info.stride().first;
const int stride_y = pad_stride_info.stride().second;
int w = 0;
int h = 0;
switch (pad_stride_info.round())
{
case DimensionRoundingType::FLOOR:
w = static_cast<int>(
std::floor((static_cast<float>(width + pad_left + pad_right - kernel_width) / stride_x) + 1));
h = static_cast<int>(
std::floor((static_cast<float>(height + pad_top + pad_bottom - kernel_height) / stride_y) + 1));
break;
case DimensionRoundingType::CEIL:
w = static_cast<int>(
std::ceil((static_cast<float>(width + pad_left + pad_right - kernel_width) / stride_x) + 1));
h = static_cast<int>(
std::ceil((static_cast<float>(height + pad_top + pad_bottom - kernel_height) / stride_y) + 1));
break;
default:
ARM_COMPUTE_ERROR("Unsupported rounding type");
}
return std::make_pair(static_cast<int>(w), static_cast<int>(h));
}
std::tuple<int, int, int> scaled_3d_dimensions_signed(int width,
int height,
int depth,
int kernel_width,
int kernel_height,
int kernel_depth,
const Pooling3dLayerInfo &pool3d_info)
{
const int pad_left = pool3d_info.padding.left;
const int pad_top = pool3d_info.padding.top;
const int pad_right = pool3d_info.padding.right;
const int pad_bottom = pool3d_info.padding.bottom;
const int pad_front = pool3d_info.padding.front;
const int pad_back = pool3d_info.padding.back;
const int stride_x = pool3d_info.stride.x();
const int stride_y = pool3d_info.stride.y();
const int stride_z = pool3d_info.stride.z();
int w = 0;
int h = 0;
int d = 0;
switch (pool3d_info.round_type)
{
case DimensionRoundingType::FLOOR:
w = static_cast<int>(
std::floor((static_cast<float>(width + pad_left + pad_right - kernel_width) / stride_x) + 1));
h = static_cast<int>(
std::floor((static_cast<float>(height + pad_top + pad_bottom - kernel_height) / stride_y) + 1));
d = static_cast<int>(
std::floor((static_cast<float>(depth + pad_front + pad_back - kernel_depth) / stride_z) + 1));
break;
case DimensionRoundingType::CEIL:
w = static_cast<int>(
std::ceil((static_cast<float>(width + pad_left + pad_right - kernel_width) / stride_x) + 1));
h = static_cast<int>(
std::ceil((static_cast<float>(height + pad_top + pad_bottom - kernel_height) / stride_y) + 1));
d = static_cast<int>(
std::ceil((static_cast<float>(depth + pad_front + pad_back - kernel_depth) / stride_z) + 1));
break;
default:
ARM_COMPUTE_ERROR("Unsupported rounding type");
}
return std::make_tuple(static_cast<int>(w), static_cast<int>(h), static_cast<int>(d));
}
bool needs_serialized_reduction(ReductionOperation op, DataType dt, unsigned int axis)
{
const bool is_min_max = (op == ReductionOperation::MAX || op == ReductionOperation::MIN);
const bool is_quantized_type = is_data_type_quantized(dt);
const bool is_first_dim = (axis == 0);
return !is_first_dim || (is_quantized_type && !is_min_max);
}
QuantizationInfo get_softmax_output_quantization_info(DataType input_type, bool is_log)
{
// Note: Output quantization info for softmax should always have
// * Softmax with QASYMM8: scale = 1/256, offset = 0
// * Softmax with QASYMM8_SIGNED: scale = 1/256, offset = -128
// * LogSoftmax with QASYMM8: scale = 1/256, offset = 0
// * LogSoftmax with QASYMM8_SIGNED: scale = 16/256, offset = 127
if (is_data_type_quantized_asymmetric_signed(input_type))
{
if (is_log)
{
return QuantizationInfo(16.f / 256, 127);
}
else
{
return QuantizationInfo(1.f / 256, -128);
}
}
return QuantizationInfo(1.f / 256, 0);
}
std::pair<int32_t, int32_t> get_quantized_activation_min_max(const ActivationLayerInfo &act_info,
DataType data_type,
UniformQuantizationInfo oq_info)
{
const bool is_qasymm8_signed = is_data_type_quantized_asymmetric_signed(data_type);
const auto a = act_info.a();
const auto b = act_info.b();
const int a_int = is_qasymm8_signed ? quantize_qasymm8_signed(a, oq_info) : quantize_qasymm8(a, oq_info);
const int b_int = is_qasymm8_signed ? quantize_qasymm8_signed(b, oq_info) : quantize_qasymm8(b, oq_info);
const auto type_max_value = std::get<1>(get_min_max(data_type)).get<int32_t>();
const int32_t min_activation = act_info.activation() != ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU
? std::min(oq_info.offset, type_max_value)
: b_int;
const int32_t max_activation =
act_info.activation() == ActivationLayerInfo::ActivationFunction::RELU ? type_max_value : a_int;
return std::make_pair(min_activation, max_activation);
}
std::unordered_map<const ITensorInfo *, PaddingSize> get_padding_info(std::initializer_list<const ITensor *> tensors)
{
std::unordered_map<const ITensorInfo *, PaddingSize> res;
for (const ITensor *tensor : tensors)
