blob: fb55acad5374a22c0b3b8f381fe4f507efa50b33 [file] [log] [blame]
/*
* Copyright (c) 2023-2024 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "GpuCkwElementwiseBinary.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/utils/helpers/AdjustVecSize.h"
#include "arm_compute/core/utils/StringUtils.h"
#include "arm_compute/core/Validate.h"
#include "src/core/helpers/WindowHelpers.h"
#include "src/dynamic_fusion/sketch/gpu/ckw_driver/components/utils/CkwHelper.h"
#include "src/dynamic_fusion/sketch/gpu/ckw_driver/components/utils/type_converter/Common.h"
#include "src/dynamic_fusion/sketch/gpu/ckw_driver/components/utils/type_converter/ElementwiseBinary.h"
#include "src/dynamic_fusion/sketch/gpu/ckw_driver/GpuCkwScopedKernelWriter.h"
#include "src/dynamic_fusion/sketch/gpu/ckw_driver/GpuCkwVariableTable.h"
#include "src/dynamic_fusion/sketch/gpu/components/utils/type_printer/ElementwiseBinary.h"
#include "src/dynamic_fusion/sketch/gpu/GpuKernelArgument.h"
#include "src/dynamic_fusion/sketch/gpu/GpuKernelComponentGroup.h"
#include "support/StringSupport.h"
#include "compute_kernel_writer/include/ckw/KernelWriter.h"
#include "compute_kernel_writer/include/ckw/types/ConstantData.h"
#include "compute_kernel_writer/include/ckw/types/TensorSamplerTypes.h"
#include <cstdint>
#include <string>
namespace arm_compute
{
namespace experimental
{
namespace dynamic_fusion
{
GpuCkwElementwiseBinary::GpuCkwElementwiseBinary(ComponentId id,
const ArgumentPack<ITensorInfo> &tensors,
const Attributes &attributes)
: IGpuCkwComponentDriver{id, tensors}, _lhs{}, _rhs{}, _dst{}, _attributes{attributes}
{
_lhs = this->tensors().get_const_tensor(TensorType::ACL_SRC_0);
_rhs = this->tensors().get_const_tensor(TensorType::ACL_SRC_1);
_dst = this->tensors().get_const_tensor(TensorType::ACL_DST_0);
ARM_COMPUTE_ERROR_ON_NULLPTR(_lhs, _rhs, _dst);
}
void GpuCkwElementwiseBinary::write_component_code(const ComponentGroup &comp_group,
GpuCkwVariableTable &vtable,
GpuCkwScopedKernelWriter writer) const
{
/********************************************************************************
* 1 - Define tensors
********************************************************************************/
GpuCkwComponentArgument *lhs = vtable.declare_variable(comp_group, writer, _lhs, "lhs");
GpuCkwComponentArgument *rhs = vtable.declare_variable(comp_group, writer, _rhs, "rhs");
GpuCkwComponentArgument *dst = vtable.declare_variable(comp_group, writer, _dst, "dst");
/********************************************************************************
* 2 - Define CKW constants
********************************************************************************/
const auto dst_h = static_cast<int32_t>(_dst->dimension(1));
// CKW constants
auto const_dst_h_i32 = writer->declare_constant_tile(ckw::ConstantData({{dst_h}}, ckw::DataType::Int32));
auto const_pos_1_i32 = writer->declare_constant_tile(ckw::ConstantData({{1}}, ckw::DataType::Int32));
auto const_0_i32 = writer->declare_constant_tile(ckw::ConstantData({{0}}, ckw::DataType::Int32));
/********************************************************************************
* 3 - Define the compute block parameters and destination tile (if not root component)
* Bind the tile to the tensor to share it among different components and
* initialize the compute block parameters
********************************************************************************/
// The compute block parameters depend on the employed tensor format
// Destination compute block size
int32_t dst_n0 = -1;
int32_t dst_m0 = -1;
// Destination compute block size left-over
int32_t dst_n0_partial = -1;
int32_t dst_m0_partial = -1;
if (!dst->has_tile())
{
// If ROOT component, we use ckw::TensorSamplerFormat::Dim0_Dim1xDim2_1
// as tensor format
const auto root_window = comp_group.get_root_component()->ckw_component_driver()->get_window();
dst_n0 = root_window.x().step();
dst_m0 = root_window.y().step();
dst_n0_partial = _dst->dimension(0) % dst_n0;
dst_m0_partial = (_dst->dimension(1) * _dst->dimension(2)) % dst_m0;
ckw::TensorSampler sampler_dst;
sampler_dst.format(ckw::TensorSamplerFormat::Dim0_Dim1xDim2_1);
if (dst_n0_partial == 0)
{
sampler_dst.address_mode_x(ckw::TensorSamplerAddressModeX::None);
}
else
{
sampler_dst.address_mode_x(ckw::TensorSamplerAddressModeX::OverlappingMin);
}
if (dst_m0_partial == 0)
{
sampler_dst.address_mode_y(ckw::TensorSamplerAddressModeY::None);
}
else
{
sampler_dst.address_mode_y(ckw::TensorSamplerAddressModeY::ClampToBorderMaxOnly);
}
sampler_dst.address_mode_z(ckw::TensorSamplerAddressModeZ::None);
sampler_dst.storage(ckw::TensorStorageType::BufferUint8Ptr);
// Declare destination tile
ckw::DataType dst_dt = to_ckw(_dst->data_type());
auto tile_dst = writer->declare_tile("dst", ckw::TileInfo(dst_dt, dst_m0, dst_n0));
// Bind tile to the tensor
dst->init_virtual_tensor(tile_dst, sampler_dst);
}
else
{
// Change dst_n0 and dst_m0 if NOT root component!
