blob: d027f348ef897d41f9a68821b121a5fab03b2f42 [file] [log] [blame]
/*
* Copyright (c) 2023-2024 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "src/dynamic_fusion/sketch/gpu/ckw_driver/components/GpuCkwPool2d.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/utils/helpers/AdjustVecSize.h"
#include "arm_compute/core/Validate.h"
#include "src/core/helpers/WindowHelpers.h"
#include "src/dynamic_fusion/sketch/gpu/ckw_driver/components/utils/CkwHelper.h"
#include "src/dynamic_fusion/sketch/gpu/ckw_driver/components/utils/type_converter/Common.h"
#include "src/dynamic_fusion/sketch/gpu/ckw_driver/GpuCkwScopedKernelWriter.h"
#include "src/dynamic_fusion/sketch/gpu/ckw_driver/GpuCkwVariableTable.h"
#include "src/dynamic_fusion/sketch/gpu/GpuKernelArgument.h"
#include "src/dynamic_fusion/sketch/gpu/GpuKernelComponentGroup.h"
#include "compute_kernel_writer/include/ckw/KernelWriter.h"
#include <cstdint>
namespace arm_compute
{
namespace experimental
{
namespace dynamic_fusion
{
GpuCkwPool2d::GpuCkwPool2d(ComponentId id,
const ArgumentPack<ITensorInfo> &tensors,
const Attributes &attributes,
const Settings &settings)
: IGpuCkwComponentDriver{id, tensors}, _src{}, _dst{}, _attributes{attributes}, _settings{settings}
{
_src = this->tensors().get_const_tensor(TensorType::ACL_SRC_0);
_dst = this->tensors().get_const_tensor(TensorType::ACL_DST_0);
ARM_COMPUTE_ERROR_ON_NULLPTR(_src, _dst);
}
void GpuCkwPool2d::write_component_code(const ComponentGroup &comp_group,
GpuCkwVariableTable &vtable,
GpuCkwScopedKernelWriter writer) const
{
const uint32_t width_idx = get_data_layout_dimension_index(_src->data_layout(), DataLayoutDimension::WIDTH);
const uint32_t height_idx = get_data_layout_dimension_index(_src->data_layout(), DataLayoutDimension::HEIGHT);
/********************************************************************************
* 1 - Define tensors
********************************************************************************/
GpuCkwComponentArgument *src = vtable.declare_variable(comp_group, writer, _src, "src");
GpuCkwComponentArgument *dst = vtable.declare_variable(comp_group, writer, _dst, "dst");
/********************************************************************************
* 2 - Define CKW constants
********************************************************************************/
const auto dst_dt = to_ckw(_dst->data_type());
const auto pool_sz_x = static_cast<int32_t>(_attributes.pool_size().x());
const auto pool_sz_y = static_cast<int32_t>(_attributes.pool_size().y());
const auto pad_x = static_cast<int32_t>(_attributes.pad().left);
const auto pad_y = static_cast<int32_t>(_attributes.pad().top);
const auto stride_x = static_cast<int32_t>(_attributes.stride().x());
const auto stride_y = static_cast<int32_t>(_attributes.stride().y());
const auto src_w = static_cast<int32_t>(_src->dimension(width_idx));
const auto src_h = static_cast<int32_t>(_src->dimension(height_idx));
const auto dst_h = static_cast<int32_t>(_dst->dimension(height_idx));
// CKW constants
auto const_pool_sz_x_i32 = writer->declare_constant_tile(ckw::ConstantData({{pool_sz_x}}, ckw::DataType::Int32));
auto const_pool_sz_y_i32 = writer->declare_constant_tile(ckw::ConstantData({{pool_sz_y}}, ckw::DataType::Int32));
auto const_pad_x_i32 = writer->declare_constant_tile(ckw::ConstantData({{pad_x}}, ckw::DataType::Int32));