{
if (tensor)
{
res.insert({tensor->info(), tensor->info()->padding()});
}
}
return res;
}
std::unordered_map<const ITensorInfo *, PaddingSize> get_padding_info(std::initializer_list<const ITensorInfo *> infos)
{
std::unordered_map<const ITensorInfo *, PaddingSize> res;
for (const ITensorInfo *info : infos)
{
if (info)
{
res.insert({info, info->padding()});
}
}
return res;
}
bool has_padding_changed(const std::unordered_map<const ITensorInfo *, PaddingSize> &padding_map)
{
return std::find_if(padding_map.begin(), padding_map.end(),
[](const std::pair<const ITensorInfo *, PaddingSize> &padding_info)
{ return (padding_info.first->padding() != padding_info.second); }) != padding_map.end();
}
#ifdef ARM_COMPUTE_ASSERTS_ENABLED
void print_consecutive_elements(std::ostream &s,
DataType dt,
const uint8_t *ptr,
unsigned int n,
int stream_width,
const std::string &element_delim)
{
switch (dt)
{
case DataType::U8:
case DataType::QASYMM8:
print_consecutive_elements_impl<uint8_t>(s, ptr, n, stream_width, element_delim);
break;
case DataType::S8:
case DataType::QSYMM8:
case DataType::QASYMM8_SIGNED:
case DataType::QSYMM8_PER_CHANNEL:
print_consecutive_elements_impl<int8_t>(s, reinterpret_cast<const int8_t *>(ptr), n, stream_width,
element_delim);
break;
case DataType::U16:
case DataType::QASYMM16:
print_consecutive_elements_impl<uint16_t>(s, reinterpret_cast<const uint16_t *>(ptr), n, stream_width,
element_delim);
break;
case DataType::S16:
case DataType::QSYMM16:
print_consecutive_elements_impl<int16_t>(s, reinterpret_cast<const int16_t *>(ptr), n, stream_width,
element_delim);
break;
case DataType::U32:
print_consecutive_elements_impl<uint32_t>(s, reinterpret_cast<const uint32_t *>(ptr), n, stream_width,
element_delim);
break;
case DataType::S32:
print_consecutive_elements_impl<int32_t>(s, reinterpret_cast<const int32_t *>(ptr), n, stream_width,
element_delim);
break;
case DataType::U64:
print_consecutive_elements_impl<uint64_t>(s, reinterpret_cast<const uint64_t *>(ptr), n, stream_width,
element_delim);
break;
case DataType::S64:
print_consecutive_elements_impl<int64_t>(s, reinterpret_cast<const int64_t *>(ptr), n, stream_width,
element_delim);
break;
case DataType::BFLOAT16:
print_consecutive_elements_impl<bfloat16>(s, reinterpret_cast<const bfloat16 *>(ptr), n, stream_width,
element_delim);
break;
case DataType::F16:
print_consecutive_elements_impl<half>(s, reinterpret_cast<const half *>(ptr), n, stream_width,
element_delim);
break;
case DataType::F32:
print_consecutive_elements_impl<float>(s, reinterpret_cast<const float *>(ptr), n, stream_width,
element_delim);
break;
default:
ARM_COMPUTE_ERROR("Undefined element size for given data type");
}
}
int max_consecutive_elements_display_width(std::ostream &s, DataType dt, const uint8_t *ptr, unsigned int n)
{
switch (dt)
{
case DataType::U8:
case DataType::QASYMM8:
return max_consecutive_elements_display_width_impl<uint8_t>(s, ptr, n);
case DataType::S8:
case DataType::QSYMM8:
case DataType::QASYMM8_SIGNED:
case DataType::QSYMM8_PER_CHANNEL:
return max_consecutive_elements_display_width_impl<int8_t>(s, reinterpret_cast<const int8_t *>(ptr), n);
case DataType::U16:
case DataType::QASYMM16:
return max_consecutive_elements_display_width_impl<uint16_t>(s, reinterpret_cast<const uint16_t *>(ptr), n);
case DataType::S16:
case DataType::QSYMM16:
return max_consecutive_elements_display_width_impl<int16_t>(s, reinterpret_cast<const int16_t *>(ptr), n);
case DataType::U32:
return max_consecutive_elements_display_width_impl<uint32_t>(s, reinterpret_cast<const uint32_t *>(ptr), n);
case DataType::S32:
return max_consecutive_elements_display_width_impl<int32_t>(s, reinterpret_cast<const int32_t *>(ptr), n);
case DataType::U64:
return max_consecutive_elements_display_width_impl<uint64_t>(s, reinterpret_cast<const uint64_t *>(ptr), n);
case DataType::S64:
return max_consecutive_elements_display_width_impl<int64_t>(s, reinterpret_cast<const int64_t *>(ptr), n);
case DataType::BFLOAT16:
return max_consecutive_elements_display_width_impl<bfloat16>(s, reinterpret_cast<const bfloat16 *>(ptr), n);
case DataType::F16:
return max_consecutive_elements_display_width_impl<half>(s, reinterpret_cast<const half *>(ptr), n);
case DataType::F32:
return max_consecutive_elements_display_width_impl<float>(s, reinterpret_cast<const float *>(ptr), n);
default:
ARM_COMPUTE_ERROR("Undefined element size for given data type");
}
return 0;
}
#endif /* ARM_COMPUTE_ASSERTS_ENABLED */
} // namespace arm_compute