dst_n0 = dst->tile().tile_info().width();
dst_m0 = dst->tile().tile_info().height();
// Here, it is not required the calculation of dst_n0_partial and dst_m0_partial
// because if we enter this condition it means that the element-wise op is not the
// root component and the address modes have been already set.
}
const auto &tile_dst = dst->tile();
/********************************************************************************
* 4 - Define the compute block parameters CKW constants
********************************************************************************/
// ...
/********************************************************************************
* 5 - Define the samplers for the input tensors
********************************************************************************/
// Check whether the lhs tensor is a tile or tensor
// If it is a tile, create a sampler and load the content in a tile
if (!lhs->has_tile())
{
// Sampler
ckw::TensorSampler sampler_lhs = dst->tensor_sampler();
bool broadcast_x = false;
bool broadcast_y = false;
int32_t lhs_n0 = dst_n0;
int32_t lhs_m0 = dst_m0;
// Check whether we have broadcasting
// In case of broadcast, lhs can only be a vector or scalar.
// Broadcasting in other dimensions is not supported
if (_dst->dimension(0) != _lhs->dimension(0))
{
broadcast_x = true;
lhs_n0 = 1;
}
if (sampler_lhs.format() == ckw::TensorSamplerFormat::Dim0_Dim1xDim2_1)
{
if (_dst->dimension(1) * _dst->dimension(2) != _lhs->dimension(1) * _lhs->dimension(2))
{
broadcast_y = true;
lhs_m0 = 1;
}
}
else if (sampler_lhs.format() == ckw::TensorSamplerFormat::Dim0_Dim1_Dim2)
{
if (_dst->dimension(1) != _lhs->dimension(1))
{
broadcast_y = true;
lhs_m0 = 1;
}
}
const int32_t lhs_partial_n0 = _lhs->dimension(0) % lhs_n0;
const int32_t lhs_shift_back = (lhs_n0 - lhs_partial_n0) % lhs_n0;
// Constants
auto const_lhs_n0_i32 = writer->declare_constant_tile(ckw::ConstantData({{lhs_n0}}, ckw::DataType::Int32));
auto const_lhs_m0_i32 = writer->declare_constant_tile(ckw::ConstantData({{lhs_m0}}, ckw::DataType::Int32));
auto const_lhs_shift_back_n0_i32 =
writer->declare_constant_tile(ckw::ConstantData({{lhs_shift_back}}, ckw::DataType::Int32));
auto tile_gid_0 = writer->declare_tile("gid_0_lhs", ckw::TileInfo(ckw::DataType::Int32));
auto tile_gid_1 = writer->declare_tile("gid_1_lhs", ckw::TileInfo(ckw::DataType::Int32));
auto tile_gid_2 = writer->declare_tile("gid_2_lhs", ckw::TileInfo(ckw::DataType::Int32));
writer->op_get_global_id(tile_gid_0, 0);
writer->op_get_global_id(tile_gid_1, 1);
writer->op_get_global_id(tile_gid_2, 2);
auto tile_cout0 = writer->declare_tile("cout0_lhs", ckw::TileInfo(ckw::DataType::Int32)); // OFM
auto tile_mout0 =
writer->declare_tile("mout0_lhs", ckw::TileInfo(ckw::DataType::Int32)); // WIDTH or WIDTH x HEIGHT
auto tile_mout1 = writer->declare_tile("mout1_lhs", ckw::TileInfo(ckw::DataType::Int32)); // HEIGHT or 0
auto tile_bout0 = writer->declare_tile("bout0_lhs", ckw::TileInfo(ckw::DataType::Int32)); // BATCH SIZE IDX
// Calculate coordinates
if (!broadcast_x)
{
get_coordinate_from_gws_overlapping_min(writer, tile_cout0, tile_gid_0, const_lhs_n0_i32,
const_lhs_shift_back_n0_i32, const_0_i32);
}
else
{
writer->op_assign(tile_cout0, const_0_i32);
}
if (!broadcast_y)
{
get_coordinate_from_gws(writer, tile_mout0, tile_gid_1, const_lhs_m0_i32);
}
else
{