auto const_pad_y_i32 = writer->declare_constant_tile(ckw::ConstantData({{pad_y}}, ckw::DataType::Int32));
auto const_stride_x_i32 = writer->declare_constant_tile(ckw::ConstantData({{stride_x}}, ckw::DataType::Int32));
auto const_stride_y_i32 = writer->declare_constant_tile(ckw::ConstantData({{stride_y}}, ckw::DataType::Int32));
auto const_src_w_i32 = writer->declare_constant_tile(ckw::ConstantData({{src_w}}, ckw::DataType::Int32));
auto const_src_h_i32 = writer->declare_constant_tile(ckw::ConstantData({{src_h}}, ckw::DataType::Int32));
auto const_dst_h_i32 = writer->declare_constant_tile(ckw::ConstantData({{dst_h}}, ckw::DataType::Int32));
auto const_0_i32 = writer->declare_constant_tile(ckw::ConstantData({{0}}, ckw::DataType::Int32));
auto const_pos_1_i32 = writer->declare_constant_tile(ckw::ConstantData({{1}}, ckw::DataType::Int32));
auto const_0_fp = writer->declare_constant_tile(ckw::ConstantData({{0.0f}}, dst_dt));
auto const_lowest_val_fp =
writer->declare_constant_tile(ckw::ConstantData({{std::numeric_limits<float>::lowest()}}, ckw::DataType::Fp32));
auto const_neg_inf_val_fp = writer->declare_constant_tile(ckw::ConstantData({{-1.0f / 0.0f}}, ckw::DataType::Fp32));
/********************************************************************************
* 3 - Define the compute block parameters and destination tile (if not root component)
* Bind the tile to the tensor to share it among different components and
* initialize the compute block parameters
********************************************************************************/
// The n0 and m0 parameters from root_window only refers to the output
const auto root_window = comp_group.get_root_component()->ckw_component_driver()->get_window();
// Destination compute block size
const int32_t dst_n0 = root_window.x().step();
const int32_t dst_m0 = root_window.y().step();
// Destination compute block size left-over
const int32_t dst_n0_partial = _dst->dimension(0) % dst_n0;
const int32_t dst_m0_partial = _dst->dimension(1) % dst_m0;
// Shift-back for the overlapping-min strategy
const int32_t dst_shift_back = (dst_n0 - dst_n0_partial) % dst_n0;
ckw::TensorSampler sampler_dst;
sampler_dst.format(ckw::TensorSamplerFormat::Dim0_Dim1_Dim2);
if (dst_n0_partial == 0)
{
sampler_dst.address_mode_x(ckw::TensorSamplerAddressModeX::None);
}
else
{
sampler_dst.address_mode_x(ckw::TensorSamplerAddressModeX::OverlappingMin);
}
if (dst_m0_partial == 0)
{
sampler_dst.address_mode_y(ckw::TensorSamplerAddressModeY::None);
}
else
{
sampler_dst.address_mode_y(ckw::TensorSamplerAddressModeY::ClampToBorderMaxOnly);
}
sampler_dst.address_mode_z(ckw::TensorSamplerAddressModeZ::None);
sampler_dst.storage(ckw::TensorStorageType::BufferUint8Ptr);
// Declare destination tile
auto tile_dst = writer->declare_tile("dst", ckw::TileInfo(dst_dt, dst_m0, dst_n0));
// Initialize destination tile
writer->op_assign(tile_dst, const_0_fp);
// Bind tile to the tensor
dst->init_virtual_tensor(tile_dst, sampler_dst);
/********************************************************************************
* 4 - Define the compute block parameters CKW constants
********************************************************************************/
// Only now we can declare the N0 and M0 as constant
auto const_dst_n0_i32 = writer->declare_constant_tile(ckw::ConstantData({{dst_n0}}, ckw::DataType::Int32));