writer->op_assign(tile_mout0, const_0_i32);
}
// Get the boundary aware coordinates at each global dimension index
if (sampler_lhs.format() == ckw::TensorSamplerFormat::Dim0_Dim1xDim2_1)
{
writer->op_assign(tile_mout1, const_0_i32);
get_coordinate_from_gws(writer, tile_bout0, tile_gid_2, const_pos_1_i32);
}
else if (sampler_lhs.format() == ckw::TensorSamplerFormat::Dim0_Dim1_Dim2)
{
// For tile_mout1 and tile_bout0 the step can only be 1
if (!broadcast_y)
{
writer->op_binary(tile_mout1, ckw::BinaryOp::Mod, tile_gid_2, const_dst_h_i32);
}
else
{
// If broadcast_y == true, it means that we have either a scalar or vector
// because broadcasting in other dimensions is not supported
writer->op_assign(tile_mout1, const_0_i32);
}
writer->op_binary(tile_bout0, ckw::BinaryOp::Div, tile_gid_2, const_dst_h_i32);
}
ckw::DataType lhs_dt = to_ckw(_lhs->data_type());
auto tile_lhs = writer->declare_tile("lhs", ckw::TileInfo(lhs_dt, lhs_m0, lhs_n0));
writer->op_load(tile_lhs, lhs->tensor(), sampler_lhs, tile_cout0, tile_mout0, tile_mout1, tile_bout0);
// Here, init_virtual_tensor() is used to bring the tile_lhs outside the compound statement
lhs->init_virtual_tensor(tile_lhs, sampler_lhs);
}
// Check whether the rhs tensor is a tile or tensor
// If it is a tile, create a sampler and load the content in a tile
if (!rhs->has_tile())
{
// Sampler
ckw::TensorSampler sampler_rhs = dst->tensor_sampler();
bool broadcast_x = false;
bool broadcast_y = false;
int32_t rhs_n0 = dst_n0;
int32_t rhs_m0 = dst_m0;
// Check whether we have broadcasting
// In case of broadcast, rhs can only be a vector or scalar.
// Broadcasting in other dimensions is not supported
if (_dst->dimension(0) != _rhs->dimension(0))
{
broadcast_x = true;
rhs_n0 = 1;
}
if (sampler_rhs.format() == ckw::TensorSamplerFormat::Dim0_Dim1xDim2_1)
{
if (_dst->dimension(1) * _dst->dimension(2) != _rhs->dimension(1) * _rhs->dimension(2))
{
broadcast_y = true;
rhs_m0 = 1;
}
}
else if (sampler_rhs.format() == ckw::TensorSamplerFormat::Dim0_Dim1_Dim2)
{
if (_dst->dimension(1) != _rhs->dimension(1))
{
broadcast_y = true;
rhs_m0 = 1;
}
}
const int32_t rhs_partial_n0 = _rhs->dimension(0) % rhs_n0;
const int32_t rhs_shift_back = (rhs_n0 - rhs_partial_n0) % rhs_n0;
// Constants
auto const_rhs_n0_i32 = writer->declare_constant_tile(ckw::ConstantData({{rhs_n0}}, ckw::DataType::Int32));
auto const_rhs_m0_i32 = writer->declare_constant_tile(ckw::ConstantData({{rhs_m0}}, ckw::DataType::Int32));
auto const_rhs_shift_back_n0_i32 =
writer->declare_constant_tile(ckw::ConstantData({{rhs_shift_back}}, ckw::DataType::Int32));
auto tile_gid_0 = writer->declare_tile("gid_0_rhs", ckw::TileInfo(ckw::DataType::Int32));
auto tile_gid_1 = writer->declare_tile("gid_1_rhs", ckw::TileInfo(ckw::DataType::Int32));
auto tile_gid_2 = writer->declare_tile("gid_2_rhs", ckw::TileInfo(ckw::DataType::Int32));
writer->op_get_global_id(tile_gid_0, 0);
writer->op_get_global_id(tile_gid_1, 1);
writer->op_get_global_id(tile_gid_2, 2);
auto tile_cout0 = writer->declare_tile("cout0_rhs", ckw::TileInfo(ckw::DataType::Int32)); // OFM
auto tile_mout0 =
writer->declare_tile("mout0_rhs", ckw::TileInfo(ckw::DataType::Int32)); // WIDTH or WIDTH x HEIGHT
auto tile_mout1 = writer->declare_tile("mout1_rhs", ckw::TileInfo(ckw::DataType::Int32)); // HEIGHT or 0