auto const_dst_m0_i32 = writer->declare_constant_tile(ckw::ConstantData({{dst_m0}}, ckw::DataType::Int32));
auto const_shift_back_dst_n0_i32 =
writer->declare_constant_tile(ckw::ConstantData({{dst_shift_back}}, ckw::DataType::Int32));
/********************************************************************************
* 5 - Define the sampler for the input tensor
********************************************************************************/
ckw::TensorSampler sampler_src;
sampler_src.format(ckw::TensorSamplerFormat::Dim0_Dim1_Dim2);
sampler_src.address_mode_x(ckw::TensorSamplerAddressModeX::None);
sampler_src.address_mode_y(ckw::TensorSamplerAddressModeY::None);
sampler_src.address_mode_z(ckw::TensorSamplerAddressModeZ::None);
/********************************************************************************
* 6 - Extra operations required before writing the main code
********************************************************************************/
// Check if it is global pooling
const bool is_global_pooling = (pool_sz_x == src_w) && (pool_sz_y == src_h) && (pad_x == 0) && (pad_y == 0);
// Accumulate always in F32 if the pool type is not MAX
const bool acc_f32 = (dst_dt == ckw::DataType::Fp32) ||
((dst_dt == ckw::DataType::Fp16) && _attributes.pool_type() != PoolingType::MAX);
const auto acc_dt = acc_f32 ? ckw::DataType::Fp32 : ckw::DataType::Fp16;
const bool is_wider_acc = dst_dt != acc_dt;
/********************************************************************************
* 7 - Get the coordinates of the destination tile
********************************************************************************/
auto tile_gid_0 = writer->declare_tile("gid_0", ckw::TileInfo(ckw::DataType::Int32));
auto tile_gid_1 = writer->declare_tile("gid_1", ckw::TileInfo(ckw::DataType::Int32));
auto tile_gid_2 = writer->declare_tile("gid_2", ckw::TileInfo(ckw::DataType::Int32));
writer->op_get_global_id(tile_gid_0, 0);
writer->op_get_global_id(tile_gid_1, 1);
writer->op_get_global_id(tile_gid_2, 2);
auto tile_cout0 = writer->declare_tile("cout0", ckw::TileInfo(ckw::DataType::Int32)); // OFM
auto tile_mout0 = writer->declare_tile("mout0", ckw::TileInfo(ckw::DataType::Int32)); // WIDTH
auto tile_mout1 = writer->declare_tile("mout1", ckw::TileInfo(ckw::DataType::Int32)); // HEIGHT
auto tile_bout0 = writer->declare_tile("bout0", ckw::TileInfo(ckw::DataType::Int32)); // BATCH SIZE IDX
// Calculate coordinates
get_coordinate_from_gws_overlapping_min(writer, tile_cout0, tile_gid_0, const_dst_n0_i32,
const_shift_back_dst_n0_i32, const_0_i32);
get_coordinate_from_gws(writer, tile_mout0, tile_gid_1, const_dst_m0_i32);
writer->op_binary(tile_mout1, ckw::BinaryOp::Mod, tile_gid_2, const_dst_h_i32);
writer->op_binary(tile_bout0, ckw::BinaryOp::Div, tile_gid_2, const_dst_h_i32);
/********************************************************************************
* 8 - Write the rest of the code
********************************************************************************/
// A tile used to temporarily store results or as an accumulator in case of AVG and L2 pooling.
auto tile_res = writer->declare_tile("tile_res", ckw::TileInfo(acc_dt, dst_m0, dst_n0));
// Initialise result tile with appropriate value
if (_attributes.pool_type() == PoolingType::MAX)
{
if (_settings.use_inf_as_limit())
{
writer->op_cast(tile_res, const_neg_inf_val_fp, ckw::ConvertPolicy::None);
}
else
{