auto tile_bout0 = writer->declare_tile("bout0_rhs", ckw::TileInfo(ckw::DataType::Int32)); // BATCH SIZE IDX
// Calculate coordinates
if (!broadcast_x)
{
get_coordinate_from_gws_overlapping_min(writer, tile_cout0, tile_gid_0, const_rhs_n0_i32,
const_rhs_shift_back_n0_i32, const_0_i32);
}
else
{
writer->op_assign(tile_cout0, const_0_i32);
}
if (!broadcast_y)
{
get_coordinate_from_gws(writer, tile_mout0, tile_gid_1, const_rhs_m0_i32);
}
else
{
writer->op_assign(tile_mout0, const_0_i32);
}
// Get the boundary aware coordinates at each global dimension index
if (sampler_rhs.format() == ckw::TensorSamplerFormat::Dim0_Dim1xDim2_1)
{
writer->op_assign(tile_mout1, const_0_i32);
get_coordinate_from_gws(writer, tile_bout0, tile_gid_2, const_pos_1_i32);
}
else if (sampler_rhs.format() == ckw::TensorSamplerFormat::Dim0_Dim1_Dim2)
{
// For tile_mout1 and tile_bout0 the step can only be 1
const auto src_w = static_cast<int32_t>(_rhs->dimension(1));
auto const_src_w = writer->declare_constant_tile(ckw::ConstantData({{src_w}}, ckw::DataType::Int32));
if (!broadcast_y)
{
writer->op_binary(tile_mout1, ckw::BinaryOp::Mod, tile_mout1, const_src_w);
}
else
{
// If broadcast_y == true, it means that we have either a scalar or vector
// because broadcasting in other dimensions is not supported
writer->op_assign(tile_mout1, const_0_i32);
}
writer->op_binary(tile_bout0, ckw::BinaryOp::Div, tile_mout1, const_src_w);
}
ckw::DataType rhs_dt = to_ckw(_rhs->data_type());
auto tile_rhs = writer->declare_tile("rhs", ckw::TileInfo(rhs_dt, rhs_m0, rhs_n0));
writer->op_load(tile_rhs, rhs->tensor(), sampler_rhs, tile_cout0, tile_mout0, tile_mout1, tile_bout0);
// Here, init_virtual_tensor() is used to bring the tile_rhs outside the compound statement
rhs->init_virtual_tensor(tile_rhs, sampler_rhs);
}
const auto &tile_lhs = lhs->tile();
const auto &tile_rhs = rhs->tile();
/********************************************************************************
* 7 - Write the rest of the code
********************************************************************************/
// Perform the element-wise operation
writer->op_binary(tile_dst, to_ckw(_attributes), tile_lhs, tile_rhs);
ARM_COMPUTE_ERROR_ON_MSG(dst->has_tile() == false, "You must bind a tile before appending another component");
}
Window GpuCkwElementwiseBinary::get_window() const
{
ARM_COMPUTE_ERROR_ON_MSG(_dst->tensor_shape().total_size() == 0U, "Destination tensor is not initialized");
TensorShape output_shape = _dst->tensor_shape();
// Collapse Dim 1 (W) and Dim 2 (H) together, leave Dim 0 (C) unchanged
// This is in line with the collapsing convention used by operators like Conv2d
output_shape.collapse(2U, 1U);
constexpr uint32_t vector_size_byte_opencl = 16;
const uint32_t num_elems_processed_per_iteration =
adjust_vec_size(vector_size_byte_opencl / _dst->element_size(), _dst->dimension(0));
Window win = calculate_max_window(output_shape, Steps(num_elems_processed_per_iteration));
return win;
}
std::string GpuCkwElementwiseBinary::get_name(const ComponentGroup &comp_group) const
{
ARM_COMPUTE_UNUSED(comp_group);
const std::vector<std::string> build_params = {
"elementwise_binary",
"op",
to_string(_attributes.operation()),
"dt",
lower_string(string_from_data_type(_dst->data_type())),
};
return join(build_params, "_");
}
} // namespace dynamic_fusion
} // namespace experimental
} // namespace arm_compute