writer->op_cast(tile_res, const_lowest_val_fp, ckw::ConvertPolicy::None);
}
}
else
{
writer->op_cast(tile_res, const_0_fp, ckw::ConvertPolicy::None);
}
// tile_idx_in_w = tile_mout0 * STRIDE_X - PAD_X
auto tile_src_coord_x_start = writer->declare_tile("idx_in_w", ckw::DataType::Int32);
writer->op_binary(tile_src_coord_x_start, ckw::BinaryOp::Mul, tile_mout0, const_stride_x_i32);
writer->op_binary(tile_src_coord_x_start, ckw::BinaryOp::Sub, tile_src_coord_x_start, const_pad_x_i32);
// tile_idx_in_h = tile_mout1 * STRIDE_Y - PAD_Y
auto tile_src_coord_y_start = writer->declare_tile("idx_in_h", ckw::DataType::Int32);
writer->op_binary(tile_src_coord_y_start, ckw::BinaryOp::Mul, tile_mout1, const_stride_y_i32);
writer->op_binary(tile_src_coord_y_start, ckw::BinaryOp::Sub, tile_src_coord_y_start, const_pad_y_i32);
auto tile_neg_src_coord_x_start = writer->declare_tile("neg_src_coord_x_start", ckw::DataType::Int32);
auto tile_neg_src_coord_y_start = writer->declare_tile("neg_src_coord_y_start", ckw::DataType::Int32);
writer->op_binary(tile_neg_src_coord_x_start, ckw::BinaryOp::Sub, const_0_i32, tile_src_coord_x_start);
writer->op_binary(tile_neg_src_coord_y_start, ckw::BinaryOp::Sub, const_0_i32, tile_src_coord_y_start);
// int pool_x_s = max((int)0, -idx_in_w);
// int pool_x_e = min((int)POOL_SIZE_X, (int)SRC_WIDTH - idx_in_w);
// int pool_y_s = max((int)0, -idx_in_h);
// int pool_y_e = min((int)POOL_SIZE_Y, (int)SRC_HEIGHT - idx_in_h);
auto tile_pool_x_s = writer->declare_tile("pool_x_s", ckw::DataType::Int32);
auto tile_pool_y_s = writer->declare_tile("pool_y_s", ckw::DataType::Int32);
auto tile_pool_x_e = writer->declare_tile("pool_x_e", ckw::DataType::Int32);
auto tile_pool_y_e = writer->declare_tile("pool_y_e", ckw::DataType::Int32);
writer->op_binary(tile_pool_x_s, ckw::BinaryOp::Max, const_0_i32, tile_neg_src_coord_x_start);
writer->op_binary(tile_pool_x_e, ckw::BinaryOp::Add, const_src_w_i32, tile_neg_src_coord_x_start);
writer->op_binary(tile_pool_x_e, ckw::BinaryOp::Min, const_pool_sz_x_i32, tile_pool_x_e);
writer->op_binary(tile_pool_y_s, ckw::BinaryOp::Max, const_0_i32, tile_neg_src_coord_y_start);
writer->op_binary(tile_pool_y_e, ckw::BinaryOp::Add, const_src_h_i32, tile_neg_src_coord_y_start);
writer->op_binary(tile_pool_y_e, ckw::BinaryOp::Min, const_pool_sz_y_i32, tile_pool_y_e);
// #if defined(EXCLUDE_PADDING)
// int filter_size = (pool_y_e - pool_y_s) * (pool_x_e - pool_x_s);
// #else // defined(EXCLUDE_PADDING)
// int filter_size = POOL_SIZE_X * POOL_SIZE_Y;
// #endif // defined(EXCLUDE_PADDING)
auto tile_filter_size = writer->declare_tile("filter_size", ckw::DataType::Int32);
if (_attributes.exclude_padding())
{
auto tile_x_diff = writer->declare_tile("x_diff", ckw::DataType::Int32);
auto tile_y_diff = writer->declare_tile("y_diff", ckw::DataType::Int32);
writer->op_binary(tile_x_diff, ckw::BinaryOp::Sub, tile_pool_x_e, tile_pool_x_s);
writer->op_binary(tile_y_diff, ckw::BinaryOp::Sub, tile_pool_y_e, tile_pool_y_s);
writer->op_binary(tile_filter_size, ckw::BinaryOp::Mul, tile_x_diff, tile_y_diff);
}
else
{
writer->op_binary(tile_filter_size, ckw::BinaryOp::Mul, const_pool_sz_x_i32, const_pool_sz_y_i32);
}
auto tile_x = writer->declare_tile("x", ckw::DataType::Int32);
auto tile_y = writer->declare_tile("y", ckw::DataType::Int32);
if (is_global_pooling)
{
writer->op_assign(tile_y, const_0_i32);
writer->op_assign(tile_pool_y_e, const_pool_sz_y_i32);
}
else
{
writer->op_assign(tile_y, tile_pool_y_s);
}
// Y dim for-loop
writer->op_for_loop(
tile_y, ckw::BinaryOp::Less, tile_pool_y_e, tile_y, ckw::AssignmentOp::Increment, const_pos_1_i32,
[&]()
{
// Reset the iterator for the inner loop
if (is_global_pooling)
{
writer->op_assign(tile_x, const_0_i32);
writer->op_assign(tile_pool_x_e, const_pool_sz_x_i32);
}
else
{
writer->op_assign(tile_x, tile_pool_x_s);
}
auto tile_src_coord_y = writer->declare_tile("src_coord_y", ckw::DataType::Int32);
writer->op_binary(tile_src_coord_y, ckw::BinaryOp::Add, tile_src_coord_y_start, tile_y);
// X dim for-loop
writer->op_for_loop(
tile_x, ckw::BinaryOp::Less, tile_pool_x_e, tile_x, ckw::AssignmentOp::Increment, const_pos_1_i32,
[&]()
{
auto tile_src_coord_x = writer->declare_tile("src_coord_x", ckw::DataType::Int32);
writer->op_binary(tile_src_coord_x, ckw::BinaryOp::Add, tile_src_coord_x_start, tile_x);
ckw::DataType src_dt = to_ckw(_src->data_type());
auto tile_src = writer->declare_tile("tile_src", ckw::TileInfo(acc_dt, dst_m0, dst_n0));
// Load src tile
if (is_wider_acc)
{
auto tile_src0 = writer->declare_tile("src_tile0", ckw::TileInfo(src_dt, dst_m0, dst_n0));
writer->op_load(tile_src0, src->tensor(), sampler_src, tile_cout0, tile_src_coord_x,
tile_src_coord_y, tile_bout0);
writer->op_cast(tile_src, tile_src0, ckw::ConvertPolicy::None);
}
else
{
writer->op_load(tile_src, src->tensor(), sampler_src, tile_cout0, tile_src_coord_x,
tile_src_coord_y, tile_bout0);
}
// Take the square of the input, for L2 Pooling
if (_attributes.pool_type() == PoolingType::L2)
{
writer->op_binary(tile_src, ckw::BinaryOp::Mul, tile_src, tile_src);
}
// Perfom Pooling op
if (_attributes.pool_type() == PoolingType::MAX)
{
writer->op_binary(tile_res, ckw::BinaryOp::Max, tile_res, tile_src);
}
else
{
writer->op_binary(tile_res, ckw::BinaryOp::Add, tile_res, tile_src);
}
});
});
if ((_attributes.pool_type() == PoolingType::AVG) || (_attributes.pool_type() == PoolingType::L2))
{
// Filter_size is automatically broadcasted in the operation
auto tile_filter_size_fp = writer->declare_tile("filter_size_fp", ckw::TileInfo(acc_dt));
writer->op_cast(tile_filter_size_fp, tile_filter_size, ckw::ConvertPolicy::None);
writer->op_binary(tile_res, ckw::BinaryOp::Div, tile_res, tile_filter_size_fp);
}
// Take square root of the result in L2 pooling
if (_attributes.pool_type() == PoolingType::L2)
{
writer->op_unary(tile_res, ckw::UnaryOp::Sqrt, tile_res);
}
// Store the results and do casting if mixed precision
if (is_wider_acc)
{
writer->op_cast(tile_dst, tile_res, ckw::ConvertPolicy::None);
}
else
{
writer->op_assign(tile_dst, tile_res);
}
}
Window GpuCkwPool2d::get_window() const
{
ARM_COMPUTE_ERROR_ON_MSG(_dst->tensor_shape().total_size() == 0U, "Destination tensor is not initialized");
TensorShape output_shape = _dst->tensor_shape();
const uint32_t vec_size = adjust_vec_size(((_dst->data_type() == DataType::F32) ? 2 : 4), _dst->dimension(0));
// Create and configure kernel window
auto win = calculate_max_window(output_shape, Steps(vec_size));
win = win.collapse_if_possible(win, Window::DimZ); // collapse window on batch size.
return win;
}
std::string GpuCkwPool2d::get_name(const ComponentGroup &comp_group) const
{
ARM_COMPUTE_UNUSED(comp_group);
return "pool2dMxN";
}
} // namespace dynamic_fusion
} // namespace experimental
} // namespace arm_compute